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ABSTRACT. We prove the arborescence of any locally finite complex that is CAT(0) with a polyhedral metric for which

all vertex stars are convex. In particular locally finite CAT(0) cube complexes or equilateral simplicial complexes are

arborescent. Moreover, a triangulated manifold admits a CAT(0) polyhedral metric if and only if it admits arborescent

triangulations. We prove eventually that every locally finite complex which is CAT(0) with a polyhedral metric has a

barycentric subdivision which is arborescent.

1. INTRODUCTION

CAT(0) spaces are metric spaces for which, roughly speaking, geodesic triangles are thinner than the Eu-

clidean triangles with the same edge lengths (see [16]). The Hadamard–Cartan theorem states that simply

connected, complete, locally CAT(0) spaces are (globally) CAT(0) and hence contractible. The topology of

contractible manifolds admitting CAT(0) metrics is known to be constrained, according to [21, 22, 23]. Exotic

examples of such manifolds have been constructed by Davis and Januszkiewicz (see [12]) and later Ancel and

Guilbault ([5]) showed that interiors of all compact contractible manifolds admit CAT(0) metrics. In our previ-

ous work [3] we aimed at giving an almost complete characterization of their topology under the assumption

that the CAT(0)-metric is polyhedral, e.g. piecewise Euclidean. If one looks more generally upon complexes

instead of manifolds White (see [25]) proved that a simplicial 2-complex admits a strongly convex metric if and

only if it is collapsible. As such the result cannot be extended to higher dimensions, as there exist (non rectilin-

ear) triangulations of the 3-cell which are not collapsible. Further Crowley (see [11]) proved that 3-dimensional

CAT(0) complexes satisfying an additional condition including triangulated 3-manifolds whose piecewise Eu-

clidean metric is CAT(0) are collapsible after subdivision. Although Crowley only considered finite 3-complexes,

the infinite case can be proved the same way. Finite CAT(0) cubical complexes were known to be collapsible for

a while, see ([9], section 4) for more general results in this direction. Moreover, in [1] the authors proved that all

finite CAT(0) complexes are collapsible after subdivision.

Our main goal here is to understand which locally finite contractible complexes admit polyhedral CAT(0)
metrics, in particular to settle the description from [3] for manifolds.

A key topological notion in this article is the arborescence of an infinite cell complex, which is the natural ex-

tension of the collapsibility to the realm of non-compact spaces. Specifically, a locally finite complex is arborescent

if it is obtained from a vertex by infinitely many dilatations, or equivalently, if it is the ascending union of finite

subcomplexes, each finite subcomplex collapsing on the smaller one.

In [6] the authors considered a weaker notion of arborescence of a locally finite complex which only asks for

being the ascending union of collapsible complexes. It seems that this weak arborescence does not imply the

Date: April 24, 2024.

2010 Mathematics Subject Classification. 57N16, 51K10, 57N15.

1

ar
X

iv
:2

40
4.

14
87

8v
1 

 [
m

at
h.

G
T

] 
 2

3 
A

pr
 2

02
4



2 KARIM A. ADIPRASITO AND LOUIS FUNAR

arborescence, in general. In [3] we provided examples of locally finite complexes which are ascending unions

of compact contractible submanifolds but which are not semi-stable at infinity and hence are not arborescent.

On the other hand each contractible submanifold has collapsible triangulations, by [1]. As locally finite CAT(0)
complexes are ascending unions of convex finite subcomplexes and hence CAT(0) subcomplexes, they are auto-

matically weakly arborescent.

Recall that a CAT(κ) metric on a polytopal complex is said to be polyhedral if every cell, when equipped with

the induced metric, is isometric to the convex hull of a finite set of points in the spherical, hyperbolic or Euclidean

space of curvature κ. For instance the piecewise flat equilateral metric is the length metric obtained when simplices

or cubes are Euclidean and have all their edges of the same (unit) length.

Our first result is:

Theorem A (Theorem 3.1). Let C be a locally finite simplicial complex that is CAT(0) with a polyhedral metric for which

all vertex stars are convex. Then C is arborescent.

Convexity of vertex stars means that for each vertex v, with respect to the metric introduced on C, the segment

between any two points of the star st(v, C) lies in st(v, C). It is automatically satisfied by any complex in which

all simplices are acute or right-angled.

As a consequence of the first result we obtain:

Corollary 1. Every locally finite complex that is CAT(0) with the equilateral flat metric is arborescent. Furthermore,

every locally finite CAT(0) cube complex is arborescent.

The case of CAT(0)-cube complexes has been proved independently by Gulbrandsen in his PhD thesis (see

[18]). Note also that the corner peeling method used in [10] provides an alternative proof.

This is a converse of the result proved earlier in [3] by the authors stating that an arborescent locally finite

simplicial complex is PL homeomorphic to a locally finite CAT(0) cubical complex. In particular we have the

following characterization of arborescence:

Corollary 2. A simplicial complex admits an arborescent triangulation if and only if it is PL homeomorphic to a CAT(0)
cube complex. In particular, for any integer d, the open d-manifolds admitting an arborescent triangulation are precisely

those that admit a CAT(0) polyhedral metric.

Throughout this paper all polyhedral metrics are supposed to have only finitely many isometry classes of cells.

We only consider locally finite complexes endowed with polyhedral CAT(κ) metrics which are complete ge-

odesic metric spaces. Explicit examples can be obtained from a locally finite triangulation of manifolds whose

simplices are endowed with constant curvature metrics and have finite distorsion, by ([7], I.7A.13 and I.3.7).

Note however that all contractible manifolds do not admit arborescent triangulations, as there are specific

restrictions on the topology at infinity (see [3]). Nevertheless the interiors of compact contractible manifolds

admit CAT(0) metrics, see [4, 5].

The usual definition of polyhedral metrics from ([7], I.7, Def. 7.37) allows the above condition be satisfied for

a suitable subdivision of the polytopal complex. However, for our next result it is important to work with a fixed

geometric cell decomposition. The second main result gives a complete characterization of complexes admitting

a polyhedral CAT(0) metric, as follows:
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Theorem B (Theorem 4.5). Every locally finite complex that is CAT(0) with a polyhedral metric has an arborescent

barycentric subdivision.

This improves the second part of Theorem 1 from [3]. The proofs build upon the Forman discrete Morse

theory ([14]) and its developments leading to the collapsibility results of [1, 2].

Acknowledgements. The authors are grateful to Victor Chepoi, Craig Guilbault and Daniel Gulbrandsen for

useful discussions. The first author is supported by the ISF, the CNRS and the Horizon Europe ERC HodgeGeo-

Comb Grant no. 101045750.

2. PRELIMINARIES

2.1. Definitions. A polytope is the convex hull of finitely many points in a simply connected space of constant

curvature. When the curvature is positive we ask the points to belong to some open hemisphere-sphere. A

polytopal complex is a finite collection of polytopes in the ambient space such that the intersection of any two

polytopes is a face of both. An intrinsic polytopal complex is a collection of polytopes that are attached along

isometries of their faces so that the intersection of any two polytopes is a face of both.

The underlying space |C| of a polytopal complex C is the topological space obtained by taking the union of its

faces. A triangulation of a topological space X is a simplicial complex with a homeomorphism |C| → X . Two

polytopal complexes C, D are equivalent if their face posets are isomorphic, in which case their underlying spaces

are homeomorphic.

A subdivision of a polytopal complex C is a polytopal complex C ′ with the same underlying space of C, such

that for every face F ′ of C ′ there is some face F of C for which F ′ ⊂ F . Two polytopal complexes C and D are

PL equivalent if they have equivalent subdivisions. A triangulation of a topological manifold is PL if the star of

every face is PL equivalent to the simplex of the same dimension.

A subdivision sd C of a polytopal complex C obtained by stellarly subdividing all its faces in decreasing order

of their dimensions is called derived subdivision, see [19]. An example of a derived subdivision is the barycentric

subdivision, which uses as vertices the barycenters of all faces of C.

If C is a polytopal complex and A is a subset, the restriction R (C, A) of C to A is the inclusion-maximal

subcomplex D of C such that D lies in A. The star of σ in C, denoted by st(σ, C), is the minimal subcomplex of

C that contains all faces of C containing σ. The deletion C − D of a subcomplex D from C is the subcomplex of

C given by R (C, C\relintD). The (first) derived neighborhood N(D, C) of D in C is the simplicial complex

N(D, C) :=
⋃

σ∈sd D

st(σ, sd C).

2.2. Polyhedral CAT(k) spaces and convex subsets. Recall that a metric space (X, d) is geodesic (also called a

length space or an inner metric space) if every two points of it can be joined by a minimizing geodesic, namely

a curve whose length equals the distance between the points. The length of the continuous path γ : [0, 1] → X is

defined as

sup
r,0=t0<t1<···tr<tr+1=1

r∑
j=0

d(γ(tj), γ(tj+1)

A geodesic triangle in (X, d) satisfies the CAT(κ) inequality if the geodesic comparison triangle with sides of

the same length within the simply connected curvature κ Riemannian surface has distances between pairs of
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boundary points larger than those between corresponding pairs of points in the initial triangle. Moreover, the

geodesic metric space (X, d) is CAT(0) if every geodesic triangle, which for κ > 0 has perimeter less than 2π√
κ

,

satisfies the CAT(κ) inequality.

Given two points a, b in a length space X , we denote sometimes by |ab| the distance between a and b, which

is the minimum of the lengths of all curves from a to b. In a CAT(0) space, any two points are connected by a

unique geodesic. The same holds for CAT(k) spaces (k > 0), as long as the two points are at distance < πk− 1
2 .

Let c be a point of X and let K be a closed subset of X , not necessarily convex. We denote by πc(K) the subset

of the points of K at minimum distance from c, the closest-point projection of c to K. In case πc(K) contains a

single point, with abuse of notation we write πc(K) = x instead of πc(K) = {x}. This is always the case when K

is convex, as the following well-known lemma shows.

Lemma 2.1 ([7, Prop. 2.4]). Let X be a connected CAT(k)-space, k ≤ 0. Let c be a point of X . Then the function

“distance from c” has a unique local minimum on each closed convex subset K of X . Similarly, if k > 0 and K is at

distance less than 1
2 πk−1/2 from c, then there exists a unique local minimum of distance at most 1

2 πk−1/2 from c.

Classical results show that every open contractible m-manifold M is triangulable, namely there exists a locally

finite simplicial complex ∆ homeomorphic to M (see e.g. [20], Annex B, p. 300, Annex C, p.315). The CAT(κ)

metrics which we consider on M are supposed to be polyhedral, namely there exists a suitable triangulation ∆
such that every cell of ∆, when equipped with the induced metric, is isometric to the convex hull of a finite set of

points in the hyperbolic or Euclidean space of curvature κ ≤ 0, or within a hemisphere when κ > 0 (see [7], I.7,

Def. 7.37). For instance the piecewise flat equilateral metric is the length metric obtained when simplices or cubes

are Euclidean and have all their edges of the same (unit) length.

Throughout this paper all polyhedral metrics are supposed to have only finitely many isometry classes of cells.

In [3] we pointed out that the results presented there were valid more generally for CAT(0) metrics for which

the restriction to every cell of ∆ is a piecewise analytic Riemannian metric whose curvature is bounded above

and below by two constants independent on the cell and that the distorsion of cells is uniformly bounded. The

polyhedral requirements in this article seem to be necessary for most results presented here.

Note that we only consider topological manifolds endowed with polyhedral CAT(κ) metrics which are com-

plete geodesic metric spaces. Explicit examples can be obtained from a locally finite triangulation of M whose

simplices are endowed with constant curvature metrics and have finite distorsion, by ([7], I.7A.13 and I.3.7).

2.3. Tangent cones, geodesics and links. We define the notion of link with a metric approach. However we

will restrict ourselves to the case where the space X is a polytopal complex endowed with a CAT(κ) polyhedral

metric. In particular every cell σ of X is realized as a totally geodesic convex polytope in the space form of

constant curvature κ.

Let p be any point of X . By TpX we denote the tangent cone of X at p, namely the union
⋃

p∈σ Tpσ of all

tangent spaces of cells σ containing p, where we identify Tpτ and its image within Tpσ, for any cell τ ⊂ σ. Each

tangent space Tpσ inherits a positive bilinear form from the constant curvature Riemannian metric on σ. The

various scalar products are compatible on intersections since cell embeddings are totally geodesic.

Note that two points p, q in the same cell σ determine an unique geodesic γ joining them. This is clear for

κ ≤ 0, and implied by our assumptions that spherical cells be embedded into hemispheres, if κ > 0. Moreover,
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as cells are totally geodesic submanifolds of the corresponding space form the geodesic γ is smooth, actually real

analytic, and the tangent vector is well-defined at any of its points. Further, given a point p of X and a vector

v ∈ TpX , there exists an unique geodesic γ issued from p whose tangent vector is v.

This allows us to define the tangent cone TpF to a point p of a convex set F ⊂ X . Assuming p ∈ ∂F , as

otherwise it is clear, we define TpY to be the cone of those vectors v ∈ TpY for which there exists q ∈ F , in a

given neighborhood of q within X , with the property that the geodesic γ joining p to q has tangent vector v at p

and lives entirely in a cell of X . When ∂F is a polyhedron, TpY is a closed subcone of TpY .

Let T1
pX denote the set of unit vectors in the cone TpX . If Y is any subspace of X and p ∈ Y such that the

tangent cone TpY makes sense, then N(p,Y )X denotes the cone of TpX spanned by the vectors orthogonal to

TpY . If p is in the interior of Y , we define N1
(p,Y )X := N(p,Y )X ∩ T1

pY .

This situation occurs, for instance, when Y is locally a finite union of manifolds, a convex subspace or the

boundary of a convex domain. Consider a convex subset Y of a the underlying space X of a polytopal complex

endowed with a polyhedral CAT(κ) metric and a point p which belongs to its boundary ∂Y . Note that Y is then

a topological manifold with boundary. Being convex means that at every point Y has totally geodesic support

hyperplanes. Recall that a totally geodesic hyperplane H contained in a cell σ is a support hyperplane at p for

the convex set Y ⊂ σ if it contains p and Y is contained in the closure of one connected component H+ of σ \ H .

The tangent cone TpY consist of the intersection of all components H+ containing Y , where H denotes the totally

geodesic support hyperplanes at p. Moreover, N(p,∂Y )X =
⋂

H N(p,H)X , where H belongs to the set of totally

geodesic hyperplane supports at p.

If τ is any face of a polytopal complex C containing a nonempty face σ of C, then the set N1
(p,σ)τ of unit

tangent vectors in N1
(p,σ)|C| pointing towards τ forms a spherical polytope Pp(τ), isometrically embedded in

N1
(p,σ)|C|. The family of all polytopes Pp(τ) in N1

(p,σ)|C| obtained for all τ ⊃ σ forms a polytopal complex, called

the link of C at σ and denoted by lkp(σ, C). If C is a polytopal complex endowed with a polyhedral CAT(κ)
metric, then lkp(σ, C) is naturally realized in N1

(p,σ)X . When X is a PL d-manifold N1
(p,σ)X is isometric to a

sphere of dimension d − dim σ − 1, and will be considered as such. Up to ambient isometry lkp(σ, C) and N1
(p,σ)τ

in N1
(p,σ)|C| or N1

(p,σ)X do not depend on p.

If C is simplicial, and v is a vertex of C, then lk(v, C) is combinatorially equivalent to

(C − v) ∩ st(v, C) = st(v, C) − v.

By convention, lk(∅, C) := C. If C is a simplicial complex, and σ, τ are faces of C, then σ ∗ τ is the minimal face

of C containing both σ and τ (assuming it exists). If σ is a face of C, and τ is a face of lk(σ, C), then σ ∗ τ is the

face of C with lk(σ, σ ∗ τ) = τ . In both cases, the operation ∗ is called the join.

2.4. Discrete Morse theory after Forman and arborescence. The face poset (C, ⊆) of a polytopal complex C is

the set of nonempty faces of C, ordered with respect to inclusion. By (R, ≤) we denote the poset of real numbers

with the usual ordering. A discrete Morse function is an order-preserving map f from (C, ⊆) to (R, ≤), such that

the preimage f−1(r) of any number r consists of either one element, or of two elements one contained in the

other. A critical cell of C is a face at which f is strictly increasing.

The function f induces a perfect matching on the non-critical cells: two cells are matched whenever they have

identical image under f . This is called Morse matching, and it is usually represented by a system of arrows: When-

ever σ ⊊ τ and f(σ) = f(τ), one draws an arrow from the barycenter of σ to the barycenter of τ . We consider
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two discrete Morse functions equivalent if they induce the same Morse matching. Since any Morse matching

pairs together faces of different dimensions, we can always represent a Morse matching by its associated partial

function Θ from C to itself, defined on a subset of C as follows:

Θ(σ) :=
{

σ if σ is unmatched,

τ if σ is matched with τ and dim σ < dim τ .

A discrete vector field V on a polytopal complex C is a collection of pairs (σ, Σ) of faces such that σ is a

codimension-one face of Σ, and no face of C belongs to two different pairs of V . A gradient path in V is a

concatenation of pairs of V

(σ0, Σ0), (σ1, Σ1), . . . , (σk, Σk), k ≥ 1,

so that for each i the face σi+1 is a codimension-one face of Σi different from σi. A gradient path is closed if

σ0 = σk for some k (that is, if the gradient path forms a closed loop). A discrete vector field V is a Morse matching

if V contains no closed gradient paths [13, 14].

Inside a polytopal complex C, a free face σ is a face strictly contained in only one other face of C. An elementary

collapse is the deletion of a free face σ from a polytopal complex C. We say that C (elementarily) collapses onto

C − σ, and write C ↘e C − σ. In the opposite direction an inverse elementary collapse is called a dilatation and

we write C − σ ↗e C. We also say that the complex C collapses to a subcomplex C ′, and write C ↘ C ′, if C can

be reduced to C ′ by a sequence of elementary collapses. A collapsible complex is a complex that collapses onto a

single vertex.

Moreover, a locally finite complex is arborescent if it is obtained from a vertex by infinitely many dilatations.

Alternatively, there exists an ascending union by finite subcomplexes Ki, such that Ki+1 collapses onto Ki, for

every i.

Collapsibility only depends on the combinatorial type and does not depend on the geometric realization of a

polytopal complex. Discrete Morse theory provides a simple criterion for collapsibility, as follows:

Theorem 2.2 (Forman [13]). A finite polytopal complex C is collapsible if and only if C admits a discrete Morse function

with only one critical face.

The following is an immediate extension of Forman’s result to infinite complexes:

Theorem 2.3. A locally finite polytopal complex C is arborescent if C admits a discrete Morse function with only one

critical face.

Collapsible complexes are contractible and manifolds which have PL triangulations which are collapsible are

necessarily PL balls [27]. In the same way arborescent complexes are contractible. We will prove later that

an open manifold which has an arborescent PL triangulation is PL homeomorphic to the Euclidean space (see

Proposition 5.2).

Note that there exist in every dimension d ≥ 4 compact contractible manifolds which have non simply con-

nected boundary and hence they are not homeomorphic to the ball. Every such contractible manifold admits

some collapsible non PL triangulation.



POLYHEDRAL CAT(0) METRICS ON LOCALLY FINITE COMPLEXES 7

On the other hand an open contractible manifold has not necessarily a (even non PL) triangulation which is

arborescent. When it does, it is PL homeomorphic to a cubical complex (see [3]) and in particular its topology at

infinity is quite restricted.

We now state the following lemmas from [1], for further use:

Lemma 2.4. Let C be a simplicial complex, and let C ′ be a subcomplex of C. Then the cone over base C collapses to the

cone over C ′.

Lemma 2.5. Let v be any vertex of any simplicial complex C. If lk(v, C) collapses to some subcomplex S, then C collapses

to (C − v) ∪ (v ∗ S). In particular, if lk(v, C) is collapsible, then C ↘ C − v.

Lemma 2.6. Let C denote a simplicial complex that collapses to a subcomplex C ′. Let D be a simplicial complex such that

D ∪ C is a simplicial complex. If D ∩ C = C ′, then D ∪ C ↘ D.

2.5. Gradient matchings and star-minimal functions following [1, 2]. In this section we show how to obtain

Morse matchings on a simplicial complex, using real-valued continuous functions on the complex.

Definition 2.7. Let C be an intrinsic simplicial complex. A function f : |C| → R is called star-minimal if it satisfies

the following three conditions:

(i) f is continuous,

(ii) on the star of each face of C, the function f has a unique absolute minimum, and

(iii) no two vertices have the same value under f .

Note that a generic continuous function on a simplicial complex is star-minimal.

A star-minimal function on a complex C induces a Morse matching, called gradient matching, as follows.

v

y
m

e

x

Figure 1. Matching an edge e with respect to the distance f from some point v, with unique minimum m on |st(e, C)|.
Then Θf (e) = e or Θf (e) = e ∗ y, according to whether x is closer to v than y or not
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Let σ be a face of C. On the star of σ, the function f has a unique minimum m. We denote by µ(σ) the inclusion-

minimal face among all the faces of st(σ, C) that contain the point m. Consider the pointer map yf : C → C, given

by:

yf (σ) = y,

where y is the unique vertex of µ(σ) on which f attains its minimum value.

The matching Θf : C −→ C associated with the function f is defined recursively on the dimension. Set first

Θ(∅) := ∅. Let σ be a face of C. If for all faces τ ⊊ σ one has Θf (τ) ̸= σ, we define

Θf (σ) := yf (σ) ∗ σ.

Note that every face of C is either in the image of Θf , or in its domain, or both. In the latter case, we have

Θf (σ) = σ.

Definition 2.8 (Gradient matching). Let Θ : C −→ C be (the partial function associated to) a matching on the

faces of a simplicial complex C. We say that Θ is a gradient matching if Θ = Θf for some star-minimal function

f : |C| → R.

Next we recall the following result from [1], showing that all gradient matchings are Morse matchings.

Proposition 2.9. Let C be a simplicial complex. Let f : |C| → R be any star-minimal continuous function on the

underlying space of C. Then the induced gradient matching Θf is a Morse matching. Moreover, the map

σ 7→ (yf (σ), σ)

yields a bijection between the set C of the (nonempty) critical faces and the set

P := {(v, τ) | v ⊂ τ, yf (τ) = v and yf (τ − v) ̸= v} .

In particular, the complex C admits a discrete Morse function with ci critical i-simplices, where

ci = # {(v, τ) | v ⊂ τ, dim τ = i, yf (τ) = v and yf (τ − v) ̸= v} .

2.6. Arborescence and subdivisions of convex polytopes. We will need later the following result from [2]:

Proposition 2.10. Let C, C ′ be polytopal complexes such that C ′ ⊂ C and C ↘ C ′. Let D denote any subdivision of C,

and define D′ := R (D, C ′). Then, sd D ↘ sd D′.

The following lemma from [1] seems well-known we will include a proof for the sake of completeness:

Lemma 2.11. Let µ be any face of a d-dimensional polytope P . For any polytope P and for any face µ, P collapses onto

st(µ, ∂P ), which is collapsible.

Proof. There exists a shelling of ∂P starting with st(σ, ∂P ) according to [28, Cor. 8.13]. If τ is the last facet of such

a shelling, then P collapses onto ∂P − τ and the later collapses onto st(σ, ∂P ) by using the shelling. □

Proposition 2.12. Let C denote any subdivision of a convex d-polytope. Then sd C is collapsible.

Proof. By Lemma 2.11, the polytope P is collapsible. Now for any subdivision C of P , the facets of C are all

convex polytopes (not necessarily simplicial). Hence sd C is collapsible by Theorem 2.10. □
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3. PROOFS OF THE MAIN THEOREMS

3.1. Proof of Theorem A. Our approach consists in applying the ideas of Section 2.5 to the case where C is a

CAT(0) complex, and the function f : C → R is the distance from a given vertex v of C. Because of the CAT(0)
property, this function is star-minimal and hence it induces a gradient matching on the complex.

Recall that ridges are facets of facets of a simplicial complex.

Theorem 3.1. Let C be a CAT(0) intrinsic locally finite simplicial complex such that st(σ, C) in C is convex for each

ridge σ. Then C is arborescent.

Proof. In [1] it was already proved that st(σ, C) in C is convex for cell σ. If all ridges have convex stars, then

for every vertex v the closest-point projection to st(v, C) is a well-defined locally non-expansive map and hence

globally non-expansive, as closed connected locally convex subsets are convex [8]. If x and y are two points in

st(v, C) for which the geodesic γ from x to y leaves st(v, C). The projection γ′ of γ on st(v, C) is a curve joining

x and y which is contained in st(v, C) and is not longer than γ. This contradicts the uniqueness of geodesic

segments in CAT(0) spaces.

Fix x in C and let d : |C| 7−→ R be the distance from x in |C|. By possibly slightly moving x there exists an

unique vertex w of C that minimizes d. Note that d is a function that has a unique local minimum on the star of

each face by Lemma 2.1. Let us perform on the face poset of C the Morse matching constructed in Proposition 2.9.

The vertex w will be mapped onto itself and for each vertex u ̸= w we have yd(u) ̸= u. So every vertex is matched

with an edge, apart from w, which is the only critical vertex.

Assume that there is a critical face τ of dimension at least 1. Consider v := yd(τ). By Lemma 2.1, the restriction

of the function d to st(τ, C) attains its minimal value in the relative interior of a face σv ∈ st(τ, C) that contains v.

Let δ be any face of st(τ −v, C) containing σv , so that δ contains v. Therefore st(τ, C) and st(τ −v, C) coincide in a

neighborhood of v. By Lemma 2.1, the points where d attains its minima on st(τ − v, C) and st(τ, C) respectively,

coincide. This implies that yd(τ − v) = yd(τ) = v, and hence:

(v, τ) /∈ {(v, τ) : v ⊂ τ, yd(τ) = v and yd(τ − v) ̸= v}.

By Proposition 2.9 τ is not critical, which contradicts our assumption.

We then infer from Theorem 2.3 that C is arborescent. □

Theorem 3.1 can be extended even to polytopal complexes that are not simplicial.

Theorem 3.2. Let C be any CAT(0) intrinsic locally finite polytopal complex such that for each face σ in C, the underlying

space of st(σ, C) in C is convex. Then C is arborescent.

Proof. We will prove that every polytopal complex which admits a proper function f : |C| → R that takes a

unique local minimum on each vertex star is arborescent.

We use induction. Let σ be a facet of C maximizing minσ f , and let µ denote the strict face of σ that minimizes

f . Let F ⊂ st(µ, C) be the subcomplex induced by the facets of C that attain their minimum at µ. By Lemma 2.11,

we can collapse each facet P of F to st(µ, ∂P ). Hence, we can collapse F to⋃
P ∈F

st(µ, ∂P ) = st(µ, C) ∩
⋃

P ∈F

∂P,
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where P ranges over the facets of F . In particular, we can collapse C to C ′ = C − F .

Figure 2. Collapsing a CAT(0) cubical complex to the bottom left vertex v, where σ is the top right square and F is
the red complex

It remains to show that the restriction f|C′ of f to C ′ attains a unique local minimum on each star. Assume the

contrary, namely that for some vertex w of C the function f|C′ has two local minima on st(w, C ′). Then w is in

F . Let x be the absolute minimum of f restricted to st(w, C ′) and y be the other local minimum. Let P be a facet

of C − F containing x. When restricted to C, the function f attains a unique local minimum on the star of every

face. Therefore, the point y must lie in F . In particular, the facet P must contain the minimum of f on F . But y

is not that local minimum since P is not in F , so f takes two local minima on P , contradicting the assumption

on f . □

3.2. Proof of Corollary 1. A simplex is called non-obtuse if the dihedral angle between any two facets is smaller

than or equal to π
2 . In any non-obtuse simplex, all faces are themselves non-obtuse simplices. A simplex is

called equilateral or regular if all edges have the same length. Equilateral simplices are obviously non-obtuse. By

subdividing a cubical grid, one can obtain non-obtuse triangulations of Rd and of the d-cube for any d. The next,

straightforward lemma characterizes these notions in terms of orthogonal projections.

Lemma 3.3. A d-simplex ∆ is non-obtuse if and only if, for each facet F of ∂∆, the closest-point projection π∆−F spanF

of the vertex ∆ − F to the affine span of F intersects F .

Let C be an intrinsic simplicial complex in which every face of C is isometric to a regular euclidean simplex.

If such C is CAT(0), we say that it is CAT(0) with the equilateral flat metric. More generally, a CAT(k) intrinsic

simplicial complex C is CAT(k) with a non-obtuse metric if every face of C is non-obtuse.

We first show that

Proposition 3.4. Let C be an intrinsic locally finite simplicial complex. Suppose that C is CAT(0) with a non-obtuse

metric. Then C is arborescent.
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Proof. In non-obtuse triangulations, the star of every ridge is convex. In fact, let Σ, Σ′ be two facets containing

a common ridge R. Observe that Σ ∪ Σ′ is locally convex because both Σ and Σ′ are convex and their union is

locally convex in a neighborhood of R. Since C is CAT(0), the convexity follows as in the first paragraph of the

proof of Theorem 3.1. □

Corollary 3.5. Every intrinsic locally finite simplicial complex that is CAT(0) with the equilateral flat metric is arbores-

cent.

Further Theorem 3.2 holds for CAT(0) cube complexes, which are complexes of regular unit cubes glued to-

gether to yield a CAT(0) metric space and yields:

Corollary 3.6. Every CAT(0) locally finite cube complex is arborescent.

3.3. Proof of Corollary 2. We proved in [3] the following relation between CAT(0) complexes and arborescent

complexes:

Proposition 3.7. Let C be any locally finite arborescent simplicial complex. Then there exists a CAT(0) cube complex C ′

that is PL equivalent to C.

By Theorem 3.2, the converse is also true, namely, if some CAT(0) cube complex C ′ is PL homeomorphic to

C, then C ′ is arborescent. Therefore a simplicial complex admits an arborescent triangulation if and only if it is

PL homeomorphic to a CAT(0) cubical complex.

4. BARYCENTRIC SUBDIVISIONS

4.1. Arborescence after subdivision. Let (S, ≺) be a poset and S ⊂ T . An extension of ≺ to T is a partial order

≺̃ that coincides with ≺ when restricted to elements of S.

Definition 4.1 (Derived order). Let C be a polytopal complex. Let S denote a subset of mutually disjoint faces

of C and ≺ a partial order on S. Let σ be a face of C and τ ⊊ σ be a strict face of σ.

(1) If τ is the minimal face of σ under ≺, we set τ ≺̃ σ.

(2) If τ is any other face of σ, we set σ ≺̃ τ .

The transitive closure of the relation ≺̃ gives an irreflexive partial order on the faces of C, which is an extension of

≺. The correspondence between faces of C and vertices of sd C, provides an irreflexive partial order on F0(sd C).

A total order that extends the later order is a derived order of F0(sd C) induced by ≺.

Definition 4.2. Let C be a simplicial complex endowed with a CAT(κ) polyhedral metric. Let v be a vertex of C

and F be a closed convex subset of C, v ∈ ∂F . Given a unit tangent vector ν at p pointing inward F we consider

the totally geodesic support hyperplane Hν at p for ∂F which is orthogonal to ν. Let H+ be the closed connected

component of C \ Hν containing F locally. The descending link LLk ν(v, C) of C at v with respect to the direction

ν is the restriction R (lk(v, C), int T1
vH

ν

+) of lk(v, C) to int T1
vH

ν

+, where

T1
vH

ν

+ = {x ∈ T1
vH+;∡(x, ν) <

π

2 }.
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4.2. Collapsibility of compact CAT(0) polyhedral complexes. A key criterion to be used in the sequel is the

following:

Lemma 4.3 (Gromov–Alexandrov lemma; cf. [7], Thm. II.5.4). Let Σ be a locally finite simplicial complex endowed

with a complete metric for which simplices are isometric to constant curvature κ simplices (and only finitely many isometry

classes occur). Then Σ is a CAT(κ) space if and only if the link of every vertex of Σ is CAT(κ) with the induced spherical

metric and moreover it contains no isometrically embedded circles of length less than 2π/
√

κ when κ > 0, or equivalently

Σ is π/
√

κ - uniquely geodesic.

Note also that a CAT(1)-space is π-uniquely geodesic (see [7], Prop. II.1.4). This implies that the link of every

vertex of it is also π-uniquely geodesic, when endowed with the spherical metric and hence any link subcomplex

of diameter smaller than π is also a CAT(1)-space. We begin with the following result for the compact case:

Theorem 4.4. Suppose that C is a compact convex polytopal d-subcomplex of a polytopal complex X and F is a closed

convex subset of X in general position with respect to C, such that:

(1) either X is endowed with a polyhedral CAT(0)-metric;

(2) or X is endowed with a polyhedral CAT(1) metric and the diameter of F is smaller than π.

If ∂C ∩ F = ∅, then N(R (C, F ), C) is collapsible. If ∂C ∩ F is nonempty, and C does not lie in F , then N(R (C, F ), C)
collapses to the subcomplex N(R (∂C, F ), ∂C).

Proof of Theorem 4.4. We use induction on the dimension. The claim is true for 0-dimensional polytopal com-

plexes C. Assume, from now on, that d > 0 and the claim holds for dimensions ≤ d − 1. Recall that L(τ, C)
denotes the faces of C strictly containing a face τ of C.

Let p be an interior point of F , and dp(y) denote the distance of a point y ∈ X to p with respect to the polyhedral

CAT(κ) metric on X .

Let M(C, F ) denote the faces σ of R (C, F ) for which the function miny∈σdp(y) attains its minimum in the

relative interior of σ. We order the elements of M(C, F ) strictly by defining σ ≺ σ′ whenever miny∈σ dp(y) <

miny∈σ′ dp(y).

There is an associated derived order on the vertices of sd C, which we restrict to the vertices of N(R (C, F ), C).

Let v0, v1, v2, · · · , vn denote the vertices of N(R (C, F ), C) labeled according to the latter order, starting with the

minimal element v0. Let Ci denote the complex N(R (C, F ), C) − {vi, vi+1, · · · , vn}, and define

Σi := Ci ∪ N(R (∂C, F ), ∂C).

We will prove that Σi ↘ Σi−1 for all i, 1 ≤ i ≤ n, proving our claims. There are four cases to consider here.

(1) vi is in the interior of sd C and corresponds to an element of M(C, F ).

(2) vi is in the interior of sd C and corresponds to a face of C not in M(C, F ).

(3) vi is in the boundary of sd C and corresponds to an element of M(C, F ).

(4) vi is in the boundary of sd C and corresponds to a face of C not in M(C, F ).

Let us denote by τ the face of C corresponding to vi in sd C, and let m denote the unique point realizing the

mimimum miny∈τ dp(y). Consider further the metric ball Bm = {y ∈ X; dp(y) ≤ dp(m)}.
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Observe that N1
(m,τ)X was identified with the link lkm(τ, X). By hypothesis N1

(m,τ)X is a CAT(1)-space.

Moreover, τ is a totally geodesic submanifold of X and Bm a convex subset of X . We saw how to define then

N1
(m,τ)Bm, which is a subset of N1

(m,τ)X . From [3] Bm is a polyhedron, under our assumptions. Consider the

geodesic issued joining m to p. Its tangent vector at m is a well-defined vector ν ∈ N1
(m,τ)Bm, since m realizes

the unique minimum of the distance function dp to the convex cell τ . Therefore N1
(m,τ)Bm is contained within

the set of unit vectors making an angle with ν smaller than π
2 , so that its diameter is at most π. It follows that

N1
(m,τ)Bm is a convex subset of the CAT(1)-space N1

(m,τ)X . As the distance function dp is strictly convex, the

subcomplex R (lkm(τ, C), N1
(m,τ)Bm) has actually a diameter strictly smaller than π.

Case (1): The complex lk(vi, Σi) is combinatorially equivalent to N(LLkm(τ, C), lkm(τ, C)), where

LLkm(τ, C) := R (lkm(τ, C), N1
(m,τ)Bm)

is the restriction of lkm(τ, C) to the subspace N1
(m,τ)Bm of N1

(m,τ)X . As p was chosen to be generic, N1
(m,τ)Bm is

in general position with respect to lkm(τ, C).

Hence, by the induction assumption the complex

N(LLkm(τ, C), lkm(τ, C)) ∼= lk(vi, Σi)

is collapsible. Consequently, Lemma 2.5 proves Σi ↘ Σi−1 = Σi − vi.

Case (2): If τ is not an element of M(C, F ), let σ denote the face of τ containing m in its relative interior. Then,

lk(vi, Σi) = lk(vi, Ci) is combinatorially equivalent to the order complex of the union L(τ, C)∪σ, whose elements

are ordered by inclusion. Since σ is a unique global minimum of the poset, the complex lk(vi, Σi) is a cone, and

in fact combinatorially equivalent to a cone over base sd lk(τ, C). But all cones are collapsible (Lemma 2.4), so

lk(vi, Σi) is collapsible. Consequently, Lemma 2.5 gives Σi ↘ Σi−1 = Σi − vi.

Case (3): This time, vi is in the boundary of sd C. As in case (1), lk(vi, Ci) is combinatorially equivalent to the

complex

N(LLkm(τ, C), lkm(τ, C)), LLkm(τ, C) := R (lkm(τ, C), N1
(m,τ)Bm)

in the CAT(1)-space N1
(m,τ)X . As τ is not the face of C that minimizes dp(y) since vi ̸= vn, so that N1

(m,τ)Bm ∩
N1

(m,τ)∂C is nonempty. Since furthermore N1
(m,τ)Bm is a CAT(1) space of diameter smaller than π it is also

convex. Being in general position with respect to the complex lkm(τ, C) in N1
(m,τ)X , the inductive assumption

applies. Thus the complex N(LLkm(τ, C), lkm(τ, C)) collapses to

N(LLkm(τ, ∂C), lkm(τ, ∂C)) ∼= lk(vi, C ′
i), C ′

i := Ci−1 ∪ (Ci ∩ N(R (∂C, F ), ∂C)).

Consequently, Lemma 2.5 proves that Ci collapses to C ′
i. Since

Σi−1 ∩ Ci = (Ci−1 ∪ N(R (∂C, F ), ∂C)) ∩ Ci = Ci−1 ∪ (Ci ∩ N(R (∂C, F ), ∂C)) = C ′
i

Lemma 2.6, applied to the union Σi = Ci ∪ Σi−1 of complexes Ci and Σi−1 gives that Σi collapses onto Σi−1.

Case (4): As observed in case (2), the complex lk(vi, Ci) is combinatorially equivalent to a cone over base

sd lk(τ, C), which collapses to the cone over the subcomplex sd lk(τ, ∂C) by Lemma 2.4. Thus, the complex

Ci collapses to C ′
i := Ci−1 ∪ (Ci ∩ N(R (∂C, F ), ∂C)) by Lemma 2.5. Now, we have Σi−1 ∩ Ci = C ′

i as in case (3),

so that Σi collapses onto Σi−1 by Lemma 2.6.

This finishes the proof of Theorem 4.4.
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□

4.3. Proof of Theorem B. Our aim is to show that:

Theorem 4.5. A locally finite simplicial complex which is CAT(0) for a polyhedral metric has its first barycentric subdivi-

sion arborescent.

Proof. We follow the lines of the proof of Theorem 4.4. We use induction on the dimension. The claim is true for

0-dimensional polytopal complexes C. Assume, from now on, that d > 0 and the claim holds for dimensions

≤ d − 1.

Let p be an interior point of X , and dp(y) denote the distance of a point y ∈ X to p with respect to the

polyhedral CAT(κ) metric on X .

Let M(X) denote the faces σ of X for which the function miny∈σdp(y) attains its minimum in the relative

interior of σ. We order the elements of M(X) strictly by defining σ ≺ σ′ whenever miny∈σ dp(y) < miny∈σ′ dp(y).

There is an associated derived order on the vertices of sd X . Let v0, v1, v2, . . . , vn, . . . denote the vertices of

sd X labeled according to the latter order, starting with the minimal element v0. Let Σi denote the complex

X − {vj , j ≥ i}. We claim that Σi ↘ Σi−1 for all i ≥ 1. The proof given above in the compact case works here

without essential changes. □

5. ARBORESCENT MANIFOLDS

5.1. Arborescent PL triangulations. Whitehead proved in [27]:

Proposition 5.1. Let M be a (compact) manifold with boundary. If some PL triangulation of M is collapsible, then M is

a ball.

The following is a extension of Whitehead’s theorem to the case of open manifolds, which was independently

obtained by Guilbault and Gulbrandsen (see [17]) with a different proof:

Proposition 5.2. Let M be an open manifold. If some PL triangulation of M is arborescent, then M is PL homeomorphic

to the Euclidean space.

Proof. By ([3], Thm. 4) there exists a locally finite CAT(0) cubical complex K which is PL homeomorphic to M .

According to Stone’s theorem [23] a simply connected manifold M endowed with a PL triangulation for which

the associated polyhedral piecewise flat metric is CAT(0) should be PL homeomorphic to the Euclidean space. It

follows that M is PL homeomorphic to the Euclidean space. □

As an immediate consequence the Whitehead 3-manifold (see [26]) and its generalizations in higher dimen-

sions [15] do not admit CAT(0) polyhedral metrics. This is particularly interesting when the dimension is 4. In

fact open contractible manifold is triangulable and by Perelman any triangulation of a 4-manifold should be PL.

By [21] an open CAT(0)-manifold is homeomorphic to R4. However, if the CAT(0)-metric is polyhedral, then

the manifold is PL homeomorphic to R4, namely it cannot be an exotic R4.
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5.2. Polyhedral CAT(0) Manifolds. We now focus on non-PL triangulations. Let us introduce a convenient

notation:

− CAT□
d denotes the class of open d-manifolds PL homeomorphic to CAT(0) cube complexes;

− CATd denotes the class of open d-manifolds admitting a complete polyhedral CAT(0) metric with finitely

many shapes;

− Ad denotes the open d-manifolds that admit an arborescent triangulation;

− PCd denotes all open contractible d-manifolds which are pseudo-collarable, have strongly semistable funda-

mental group at infinity and have vanishing Chapman-Siebenmann obstruction (see [3]).

Proposition 5.3. For each d ≥ 5 one has

CAT□
d = Ad ⊆ PCd,

whereas for d ≤ 4 one has

CAT□
d = Ad = {Rd}.

Proof. By Theorem 3.2, every locally finite CAT(0) cube complex is arborescent, and so is its first derived subdi-

vision. [24]. Hence locally finite CAT(0) cube complexes admit arborescent triangulations. Conversely, locally

finite arborescent complexes are PL homeomorphic to CAT(0) cubical complexes (see [3], Thm. 4) and thus

CAT□
d = Ad for all d.

We showed in ([3]), Thm.1) that

CATd ⊆ PCd for all d ≥ 5.

When d ≤ 4, every triangulation of a d-manifold is PL. This is non-trivial, for d = 4, this statement relies

on the Poincaré Conjecture, a.k.a. Perelman theorem. By the Whitehead type theorem 5.2, this implies that

CATd = {Rd}. All open CAT(0) 3-manifolds are homeomorphic to the Euclidean 3-space [22], so

{Rd} = CATd = Ad = PCd for d ≤ 3.

{R4} = CAT□
4 = A4 ⊆ PC4.

This improves the result of [21] in a particular case. □

Remark 5.4. An optimistic conjecture is that Ad = PCd for d ≥ 5. We proved in [3] that PCd ⊆ AT OP
d , for

d ≥ 5, where AT OP
d we denote the open d-manifolds that are topologically arborescent. For d ≥ 5 all we need

to show is that PCd ⊆ CAT□
d , namely, that every open contractible d-manifold, d ≥ 5, pseudo-collarable, having

strongly semistable fundamental group at infinity and vanishing Chapman-Siebenmann obstruction admits a

CAT(0) cube structure.
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