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Abstract. Even though novel imaging techniques have been successful
in studying brain structure and function, the measured biological sig-
nals are often contaminated by multiple sources of noise, arising due
to e.g. head movements of the individual being scanned, limited spa-
tial/temporal resolution, or other issues specific to each imaging tech-
nology. Data preprocessing (e.g. denoising) is therefore critical. Prepro-
cessing pipelines have become increasingly complex over the years, but
also more flexible, and this flexibility can have a significant impact on
the final results and conclusions of a given study. This large parame-
ter space is often referred to as multiverse analyses. Here, we provide
conceptual and practical tools for statistical analyses that can aggregate
multiple pipeline results along with a new sensitivity analysis testing for
hypotheses across pipelines such as “no effect across all pipelines” or “at
least one pipeline with no effect”. The proposed framework is generic and
can be applied to any multiverse scenario, but we illustrate its use based
on positron emission tomography data.
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1 Introduction

Modern neuroimaging techniques have provided unique opportunities to mea-
sure complex signaling pathways in the living human brain with the goal of
identifying reliable biomarkers of disease states and treatment outcomes [I0].
Data arising from state-of-the-art neuroimaging techniques are, however, often
contaminated with noise confounds such as motion-related artefacts, affecting
both the spatial and temporal correlation structure of the data [9]. Carefully
designed preprocessing steps have been developed to remove unwanted noise
sources, but in the absence of a "ground truth" it remains a major challenge to
evaluate the impact of preprocessing choices on subsequent statistical analyses
and results. Over time, preprocessing pipelines (i.e. a set of preprocessing steps)
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have become more complex and flexible, and this increase in researcher degrees
of freedom (termed multiverse analyses) has consistently been shown to affect
the outcomes of neuroimaging studies |2} [3| 8]. The most common approach in
the neuroimaging field is, to date, to use a single pipeline and ignore the hetero-
geneity of preprocessing choices. This approach not only makes abstraction of
the multitude of possible results but is likely also sub-optimal because the best
pipeline is more often than not, study, population or even subject dependent
[4, 8]. More concerning, neuroscientists might be tempted to “tune” the pipeline
in order to obtain the most satisfying results. This will generally lead to spuri-
ous and non-reproducible results since the variability induced by the choice of
pipeline is not independent from the results. However, since it is neither realistic
nor optimal to move toward a single unified preprocessing pipeline, there is an
urgent need for a statistical framework allowing to explore results among many
preprocessing pipelines in a principled way.

The aim of this work is thus to provide a statistical framework that can
aggregate the evidence from multiverse analyses to produce conclusions robust
to the choice of the pipeline. More specifically, the present paper proposes a
statistical sensitivity analysis providing:

(i) visualizations of the heterogeneity of several preprocessing pipelines

(ii) estimation of a global effect across all preprocessing pipelines

(iii) quantification of the proportion of pipelines with evidence for an effect

(iv) a statistical framework for testing hypotheses across pipelines such as “no

YO RNAY

effect across all pipelines”, “at least one pipeline with no effect”

The corresponding software can be found at *anonymous*, including all code
to reproduce all simulations and figures.

2 DMaterials and experimental settings

2.1 Data

We use two different data sources in our analyses: in sillico and real data. For the
in sillico data, different noise structures were chosen to reflect different configu-
rations of pipelines and the sample size was varied to encompass small to larger
scale clinical studies. In the real data analysis, we mimic how real neuroimag-
ing studies compare an intervention to a reference measurement. Pipelines were
selected independently of the intervention data using the healthy/placebo arm
of [6] using results from [§]. The proposed sensitivity analysis was illustrated on
the intervention arm of the study where the follow-up value was compared to a
reference value taken from a normative serotonergic atlas [I].

To simulate in sillico data, we consider the simple case of a single brain mea-
surement (R = 1), with a single binary exposure (P = 1) following a Bernoulli
distribution with parameter 7 = 0.5 (i.e. two balanced groups) and no covariates
(C =0). Latent Y values for the brain measurement are simulated using a nor-
mal distribution with variance 1 and mean [ times the exposure X values where
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B = 0 (null hypothesis) or 8 = 0.5 (alternative hypothesis). The observed Y is
simulated for each pipeline adding pipeline specific noise to the latent Y. This
noise is simulated using a multivariate normal distribution with mean 0 and vari-
ance Yscenario 15 2scenario 2, aNd Yscenario 3 depending on the scenario. In scenario
1, we simulated many pipelines (J = 20) with correlated homoscedastic noise,
in scenario 2 a few pipelines (J = 6) with uncorrelated heteroscedastic noise,
and in scenario 3 many pipelines (J = 20) with correlated heteroscedastic noise.
Scenario 2 and 3 included one pipeline with high signal to noise ratio (SNR), i.e.
low variance, and many pipelines with low SNR, i.e., high variance. The sample
size was varied from n = 10 to n = 500 in each group, such that the smallest
sample size was well below the number of parameters (2 x .JJ mean parameters, .J?
variance-covariance parameters) in scenario 1 and 3 and the asymptotic regime
was reached for the largest sample size. We generate 10,000 datasets per scenario
and sample size - this provides sufficient precision about the mean, standard de-
viation, and rejection rate to neglect the Monte Carlo uncertainty. This data will
be used to assess the large sample size properties of the procedure (bias, relative
efficacy, type 1 error control) in finite samples.

To illustrate the use of the proposed sensitivity analysis on real data, we
utilize neuroimaging results from a placebo-controlled, double-blinded, clinical
study [6]. The study was registered and approved by the ethics committee for
the capital region of Copenhagen (protocol-1ID: H-2-2010-108) and registered as
a clinical trial: www.clinicaltrials.gov under the trial ID NCT02661789. All
subjects provided written informed consent prior to participation, in accordance
with The Declaration of Helsinki II. The aim of the study was to assess the
association between the emergence of depressive symptoms and change in cere-
bral serotonin transporter (SERT) availability following a hormonal treatment
(p = 1). Data is available from the CIMBI database (www.cimbi.dk) upon re-
quest. It consists of structural Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) imaging data for 60 healthy females who under-
went a baseline scan, received either Placebo (n = 30) or a GnRHa implant
intervention (n = 30), and participated in a follow-up scan. SERT availability
estimates were extracted for each subject for 28 subcortical and cortical regions,
and averaged across hemispheres, producing a final sample of R = 14 regions
per subject and pipeline. These regions (amygdala, thalamus, putamen, caudate,
anterior cingulate cortex, hippocampus, orbital frontal cortex, superior frontal
cortex, occipital cortex, superior temporal gyrus, insula, inferior temporal gyrus,
parietal cortex, and entorhinal cortex) were chosen because they cover the entire
brain, and many are target regions in published serotonin transporter (SERT)
PET studies. No covariates where consider and (C' = 0).

2.2 Data preprocessing

Five preprocessing steps were used to curate the data and estimate the SERT
availability (outcome measure). These steps include, motion correction (with/without),


www.clinicaltrials.gov
www.cimbi.dk

4 B. Ozenne et al.

co-registration (4 options), delineation of volumes of interest (3 options), par-
tial volume correction (4 options), and kinetic modeling for quantification of
SERT availability (MRTM, SRTM, Non-invasive Logan and MRTM?2). More in-
formation about the preprocessing choices can be found in [8]. The combination
of individual preprocessing steps leads to a number of J = 2 x 3 x 43 = 384
possible combinations.

2.3 Notation and assumptions

In the following section, we use generic notations to describe the proposed sen-
sitivity analysis. We are interested in relating R brain measurements (Y =
(Y1,...,YR)) to P exposures or treatments (X = (Xy,...,Xp)) accounting for
C covariates (W = (W1q,...,W¢)). We consider a set of J pipelines used to
preprocess the neuroimaging data. For a given pipeline j € {1,...,J} we fit a
statistical model with parameters 6; that relates Y processed by pipeline j, X,
and W. We then obtain from this model an estimate @k of the effect of interest
(denoted ). In our real life example we use, for each pipeline, a paired t-test
to compare the observed change in SERT availability to an atlas value so for
jed{l,....,J} 0; = (d)j,ﬁf) where v; is the empirical mean and crjz the em-
pirical variance of the change in SERT availability (processed with pipeline j)
between baseline of follow-up.

We make the following working assumptions: first the observed data (0;), (..
(Y;, T3, w;),; e{1,...n} correspond to independent and identically distributed repli-
cates of (Y, X, W). Second we have chosen a set of reasonable pipelines, meaning
that the estimated effects zzl, . ,12 7 found in the follow-up statistical analysis
will converge to the right value 1 as the sample size increases. This set can
include pipelines distorting the signal Y (e.g. adding a fixed value) if that has
no consequence, asymptotically, on the estimated effect (the mean change is not
biased as the added value cancels out when substracting the baseline value to the
follow-up value). Finally, when considering asymptotic results we will consider
a fixed number of pipelines and let the sample size n increase to infinity.

3 Proposed sensitivity analysis

To be able to draw conclusions across pipelines, we not only need the result of
each pipeline but also some information about how they relate. If all pipelines
were equally reliable and equally different, we would weight each pipeline equally.
If there exists one independent pipeline and a block of correlated pipelines, all
equally reliable, then we would weight the independent pipeline more compared
with other pipelines. By treating pipelines as black boxes, we can investigate
their relation in terms of each observations influence on the estimated effects
across pipelines, ¥ = (z/Jl, R U J). This relation is fully characterized by the

joint distribution of the effects. Once estimated, we can extract summaries of
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this distribution, e.g. an average value, and carry out statistical tests, e.g. testing
the compatibility between the observations and the joint distribution that would
have been observed under a specific hypothesis.

3.1 Estimating the joint distribution across pipelines

The joint distribution could be obtained using a multivariate model, e.g. mod-
elling data from all pipelines at once using a mixed model. Because of the com-
plexity of the dependency among pipelines, this is, however, rarely feasible with
the available sample size. Instead, and this matches common practice, we perform
the same analysis separately for each pipeline and obtain a vector of estimated

associations 1?; with their standard errors o 3= \05,--0 @J)' Using tools from

the semi-parametric theory (see [7] and [I2] for more details), we can approx-
imate the influence of each observation on the estimate by a random variable
called the influence function, denoted ¢ 5 for pipeline j, and satisfying:

J

Vi (95 - v) = Z% ) +0p(1)

where 0,(1) denotes a residual term that convergences toward zero in proba-
bility as the sample size tends to infinity. As shown in appendix |§|, ®3, has a

simple expression when % is the empirical mean or an element of a maximum
likelihood (ML) estimator. Since this decomposition applies to all pipelines, we
get from the multivariate central limit theorem that the joint distribution of the
estimates is asymptotically multivariate normal. It has mean ¢ and its variance-

covariance, denoted Eﬂ), is the same as the one of Yy = (cpqz17 R 90@1) divided

by n. Note that with limited number of observations, typically when n < J, the
estimated variance-covariance Zﬂ, based on the estimated influence function is
not guaranteed to be positive definite.

3.2 Testing hypotheses across pipelines

The global null hypothesis “no effect across all pipelines” can be tested using a
max-test approach: more extreme realizations would correspond to larger val-
ues of the maximum statistic tmax = max(|t1],..,|ts]) where |.| denotes the

absolute value and tA — . A p-value may therefore be computed by in-
1/

tegrating the joint density under the null hypothesis outside of the domain
’D(tmax) = [— /t\maw,fmaw]@ (see figure [A] in appendix [B)). Here, we use the
notation [a, b]®’ = szl[a,b] that represents the Cartesian product between
J intervals [a,b]. The value t., such that the integral outside D(t.) equals «,
provides a critical threshold for the estimated test statistics (|t1], .., |ts|). This

threshold can also be used to derive confidence intervals.
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The null hypothesis “at least one pipeline with no effect” is an intersection
union test. As such it can be rejected if and only if all the un-adjusted p-values
relative to each pipeline are below « or equivalently if the largest un-adjusted
p-value is below a.

The proportion of pipelines where there is evidence for an effect n can be
estimated as n = %ijl ]1|?j |<t. where 1. denotes the indicator function. One
drawback with this non-parametric estimator is that it is a non-smooth function
of t;, making the associated uncertainty difficult to evaluate. Instead, one can

use a parametric approach, assuming normally distributed test statistics:

J J
S Pl <t] =13 20 () % ()

which is a smooth (but complex) function of the model parameters. Here @
refers to the cumulative distribution function of a standard normal distribu-
tion. The uncertainty about the estimator can therefore be derived using a non-

k‘\'—*
KAH

parametric bootstrap or a delta method where Var(7) = gg X5 gg where © =
(9]')3,6{1 T} is the set of parameters of the statistical model across pipelines.

3.3 Visualizing the heterogeneity across pipelines

We have derived that the estimated associations are, asymptotically, normally
distributed. They can therefore be summarized by their expectation and variance-
covariance matrix (i.e. standard errors and correlation matrix). We suggest two
graphical displays to visualize the heterogeneity of the results across pipelines:

— A heatmap of the estimated correlation among estimates, obtained by con-

verting E;p into a correlation matrix.
— A forest plot displaying (121, . ,1%) and (aw e ,3$1> through the con-

fidence intervals, possibly using the previously established re-ordering.

3.4 Estimating a global effect across pipelines

Several methods can be used for estimating a global effect across pipelines. A
naive method would be to compute the mean of the estimated associations:

average = Z 77[]]

This estimator will, however, not be efficient if some pipelines lead to more

precise estimates, i.e. (01/71, .. .,0$J> are not equal. Intuitively, we would like

® Re-ordering the pipelines may be useful to better visualize blocks of pipelines that
are especially correlated. This can for instance be performed by converting R to a
dissimilarity matrix and then use hierarchical clustering.
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to pool the estimates with weights inversely proportional to the standard errors
such that we put more weight on precise estimates:

~ J ~ 1/0122
— E se; . se Wy
Wpool—se - ’LUj ¢J where ’U)j = 7 . 5
j=1 Zj:l /Uaj

However, we also need to take into account the correlation between estimates.
Indeed, perfectly correlated estimates should weight as if there was only one
estimate. To do so, we can use the following GLS estimator of the global effect:

J

- ~ -1 ~

YoLs = (1T2§11> 1752 = E w§ e, (1)
=1

where 1 is a column vector filled with ones. Equat/i\oncan be shown to be equiv-
alent to performing a spectral decomposition of X', and use the eigenvectors to
combine estimates into independent components that can be pooled according
to weights proportional to the eigenvalues (appendix . This is used when
Z@ is singular to compute lf/GLs, by restricting the spectral decomposition to
the eigenvalues above a given threshold (e = 10719). In the simple case where
R=1,p=1,C =0, brain measurements are jointly normally distributed, X
is binary, and there is no missing data, the GLS estimator can be shown to be

asymptotically efficient (appendix |C.2]).

Cox and colleagues [5] studied a similar estimator when J = 2 and found
that, under unequal variance, the global estimate can be outside of the range of
the (pipeline specific) estimates. As a remedy to this unpleasant behavior, we
propose a constrained GLS estimator, denoted @Constraimd aLs, which constrains
the weight of each estimate to be at most 1 in absolute value and ensures that
the sum of the weights is 1:

GLS 1 1
wconstrained GLS __ J 1—
J - GLS GLS
K+ maXje(1,.. sy |wj | K+ maxjeqr, gy Wit

where k is chosen to satisfy the constraints. Note that if some of the pipelines
may induce some bias, the previous approaches will propagate this bias and
therefore be unsatisfactory. Systematic differences between pipelines can be in-
vestigated by comparing the estimates between pipelines, e. g ; — 1 and us-

ing EA to obtain the corresponding uncertainty Var [w] wj } = Var {1})\]} +
Var [%"} —2Cov (¢j,¢j/).

4 Results

4.1 Simulation results - pooled estimator

We compare the performance of the proposed estimators when using unbi-
ased pipelines on simulated data. For each dataset Xycenario 1, scenario 2, and
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Fig. 1. Large sample weights used by @average, @pod,se, and the GLS estimators (@GLS
or @Constrained cLs) to combine the pipeline specific estimates in scenario 3. Weights
relative to the correlated pipeline are shown in shades of gray (first fifteen blocks);
weights relative to the independent pipeline are shown using rainbow colors (last five
blocks). In the legend the variance for a given pipeline effect is indicated in parenthesis.

Escenam 3, wWe computed the four prev10usly described estimators_ of the global
eﬁeCt Waveragea uv/pool -se» WGLS7 and Wconstramed GLS- P-values for Wpool -se» WGLS;
and @Constrained aLs were computed neglecting the uncertainty of the weights
(,wje7 U)jGLS, w;onstrained GLS)'

Weights: Based on Yscenario 15 2/scenario 2, and Yscenario 3, We can compute how
@average, @pool e, and @GLS (or @constramed crs) would weight the results from
each pipeline if the variance-covariance matrix of the pipeline estimates was
known (Figure Ib In scenario 1, !Paverage and Wpool se would provide equal weight
to all pipelines with a weight of 5%, while WGLS would weight by 2% the cor-
related pipelines and by 14% the uncorrelated pipelines (in this paragraph all
weights are rounded for readability). In scenario 2, !f/average equally weights all
pipelines by 17% while @pool_se and @\GLS would use the following weights: 8%,
82%, 4%, 3%, 2%, 1%, favoring the high SNR pipeline. In scenario 3, @average
would equally weight all pipelines by 5%, ¥, pool se would weight each correlated
pipeline by 3.8% and the remaining pipelines by 38% (high SNR pipeline), 2%,
1.3%, 1%, 0.6%, while ¥grs would weight by 0.6% the correlated pipelines and
by 81% (high SNR pipeline), 4%, 3%, 2%, 1% the remaining pipelines.

Estimate and bias: No significant bias was found. Under the null, the pro-
portion of pipelines with evidence for an effect ranged between 5% and 7% and
was relatively stable with sample size. Under the alternative, the proportion of
pipelines increased from 6.3% in scenario 1 to 98% in scenario 1 when the sample
size increased from n = 20 to n = 500. A similar behavior was observed in the
other scenarios (up to 63% in scenario 2 and up to 79% in scenario 3).

TODO: add random intercept model
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Efficiency: Similar results were obtained for 5 =0 and 8 = 0.5, so we will only
discuss the former case (Figure I) In scenario 1, Wavemge and Wpool se Showed
similar empirical variance, whereas WGLS showed higher empirical variance in
very small samples (+159% for n = 10, +13% for n = 25) and lower empirical
variance at larger sample sizes (e.g. -12% for n = 500). In scenario 2, @pool_se and
Q'/\GLS showed similar empirical variance (slightly higher for @GLS in low sample
sizes and slightly lower afterwards), both smaller compared to @avcragc, e.g. 10%
for n = 10 and -24% for n = 500 for the GLS estimator. Results in scenario 3
were similar to scenario 1 up to a larger decrease in variance in large samples
for GLS estimators (-28% for n=500). Wconstrained GLS Was similar to WGLS but
with better small sample properties (at most +4% in standard error compared

to g’average ) .

Type 1 error: Across all scenarios, the type 1 errors for @avemge and @pool_se
were well controlled except in very small samples where small deviations from the
nominal level were observed (maximum of 7% for Yayerage and 8% for Wpool-se)-
When neglecting the uncertainty about the weights, the type 1 error control of
Yirs and Yeonstrained LS Were only controlled for large samples, i.e. for n = 500;
large type 1 error rates were found in very small samples (>10%).

4.2 Real-world application

We illustrate the statistical sensitivity analysis with data described in section
in which the SERT availability was assessed after a drug intervention and
compared to normative values. We start by studying the behavior of the four
statistical estimators (pooled GLS, pooled constrained GLS, pooled average and
pooled SE) to estimate a common effect across pipelines for the given null hy-
pothesis, reported as a forest plot in Figure [3| (left panel). The dashed vertical
line in Figure [3| represents the normative value, and all horizontal error bars
represent the estimated effect (mean and 95% CI) for a given pipeline and esti-
mator. Across a reasonable set of preprocessing pipelines, 3 of the 8 selected reject
the null hypothesis (as indicated by the non-overlapping CI with the normative
value) with estimated percent differences between groups ranging between -9%
(pipeline 6) and 2.5% (pipeline 1). The pooled constrained GLS, pooled SE and
pooled average, all fail to reject a common effect across pipelines, whereas the
GLS estimator rejects the null hypothesis. However, when inspecting the pipeline
weights for the GLS estimator for this data, it assigned a very high weight to
four pipelines (i.e. weight above 1 in absolute values), leading to an unreliable
estimate as illustrated by the large standard deviation found in the simulation
study for low sample sizes (Figure . The constrained GLS estimator did not
exhibit this problem and had weights between -0.79 and 1.

Figure [3| (right panel) shows a heatmap for the estimated correlations across
preprocessing pipelines, ranging from 0.68 to 1. Pipelines 1-4 show a very high
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Fig. 2. Upper panel: empirical standard deviation of the estimated common effect for
each estimator, scenario, and sample size under the null hypothesis. For large samples
the green line (GLS) is covered by the blue line (constrained GLS) in all scenarios. In
scenario 1 and 3, the red line (pool-average) is covered by the yellow line (pool se).
In scenario 1, the GLS estimators have the same or higher standard deviation as the
average for small samples and lower standard deviation (approx. 12% lower) for large
samples.

Lower panel: rejection rate under the null hypothesis (i.e. type 1 error). Shaded
area represents the Monte Carlo uncertainty.

correlation with each other (only varying the registration choices), whereas
pipelines 5, 6 and 8 are equally correlated with each other (different kinetic
models), and pipeline 7 is somewhat in between (no motion correction). The
heatmap captures important differences in the correlation structure between
pipelines, suggesting that not all pipelines perform similarly with moderate levels
of unexplained variance. Pipelines 4 to 8 exhibit numerically smaller correlation
compared to pipelines 1 to 4 (and similar variance), which explains why GLS
estimators produce estimates with lower numerical values compared to pooled
estimators ignoring the correlation, as GLS estimators assign more weight to the
last four pipelines.

Notably, no correction for multiple comparisons was carried out across re-
gions and pipelines at this point. The rationale for not including this (as should
otherwise always be carried out) is that we wanted to make our analysis as com-
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parable as possible to the Neuroimaging Analysis Replication and Prediction
Study [2], where each participating institution analyzed the data using their

own established pipeline and tested only a single region in a hypothesis-driven
fashion.

5 Discussion

Looking first at the simulated data results, we observe that, asymptotically,
YaLs is the best estimator, leading to more precise estimates than Wayerage OF
fpool_se. It is, however, not suited for small sample sizes or large numbers of
pipelines, as it exhibits large variance. We proposed an alternative estimator
Ueonstrained LS Which can be seen as regularizing the GLS estimator toward
the empirical average in small samples. Even though this considerably improves
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Fig. 3. Left panel: forest plot of the estimated SERT availability in the amygdala for
the intervention group (point and full line) vs. the normative values (dashed line) for
each pipeline and the four proposed pooled estimators.

Right panel: correlation of the estimated SERT availability between pipelines.
Pipeline 1: with motion correction (MC), boundary based registration (BBR) using the
time-weighted average PET image (twa), and MRTM2 as kinetic modeling choice.
Pipeline 2: MC, normalized mutual information registration (NMI) using twa, MRTM2.
Pipeline 3: MC, BBR using the average PET image, and MRTM2.

Pipeline 4: MC, NMI using the average PET image, and MRTM2.
Pipeline 5: MC, BBR_twa, and MRTM.

Pipeline 6: no motion correction (nMC), BBR_twa, and MRTM.
Pipeline 7: nMC, BBR_ twa, and MRTM2.

Pipeline 8: MC, BBR_twa, and SRTM.
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the small sample performance of the estimator, other regularization approaches
may lead to further gain. An alternative approach could be to regularize the
estimated variance-covariance matrix between pipeline specific estimates, e.g.
using graphical lasso. However, this is challenging since the correlation structure
among pipelines is typically complex and non-sparse. The proposed method to
quantify the uncertainty of Weonstrained GLs 18 numerically fast, but unreliable in
small samples or with a large number of pipelines. However, these latter points
are beyond the scope of this paper, and is left for future work. In the real-world
application, we observed that all estimators could be readily applied, and three
of them performed as expected based on the results from individual pipelines.
Only the Ygrs estimator performed differently and was the only one rejecting
the null hypothesis hinting at an effect across pipelines. This is though, due to
the estimator not being able to fit the weights properly in small sample sizes.
Since PET neuroimaging studies are rarely beyond sample sizes of n>50, other
estimators should be used. We recommend using ¥,ool-se O Yeonstrained GLS: the
latter when pipelines are not similarly related and the sample size is moderate
to large, otherwise the former.

The framework that we are proposing is not without limitations. The under-
lying assumption of combining results across pipelines in our analysis is that all
pipelines are unbiased. This can however not always be guaranteed. Alternative
approaches (e.g. STAPLE [I4]) could be used to reduce the bias of the pooled
estimators by assuming a majority of unbiased pipelines or identifying clusters
of pipelines and pooling pipeline-specific estimates within clusters.

6 Conclusion

In this work, we have developed a statistical sensitivity analysis that can quantify
the impact of different preprocessing choices on subsequent statistical analyses.
As has been reported in previous studies, we observe that the influence of pre-
processing pipelines on subsequent statistical analysis can be quite large. Hence,
we provide tools for statistical analyses that can aggregate multiple analyses of
the same data. We introduce four statistical estimators, Yaverage, ¥pool-ses YGLS,
and @Constrained aLs to combine the pipeline specific estimates. This enables test-
ing hypotheses across pipelines, such as “no effect across all pipelines” or “at
least one pipeline with no effect”. The proposed framework is generic and can be
applied to any imaging modality.
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Appendix A Influence function

In the univariate case (i.e. R = P = 1) without covariate (C' = 0), the effect of
interest 1 may be the Pearson’s correlation coefficient:

E[XY] - E[X]|E[Y]
VE[X?] - BIX]?\/E[Y?] -

when X is continuous or the mean difference when X is binary.

S

Y =E[Y|X =1]-E[Y|X =0

Here E[.] denotes the expectation and E[.|.] the conditional expectation. The later
case leads to simple expression: 1); is the empirical mean difference between the
groups

n

~ 1 Yijri Y (1 —x3)
%_nz< 7r -7

i=1

where 7 denotes the proportion of observations with X = 1, y;; the brain signal
for individual i processed by pipeline j, and x; the exposure value for individual
1. The previous expression is equivalent to:

Vn (1/)3 ) Z 0z, (0

where 5 (0;) = e y”(lizl Yi, O = (Yi1, - - -, Yig, Ti), and 9; is the large

sample value of 1@. Denoting Y; the random variable representing the brain signal
processed by pipeline j, the estimator can be seen as the empirical average of
independent realizations of a new random variable —2~ YiX M 1;, called the
influence function of ’(/Jj. Thus from the multivariate central hmlt theorem we get
that the joint distribution of the estimates is asymptotically multivariate normal.
It has mean ¢ (under our assumption that Vj € {1,...,J}, ¢ = 1;) and its
variance-covariance, denoted 217), is the same as the one of Py = (cp@l e go%)
divided by n. Because Pa involves some unknown parameters like 7 and v; we
do not observe it and cannot directly estimate 217). However, by plugging our
estimates of these unknown parameters we can approximate ¢ 5, 88 %) o) (Oij) =

1

" i ™ -
n 2ui=1Ti 1—5 2l n

yijTi __yij(d-xi) 1N Yij®i _ yig(1—=i)
i=1\ " x -7

) and approximate E@.

In a more general case, we would define a statistical model M(©) relating
X and Y via a parameter . ¢ may be an element of @, the set of model
parameters, or a function of elements of ©. For instance one could use a latent
variable model (LVM) with two latent variables, one summarizing the brain
measurements and another summarizing the exposure variables. 1 is then the
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coefficient relating the two latent variables. See Figure 1 of [I1] for a graphical
representation of a LVM - in this example the latent variable “LVu” represents
the PET measurement and the latent variable “LVpos” the memory relative to
positive word. In this more general case the previous decomposition does not
hold exactly but up to a residual term o,(1) which converges to 0 as the sample
approaches infinity:

Vi (B 0) = =3 65,00+ oy(1)
i=1

as indicated in the main text of this article. This decomposition exists for any
estimator ¢ derived from an M-estimator [I3] (section 5.3), including likelihood-
based estimators. Denote by 5] the ML estimator and @j = cTaj the parameter
of interest (¢ may be a vector starting by 1 and followed by 0’s, i.e. selects the
first element of éj The corresponding influence function only involves the first
two derivatives of the log-likelihood (formula 3.6 in [12]):

8S;(0;,0,)1 7"
0y,(0i) = —cE {](8])} $;(0i,0;)

J

with S;(0;,0;) being the score for individual ¢ when considering pipeline j,
i.e. vector containing the first derivatives of the log-likelihood contribution of
individual 7. Once the influence function has been estimated for each individual,
we can use it to obtain a consistent estimator of E;b:

~ 1<
5= ;<P@(O¢)T<Pg,(@i)

where Pa (0;)T denotes the transpose of the J-dimensional vector of influence
functions relative to individual i. Practically speaking the above allows us assess
the variance-covariance matrix of effects across pipelines, e.g., if pipelines are
completely independent in terms of their estimated effect, then X'~ would be a
diagonal matrix with the uncertainty of the estimated effect per pipeline in the
diagonal. However, if the estimated effects across pipelines are correlated, the
matrix would not be sparse.
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Integration of the Gaussian density -

Appendix B
bivariate case

Density

Fig. A. Density of the two dimensional standard normal distribution (colored surface).

The black line delimits the domain D(fmax) where J =2, %1 = 1.5, T2 = 3, and X is
the identity matrix with two rows and two columns. The area under the blue surface
external to the black line corresponds to the p-value relative to the first test, adjusted

for two tests.
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Appendix C Reformulation of the GLS estimator

C.1 Via a spectral decomposition

2‘@ being a symmetric semi-positive definite matrix, it admits the decomposition

Z’@ = QDQT where @) is an orthogonal matrix (i.e. QQT = I;, the identity
matrix) and D is a diagonal matrix with non negative values (A1, ..., Ay). Thus:

Dars = (1@;11)71 17521 = (17QD7'Q™1) ' 17QD Q™Y

We first note that Q = 17Q is a vector with element q equal to the sum (column-
wise) of the eigenvectors. Then:

J J
].TQD_lQTl = Z(jj)\_l(jj = ij
j=1 j=1
Where w; = q; =2 /\j. Moreover 1TQD~'QT is a vector with k-th elements
J = J _
Yo G kg = Xy wids; where i = qr;/q;
Therefore
~ 1 J ~
Vors = ——— >_w;d; "
j=1Wj j=1
C.2 Via joint modeling

Consider the simple case of a single continuous brain measurement (R = 1),
a single binary exposure (P = 1) with equal probability of being 0 and 1, no
covariate (C' = 0), and no missing value. We can use a joint linear model:

}/ij = Qj + 5XZ + Eij where (E“, N ,EZ'J) ~ N(O, EE)

Denote by pi, = (fig1,- - -, Hgs) the vector empirical mean in each group (i.e.

one relative to X = 1 another to X = 0) of sample size 5. Since the mean and

variance are sufficient statistics in Gaussian models, the joint linear model is
equivalent to:

fg; = o + BX, + egj where (eg1,...,e47) ~ N (0,2 /n)

Denote by Ap = (Afiy, ..., Afiy) the vector of difference in mean, the previous
model implies:

Afi; = B+ ¢€; where (e1,...,e5) ~ N (0,4%./n)

~ ~ -1 ~
whose maximum likelihood solution is 3 = (1T2;11> 17X Ap.
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Now consider the GLS estimator of the common exposure effect fZZ’GLS =
~ -1 ~ 1~
(1TZ§11) 1TZ§1¢ based on the pipeline specific Ordinary Least Squares
(OLS) estimators of the exposure effect 1?: = (@1, e ,'KZJ). Denote by 0; =

(aj,1;) the mean parameters of each pipeline specific model and 0]2 the residual
variance parameter. We have:

— = (XTX)"' X TY ; where Y ; denotes the brain measurements across in-
dividuals relative to the j-th pipeline.

~ 2
— X haselements " | (YVi; — X;0;)" (Yi; — X;0;) (XZ- (XTX)fl) T where
¢ = (0, 1). This follows from the fact the the score relative to 1@- is LXT(Y; - X0;)c
J

. . —1
and the variance covariance o3 (XTX)™ .

With a single binary covariate (and an intercept), XTX = [nr/LQ nr/z 2] whose
2/n —=2/n
—2/n 4/n
or 2/n so (X;(XTX)™!) ¢T = 4/n. Therefore, assuming that the observations are
sorted by group:

inverse is [ Hence the second element of X;(XTX)~1! is either —2/n

n/2 n
-~ n n ~
1/11‘:52 Yij—5 > Yy = Af
i=1 i=n/2+1

. 4 n 4 ~
5= (i —XO) (Y; —X0) =3

=1

~ ~ -1 ~
So PaLs = (1T2;11> 17X Ap. If the common effect models holds (i.e.

121 =...= TZJ = () then 2‘8 is an unbiased estimate of X so '@GLS is asymp-
totically equivalent to the ML estimator 8 and thus asymptotically efficient.
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