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In optics and photonics, a small number of building blocks, like resonators, waveguides, arbitrary
couplings, and parametric interactions, allow the design of a broad variety of devices and func-
tionalities, distinguished by their scattering properties. These include transducers, amplifiers, and
nonreciprocal devices, like isolators or circulators. Usually, the design of such a system is hand-
crafted by an experienced scientist in a time-consuming process where it remains uncertain whether
the simplest possibility has indeed been found. In our work, we develop a discovery algorithm that
automates this challenge. By optimizing the continuous and discrete system properties our auto-
mated search identifies the minimal resources required to realize the requested scattering behavior.
In the spirit of artificial scientific discovery, it produces a complete list of interpretable solutions
and leads to generalizable insights, as we illustrate in several examples. This now opens the door to
rapid design in areas like photonic and microwave architectures or optomechanics.

Waves represent one of the most basic physical phe-
nomena. This explains the importance of applications
enabled by wave transport in suitably designed struc-
tures, ranging from integrated photonics to microwave
circuits. A large class of on-chip devices, from isolators
and circulators for non-reciprocal transport [1–4] to hy-
brid frequency converters [5, 6] and new classes of am-
plifiers [7, 8], can be engineered by combining the right
building blocks in a well-chosen scattering topology. So
far, each new design in this domain has been proposed
based on human ingenuity and experience. It would be
desirable to speed up the pace of this laborious explo-
ration process in the high-dimensional space of possible
setups and obtain a complete overview of all conceptu-
ally distinct options for any given desired functionality.
Here, we introduce an automated discovery algorithm
that achieves these goals and also helps to uncover new
insights.

Tackling challenges of this kind is the domain of arti-
ficial scientific discovery [9]. This rapidly evolving field
has the ambitious aim to automate all aspects of the sci-
entific process using tools of machine learning and artifi-
cial intelligence, with an emphasis on interpretability and
discovery of new conceptual insights. Pioneering exam-
ples are the identification of organic molecules from mass
spectrometry by the computer program Dendral [10] and
the generation and experimental testing of hypotheses in
biochemistry by a robot scientist [11]. Important chal-
lenges in this field include automatic extraction of sym-
bolic expressions [12, 13], discovery of collective coordi-
nates [14, 15], automated planning and execution of ex-
periments [16, 17], and generating new experimental se-
tups. The latter task has been successfully demonstrated
for the preparation of multi-photon states in quantum
optics [18, 19], for the optimization of superconducting
circuits [20], gravitational wave detectors [21], and signal
processing using optical components [22].
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Automated discovery relies crucially on casting the
complex search space into a unifying language. For the
domain envisaged here, we identified coupled-mode the-
ory as providing a sweet spot on the continuum between
more microscopic hardware-specific descriptions (such as
engineered refractive-index distributions [23, 24]) and de-
scriptions based on macroscopic building blocks on the
level of entire functional elements (like amplifiers). The
latter require a larger number of building blocks and need
more human design input. For example [22] focuses on
signal processing setups that can be decomposed into di-
rected networks of specific technical components. In con-
trast, coupled-mode designs are transferable between dif-
ferent platforms and can always be translated back into
concrete physical structures. Of equal importance is the
formalization of the goal. Here, we chose a description
in terms of the scattering matrix, specifying the desired
functionality via the externally visible characteristics.
Our discovery algorithm is based on an efficient search

process that exploits the recursive modular structure of
the problem to prune the exponentially large space of
possibilities and provide a complete list of setups ful-
filling specified constraints. It automatically ends up
with interpretable and generalizable results both by us-
ing discrete building blocks and by suggesting only di-
mensionless parameters of universal, implementation-
independent meaning. The final outcome is a menu of
irreducible setups that allows to select optimality crite-
ria even afterwards. Moreover, we introduce a fruitful
general extension of the toolbox available in artificial dis-
covery, observing that conceptual insights in design are
often based on thinking about idealized structures re-
alizing asymptotic limits of parameters. We describe a
modification of our algorithm that exploits this meta-
principle.
We illustrate the benefits of this approach for a vari-

ety of target functionalities, including couplers, circula-
tors and directional amplifiers, where it gives rise to new
discoveries and generalizable insights.
We consider a network of coupled bosonic modes,
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FIG. 1. Graph representation of coupled mode systems. (a) Physical modes correspond to graph nodes, couplings to
edges. Port modes (orange) are connected to waveguides which relay input and output signals. (b) Discrete building blocks
available to the discovery algorithm. (c) Illustration of hardware platforms which are efficiently described by coupled mode
theory. This includes phontonic crystals (left), optomechanical setups (top), and microwave setups (right).

which can be implemented as an optical, electric, me-
chanical, or hybrid setup, comprising different types of
modes. This device is probed with multiple input sig-
nals. We assume that the interaction between the modes
can be engineered within some constraints, set by the
envisioned experimental implementation. Our method
takes into account these constraints but also that cer-
tain types of interaction might be more difficult to real-
ize than others, which is factored in the definition of the
setup complexity. The choices for the mode and interac-
tion types produce a large discrete search space growing
exponentially with the number of modes required for a
target response.

The linear response of a multi-mode circuit to signals
of a given frequency is encoded in its scattering matrix S.
The element Sji is the transmission coefficient of a signal
from the input port i to the output port j. In our work,
we aim to automatically discover the simplest setups that
fulfill a certain target response, which is encoded in a
target scattering matrix Starget.

The precise characterization of a specific physical im-
plementation of an ideal target device requires a carefully
crafted system-specific model. In contrast, the ideal be-
havior is typically captured by a simple and general high-
level description. Like a human scientist would do, we
choose our artificial scientist to adopt such high-level de-
scription. This approach allows us to discover ideal and
transferable solutions.

At the highest level of description, any multi-mode cir-
cuit can be represented as a graph with colored edges
[25] (see Fig. 1(a,b)), regardless of the underlying hard-
ware platform (see examples in Fig. 1(c)). Nodes corre-
spond to modes and edges correspond to physical inter-
actions. “Port modes” (orange) are connected to waveg-
uides transmitting the input and output signals of inter-
est. We note that the carrier frequencies ωL,j of the input
fields should be close to the respective mode resonances
ωj and can be different for different port modes, e.g. an
optical and a mechanical mode will have very different
frequencies. We focus on a fixed set of frequencies, but

our approach could be extended to also consider aspects
like optimizing the bandwidth [26].

The port modes are often insufficient to implement a
given scattering matrix. Therefore, we introduce a vari-
able number of auxiliary modes (grey) interacting with
the port modes via the available interactions.

A linear multi-mode scattering setup can contain sev-
eral interactions: passive coupling (black), nonreciprocal
coupling (green) acquiring a direction-dependent phase,
and squeezing (blue). It is useful to distinguish between
these different types of quadratic interactions because
in relevant experimental scenarios, they require qualita-
tively different implementations. Passive coupling can
be realised, e.g. by evanescent coupling between defects
modes in a photonic crystal. In contrast, the other in-
teractions are typically generated by pumping a weak
higher-order coupling, e.g. using a Kerr medium or op-
tomechanics, or, for nonreciprocal coupling with a di-
rectional phase, by coupling modes that are not invari-
ant under the time-reversal symmetry, e.g. whispering
gallery modes [27]. In any case, all of these interactions

can be written in the form gij â
†
i âj + h.c. (with gij real-

valued for passive coupling) or νij â
†
i â

†
j+h.c., respectively

(using a rotating wave approximation; see Supplemental
Material). Here, h.c. denotes the Hermitian conjugate,

and â†j excites mode j. The coupling rates νij can be
viewed as elements of a symmetric matrix, gij as ele-
ments of a Hermitian matrix. In our description, any
pair of off-diagonal non-zero elements, νij ̸= 0 or gij ̸= 0,
corresponds to a graph edge.

To identify setups that implement the target scattering
matrix, we have to explore the discrete search space of all
possible graphs and, given a graph, find an appropriate
set of values for the underlying continuous parameters,
i.e., the non-zero couplings, phases, and loss rates. To
this end, we perform a two-step procedure: A discrete
optimization routine suggests new graphs and an embed-
ded continuous optimization algorithm looks for appro-
priate values of the parameters (see Fig. 2(a)). If the
continuous optimization is successful, we label a graph
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FIG. 2. Automated Discovery of Modular Scattering Setups. (a) Optimisation scheme. The discrete optimization
sorts graphs into the libraries of valid (green book) and invalid graphs (red book). In every round, a new graph is suggested
and, depending on the outcome of the continuous optimisation, sorted with all its extensions/subgraphs into the library of
valid/invalid graphs. The continuous optimization minimizes the loss function to realize a target scattering behaviour (left
block), here an isolator. The candidate graph (right block) defines the number of auxiliary modes and an allowed set of non-zero
couplings rates and phases in the dimensionless Hamiltonian H. (b) Search space (schematic), starting with a fully connected
graph and successively pruning edges, resulting in multiple irreducible solutions. (c) Comparison of the number of tested graphs
for the directional coupler (see Fig. 3(b)), which uses five modes. The total number of possible graphs (black) for a certain
number of free variables in H is compared to the number of graphs which had actually to be tested by our exhaustive search.
Our scheme starts with maximally connected graphs and successively goes to more restricted graphs. By testing only around
13,000 graphs we are able to characterize all 1.9 million graphs in this example.

as valid.

First, we discuss the discrete optimization, see
Fig. 2(a). We aim to identify the simplest valid graphs
as they represent the simplest experimental implementa-
tions of the target response. Often there exist a multitude
of valid graphs that differ in the number and the complex-
ity of the required couplings. Our algorithm identifies
“irreducible” graphs that can not be further simplified
by setting any coupling rate or phase to zero. To iden-
tify all such graphs we perform a complete enumeration.

Due to the large discrete search space, a brute-force
approach testing all graphs is infeasible in many cases of
interest. We solve this problem by leveraging the knowl-
edge gained from previously tested graphs, drastically re-
ducing the required computational resources. Note that
an alternative approach could be developed based purely
on continuous optimization, introducing terms in a loss
function that reward sparsity (zero couplings) as in [28–
30] – however, this would not enable us to obtain a com-
plete set of solutions.

We take advantage of the fact that removing an edge
from a graph is equivalent to setting a coupling rate to

zero. Thus, if a graph is found to be invalid, that car-
ries over to all graphs which can be generated by remov-
ing some edges and/or setting coupling phases to zero
(changing an edge color from green to black). Likewise,
all extensions of a valid graph are valid (see Fig. 2(b)).
This observation allows us to efficiently construct exhaus-
tive libraries of valid and invalid graphs by testing only
a small fraction, see Fig. 2(c).

First, we test only fully connected graphs for validity,
until we identify the minimum required number of modes.
Starting from that parent graph, our algorithm suggests
at every iteration a new graph that is not yet included
in any of the two libraries and tests for validity. If no so-
lution is discovered by the continuous optimization, the
graph and all its subgraphs are added to the library of
invalid graphs. Otherwise, the graph and all its exten-
sions are added to the library of valid graphs. If some of
the discovered parameters turn out to be zero, the corre-
sponding simpler graph and all its extensions are added
instead.

We now turn to the continuous optimization. The scat-
tering matrix S is fully determined by an appropriately
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defined first-quantized dimensionless Hamiltonian H (see
below), which contains the free coupling parameters. We
look for setups implementing the desired scattering be-
havior by minimizing the square deviation loss function
with respect to those couplings:

L =
∑

j,k∈ port
modes

∣∣∣Sjk − Starget
jk ei(γ

out
j −γin

k )
∣∣∣2 + ∑

j∈constr.

|fj |2.

(1)
We note that the target scattering matrix Starget can
contain further free parameters that are not specified by
the desired scattering properties. For example, we might
impose that two scattering amplitudes are equal but a
suitable value needs to be discovered. In addition, we in-

troduce the free parameters γ
in/out
i to account for the fact

that the optical path length of the input and output fields
in the waveguide can be easily modified. Finally, we allow
for extra constraints fj that can be expressed in terms of
the multi-mode circuit parameters or the scattering ma-
trix S, e.g. when enforcing minimum added noise. We
minimize the loss L as a function of the free parameters

in H, Starget, and the phases γ
in/out
i . For the minimiza-

tion, we use the Broyden–Fletcher–Goldfarb–Shanno al-
gorithm [31], an iterative gradient-descent method for
solving non-linear optimization problems. A valid so-
lution is obtained whenever the loss reaches zero. The
algorithm fails to find a solution if the loss gets stuck in
a non-zero minimum. Since the optimization landscape
supports local minima, there is a risk of false-negative
errors. To reduce this risk, we repeat the continuous
optimization Nrep times. The hyperparameter Nrep is
chosen empirically.

A key step of our method is to derive the scattering ma-
trix S in terms of an appropriately rescaled Bogoliubov-
de-Gennes Hamiltonian:

H =
1√
κ

(
g ν
ν∗ g∗

)
1√
κ
, (2)

see Supplemental Material. Here, κ is the diagonal
matrix κ = diag(κ1, . . . , κN , κ1, . . . , κN ) with κi being
the out-coupling of mode i into the corresponding out-
put port (for an auxiliary mode it could be an intrin-
sic loss channel). The rescaling in Eq. (2) is important,
since it means the algorithm discovers classes of solutions
that depend only on the dimensionless detuning −Hii =
(ωL,i − ωi)/κi, the cooperativities Cij = 4|Hij |2, and
the gauge invariant phases accumulated on closed loops
(synthetic field fluxes), Φi,j,l,...,k = arg(HijHjl . . . Hki).
When translating back to a concrete physical setup, this
leaves the freedom to choose arbitrarily the decay rates
κi and thus the couplings (although for amplifiers some
additional stability constraints might apply, see Supple-
mental Material). For simplicity, we focus below on the
important special case of phase-preserving devices. In
this scenario, the scattering matrix is an N ×N matrix
as already implicitly assumed in Eq. (1). In addition, we
have assumed that each port mode is coupled in reflec-
tion to a single waveguide. For further details like the

treatment of quantum noise, phase-sensitive amplifiers,
coupling in transmission, and application to setups with
chiral modes, see the Supplemental Material.

In the following, we demonstrate the successful appli-
cation of our method to a selected number of illustrative
examples.

As a first proof of concept, we apply our scheme to
implement an isolator, i.e. a two-port device with perfect
transmission from the input to the output and zero re-
verse transmission, see Fig. 3(a). Our method shows that
the simplest solution involves a single auxiliary mode and
a single complex coupling. The continuous optimization
routine provides also the cooperativities C12 = C23 =
C31 = 1 and the synthetic flux Φ123 = π/2, recovering
the solution used in [2, 25, 32–34]. In the special limiting
case of an overdamped auxiliary mode, κ3 ≫ κ1, κ2, this
mode acts as a Markovian bath mediating a dissipative
interaction [35]. By adiabatic elimination, one can de-
rive a generalization of the dissipative isolator discussed
in [35], see Supplemental Material. It is always possible
to translate the solutions discovered by our algorithm
into schemes in the spirit of Ref. [35], with an engineered
reservoir replacing the auxiliary modes. A closed formula
for the corresponding Lindblad Master equation is given
in the Supplemental Material.

The aim of artificial scientific discovery is to create
generalizable insights. We now demonstrate that the so-
lutions systematically discovered using our scheme can
inspire the discovery of more complex devices, e.g. involv-
ing an arbitrarily large number of ports. As an example,
we consider a fully directional coupler. This is a de-
vice that combines signals from multiple input ports and
transmits them with equal transmission amplitude to an
output port. Here, we aim for a fully directional coupler
with zero reflection and reverse-transmission amplitudes,
cf Fig. 3(b). We leave the transmission amplitude t as a
free parameter.

First, we use our scheme to find possible solutions for
Nin = 2. It turns out that at least two auxiliary modes
are required to realize a two-port device. In total, we find
100 different irreducible graphs that differ in the number
and complexity of the underlying couplings. We select
the graphs with the minimal number of couplings, Graph
(I) with six couplings, and the graphs with the smallest
number of non-reciprocal couplings, Graph (II) and (III),
requiring seven couplings but only one parametric drive.
The remaining irreducible graphs are either gauge trans-
formations of these graphs or require more resources in
terms of couplings and parametric drives.

This scenario is an example where the automated dis-
covery process has produced solutions that lead to gener-
alizable insights, an important goal in artificial scientific
discovery. Indeed, inspecting Graph (I), we note that it
can be viewed as the combination of two isolator graphs.
This inspires a general ansatz for an Nin-port coupler: a
graph that comprises an isolator building block for each
input port, see the right panel in Fig. 3(b). We then use
our continuous optimization routine to verify the valid-
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FIG. 3. Illustrative examples for automated discovery of scattering setups. Target scattering behaviours and the
corresponding irreducible graphs identified by our automated search. (a) Isolator. Only signal from mode 1 to 2 is transmitted.
(b) Directional coupler. Multiple input signals are summed up and transmitted to the output port. Graph (I-III) are the
smallest irreducible graphs for a directional coupler with two inputs. Graph (I) has the smallest number of couplings, graph
(II) and (III) have the smallest number of parametric drives. The other identified 97 further irreducible graphs (not shown)
require either more resources or are gauge transformations of the shown graphs. Graph (I) can be generalized to more inputs.

(c) Directional amplifier. Input from port 1 is amplified by a factor of
√
G, the other direction is blocked. The device has

minimal back-action and the noise is quantum-limited. The graphs (I-IV) are the simplest solution without making use of
intrinsic loss on the port modes. Allowing intrinsic losses, graph (V) is the simplest graph. Analytical terms discovered for the
cooperativities Cij , the intrinsic loss rescaled by the outcoupling (red arrow), and the flux Φ132 are indicated. All shown graphs
are stable. The unstable solutions are further discussed in the Supplemental Material.

ity of the ansatz and calculate cooperativities, fluxes, and
the transmission t for the first few Nin, up to Nin = 5
corresponding to N = 11 nodes. We note that for such
large graphs, an exhaustive search of the graph space
would be daunting. From the special solutions, we infer
a general solution valid for arbitrary Nin: All cooperativ-
ities between an input-port mode and the corresponding
auxiliary mode take the same value, Cin,aux = 1, the coop-
erativities between the output-port mode and the other
modes take the value Cout,in/aux = 1/Nin, and the syn-
thetic field fluxes are the same for all isolator-like loops,
Φin,out,aux = π/2. Finally the transmission turns out to
be t = 1/

√
Nin, implying that no noise from the auxiliary

modes is injected into the output port.

In many interesting problems, one might be trying to
solve a whole class of tasks where one or several param-
eters in the target scattering matrix are allowed to vary
continuously. This type of challenge can be solved using
our algorithm by first identifying a valid graph using a
fixed value of the parameter, then using continuous op-
timization to create a dataset of solutions for varying
parameter values (but fixed graph structure), and finally
attempting to derive closed analytical formulas for the
cooperativities and fluxes by symbolic regression.

To illustrate this, consider several recent works [2, 34–
38] that have proposed schemes to realize on-chip direc-
tional quantum-limited amplifiers using multi-mode cir-
cuits and to replace bulky state-of-the-art ferrite-based
devices. The target device has arbitrary gain G and is
fully directional, i. e. has zero back-reflection, and zero
reverse-transmission, cf Fig. 3(c). Moreover, both at the
input and the output ports the added noise should reach
the so-called quantum limit, i.e. the fundamental limit
set by the laws of quantum mechanics [39]. The latter

requirements can be translated into constraints on the
scattering matrix S that depend on the temperatures of
the input and output ports. For both input and output
ports at zero-temperature we recover the solution used
in [2, 25, 34, 35]. In this solution, the added noise in the
output port is injected into the multi-mode system from
the same port. An interesting open problem in this con-
text is to find the simplest design for a fully directional
amplifier that is still quantum-limited in the presence of
a hot output port [38]. Liu et. al. [38] approached this
problem with a hand-crafted approach, discovering two
small architectures comprising two auxiliary modes and
six couplings. However, applying our method we discov-
ered several smaller architectures, see Fig. 3(c). For more
details of our derivations and results, please see the Sup-
plemental Material. The smallest solution comprises a
single auxiliary mode, three couplings, and has an under-
coupled output port, i. e. most of the signal is dissipated
into a (zero-temperature) loss channel. While this setup
is not power-efficient, it fulfills all the imposed goals and
represents an instructive counter-intuitive solution, since
one could naively expect that the loss of a large part of
the signal would be incompatible with quantum-limited
amplification.

In many physical systems, an ideal target behavior can
be reached only in the special limiting case of one or
more system parameters that tend to infinity or zero,
e.g. a strong coupling limit. Even though this ideal limit
is strictly unattainable in practice, adopting it promotes
simplification and conceptual understanding. How can
we introduce such fruitful asymptotic analysis in the con-
text of artificial scientific discovery? One key complica-
tion is that often multiple dimensionless coupling param-
eters Cj need to become infinite simultaneously. This is
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(left) and irreducible graphs identified by our scheme (right).

Two mechanical modes (b̂) mediate the interaction between
the optical modes (â). (c) Irreducible graphs identified by
our optimisation scheme if direct passive couplings between
the optical modes are allowed. (d) Deviation between the
scattering matrix and the target behavior for the left graph
in (c). The deviation approaches 0 in the asymptotic limit of
Cab, Cbb → ∞ with C2

ab/Cbb = 1 (dashed white line).

resolved by rephrasing the description in terms of ratios
like Cj/Ck (or even, more generally, Cα

j /Ck, with a suit-
able exponent, depending on the situation). This ratio
stays finite while Cj , Ck → ∞, and its numerical value
can be found by the discovery algorithm. At the same
time, the limit itself can be represented as an idealized
building block.

Coming back to the discovery of scattering setups, a
generic example of such a building block is a far-detuned
bus mode which mediates purely coherent interactions
between other modes. Both the bus-mode detuning ∆(b)

and the couplings to the neighboring modes a tend to
infinity. However, the ratios C2

ab/Cbb = |gab|4/(κa∆
(b))2

stay finite, and it is these ratios that determine the scat-
tering matrix after integrating out the bus mode. We
can thus incorporate the far-detuned mode by adding
these ratios as optimization parameters and incorporat-
ing the interaction they mediate into the Hamiltonian for
the remaining modes (see Supplemental Material). When
eventually translating back to a physical setup, we can

freely choose the absolute value of the bus-mode detuning
with the only constraint that it is much larger than the
corresponding decay rate κb. There are plenty of phys-
ical examples where such a reasoning is useful, see e.g.
[5, 6, 36, 40].
We apply this extended optimization scheme to dis-

cover the simplest setup to implement an optomechani-
cal circulator in the experimental scenario considered in
[40]. Three microwave port modes are coupled via the
optomechanical interactions mediated by a varying num-
ber of mechanical modes. No direct coupling is avail-
able (see Fig. 4(a)). Since each optomechanical coupling
requires a different laser drive, the key measure of ex-
perimental complexity in this case is the overall number
of couplings. The hand-crafted architecture proposed
in [40] requires two far-detuned mechanical modes and
six couplings. Our optimization scheme finds a simpler
setup, which requires the same number of far-detuned
modes but only five couplings (see Fig. 4(b)). If we ap-
ply the softer constraint where passive couplings are al-
lowed between the optical modes, our scheme identifies
even simpler graphs, only involving one mechanical mode
(see Fig. 4(c)). To reach the ideal behaviour, e.g. , for
the left graph in Fig. 4(c), the cooperativities Cab and
Cbb have to tend towards infinity, while obeying that the
ratio C2

ab/Cbb equals 1 (see Fig. 4(d)).

In conclusion, we have presented an automated-
discovery approach that finds irreducible scattering se-
tups, leading to results that provide new insights and
are interpretable and generalizable. The approach is
amenable to numerous future extensions like search for
optimized implementations in specific hardware plat-
forms neural-network-guided heuristics for larger devices
where complete enumeration is infeasible, or target spe-
cific quantum noise characteristics. More generally, our
results now open the door towards automated discov-
ery in additional related domains of high importance,
like transport through periodic structures composed of
small modular blocks or scattering-based sensing experi-
ments. Nonlinear setups or even devices with functional-
ities based on time-dependent control require significant
new developments, but still could be treated with the
same graph-based efficient search algorithm. Overall, we
feel that the results shown here validate the fruitfulness
of the main ideas guiding the field of artificial scientific
discovery.
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Communications 7, 13662 (2016).
[44] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao,

X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, Na-
ture Photonics 10, 657 (2016)

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.041020
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.041020
https://doi.org/10.1103/PhysRevX.7.031001
https://doi.org/10.1103/PhysRevX.7.031001
https://doi.org/https://doi.org/10.1038/s41566-022-01026-7
https://doi.org/https://doi.org/10.1038/s41566-022-01026-7
https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/ncomms2201
https://www.science.org/doi/10.1126/science.aaa8525
https://doi.org/10.1038/nphys4009
https://doi.org/10.1038/nphys4009
https://www.nature.com/articles/s41586-023-06221-2
https://doi.org/https://doi.org/10.1016/0004-3702(93)90068-M
https://www.nature.com/articles/nature02236
https://www.science.org/doi/10.1126/science.1165893
https://www.science.org/doi/10.1126/sciadv.aay2631
https://www.science.org/doi/10.1126/sciadv.aay2631
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.010508
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.200601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.200601
https://doi.org/https://doi.org/10.1038/s41534-019-0193-4
https://doi.org/https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/https://doi.org/10.1103/PhysRevLett.124.124801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.090405
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.090405
https://www.nature.com/articles/s42254-020-0230-4
https://www.nature.com/articles/s42254-020-0230-4
https://doi.org/10.1038/s41534-021-00382-6
https://doi.org/10.1038/s41534-021-00382-6
https://doi.org/10.48550/arXiv.2312.04258
https://doi.org/https://doi.org/10.1002/lpor.202300500
https://doi.org/https://doi.org/10.1002/lpor.202300500
https://www.nature.com/articles/nphoton.2015.69
https://www.nature.com/articles/nphoton.2015.69
https://www.nature.com/articles/s41566-018-0246-9
https://doi.org/10.1088/1367-2630/17/2/023024
https://doi.org/10.1088/1367-2630/17/2/023024
https://doi.org/10.1103/PRXQuantum.3.020201
https://doi.org/10.1103/PRXQuantum.3.020201
https://doi.org/10.1038/nphys2063
https://doi.org/10.1103/PhysRevX.11.031044
http://arxiv.org/abs/2210.09980
https://arxiv.org/abs/2210.09981
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1088/1367-2630/14/11/115004
https://doi.org/10.1103/PhysRevApplied.7.024028
https://doi.org/10.1103/PhysRevApplied.7.024028
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1103/PhysRevLett.120.023601
https://doi.org/10.1103/PhysRevLett.120.023601
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.031001
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.031001
https://doi.org/10.1103/PhysRevApplied.21.014021
https://doi.org/10.1103/PhysRevApplied.21.014021
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1155
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1155
https://www.nature.com/articles/s41467-017-00447-1
https://doi.org/10.1364/OE.20.007672
https://doi.org/10.1038/nphys3236
https://doi.org/https://doi.org/10.1038/ncomms13662
https://doi.org/https://doi.org/10.1038/ncomms13662
https://doi.org/10.1038/nphoton.2016.161
https://doi.org/10.1038/nphoton.2016.161


8

Appendix A: Details on the high-level description of a multi-mode circuit

Here, we give more details on our high-level description of multi-mode circuits. For completeness, we consider
the most general scenario which encompasses purely-routing devices as well as phase-preserving, and phase-sensitive
amplifiers.

1. Bogoliubov de Gennes Hamiltonian and the rotating wave approximation

We consider a hybrid system comprisingN modes of different types and the most general quadratic time-independent
Hamiltonian

Ĥ =
1

2

N∑
j,k=1

(
gjkâ

†
j âk + νjkâ

†
j â

†
k

)
+H.c. (A1)

Here, âj and â†j are the ladder operators of mode j, g is a Hermitian matrix, and ν can be chosen to be sym-
metric. For a more compact notation, it is convenient to group all the modes in a 2N dimensional vector,

ξ̂ = {â1, . . . , âN , â†1, . . . , â
†
N}, and to introduce the first-quantized Bogoliubov de Gennes Hamiltonian

Ĥ =
1

2
ξ̂
†
HBdGξ̂, HBdG =

(
g ν
ν∗ g∗

)
. (A2)

The Hamiltonian Eq. (A1) is defined in a frame in which the phase space of each mode j rotates at the corresponding
carrier frequency ωL,j . Thus, −gjj is to be interpreted as the detuning ∆j of the carrier frequency ωL,j from the
mode resonance ωj , ∆j = ωL,j −ωj . For multi-mode circuits, such time-independent Hamiltonian is typically referred
to as the rotating-wave Hamiltonian as it is obtained after a Rotating-Wave Approximation (RWA) that drops the
fast-oscillating terms, which result from non-resonant interactions. The corrections to the RWA approximation are
small if all resonant frequencies ωj are much larger than the coupling rates gij and νij as well as the decay rates κj . We
note that if all couplings are active the carrier frequencies ωL,j for the different modes can be chosen independently of
each other, as long as the frequencies of the lasers mediating the interactions are adjusted accordingly. Alternatively,
one can use this freedom to choose independently the values of the detunings ∆j in experimental scenarios in which
the mode resonances ωj are not tunable. We note that all modes connected by passive coupling have the same carrier
frequency which in turn leads to constraints to ∆j for fixed ωj . Besides these constraints, the mode resonances ωj are
irrelevant in the high-level description based on the RWA. This is an appealing feature that makes any insight gained
using our method highly transferable within a variety of platforms. A more refined description including non-resonant
interactions is typically used to quantify how a specific implementation deviates from the ideal target behavior. This
deviation is device-specific and, thus, goes beyond the scope of our work.

2. Langevin Equations

We use input-output theory to describe the dynamics of the open multi-mode circuit. As described in the main
text, we distinguish between port modes, which are used as input and output ports for the signals, and auxiliary ports,
which are not used as input ports and whose output is not monitored. Accordingly, all the losses in an auxiliary mode
can be incorporated into a single loss channel. On the other hand, whenever we want to incorporate intrinsic losses in
the port modes we have to introduce two loss channels for these modes, an out-coupling and an intrinsic loss channel.
Based on these considerations, we arrive at the Langevin equations

˙̂aj(t) = −i
∑
k

gjkâk(t)− i
∑
k

νjkâ
†
k(t)−

κj + Γj

2
âj(t)−

√
κj â

in
j (t)−

√
Γj â

noise
j (t) (A3)

Here, âinj is the input field for the main decay channel (for the port modes the out-coupling channel), with decay rate

κj . Likewise, ânoisej is the noise entering a port mode j from its intrinsic loss channel, which has decay rate Γj . The
Langevin equations can be rewritten in a compact form as

˙̂
ξ(t) =

(
−iσzHBdG − κ+ Γ

2

)
ξ̂(t)−

√
κξ̂

in
(t)−

√
Γξ̂

noise
(t) (A4)
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Here, we have grouped all input and noise fields in the vectors, ξ̂
in

= {âin1 , . . . , âinN , âin†1 , . . . , âin†N } and ξ̂
noise

=

{ânoise1 , . . . , ânoiseN , ânoise†1 , . . . , ânoise†N }, respectively. Moreover, we have introduced the diagonal matrices κ =
diag(κ1, . . . , κN , κ1, . . . , κN ), Γ = diag(Γ1, . . . ,ΓN ,Γ1, . . . ,ΓN ) and

σz =

(
1N 0
0 −1N

)
. (A5)

We note that the Langevin equations have the embedded particle-hole symmetry σxK where K denotes the complex
conjugation and

σx =

(
0 1N

1N 0

)
. (A6)

This simply reflect that the last N equations are the adjoint of the first N equations.

3. Scattering matrix

To fully characterize the linear response of a multi-mode circuit, one has to take into account that it depends on
the frequency of the input field via the time-derivative in the left-hand side of Eq. (A4). However, the ideal scattering
behavior is only realized in a high-level description that focuses on signals that have a very smooth envelope and,
thus, are spectrally well localized (in each port about the respective carrier frequency ωs

j ). Taking into account that
in the rotating frame the frequency is counted off from the respective carrier frequency ωs

j , the response of interest is

the “zero-frequency” response obtained by setting
˙̂
ξ(t) = 0 in Eq. (A4). After calculating ξ̂ in this way and plugging

it into the input-output relations

ξ̂
out

= ξ̂
in
+
√
κξ̂, (A7)

we find

ξ̂
out

=

[
1+

√
κ

(
−iσzHBdG − κ+ Γ

2

)−1 √
κ

]
︸ ︷︷ ︸

scattering matrix S

ξ̂
in

(A8a)

+

[
√
κ

(
−iσzHBdG − κ+ Γ

2

)−1 √
Γ

]
︸ ︷︷ ︸

noise matrix N

ξ̂
noise

. (A8b)

Here, S is the scattering matrix and the matrix N describes the linear response to the fluctuations entering the circuit
from the intrinsic loss channels.

In view of discovering classes of solutions displaying the same scattering behavior, we found that it is possible to
eliminate the explicit dependence of S and N on the decay rates κi by appropriately rescaling the Bogoliubov de
Gennes Hamiltonian and the intrinsic losses. In particular, we find

S = 12N +

(
−iσzH − γ

2
− 12N

2

)−1

(A9a)

N = (S − 12N )
√
γ. (A9b)

with

H =
1√
κ
HBdG

1√
κ
, γ = Γκ−1. (A10)

We note that the rescaled Bogoliubov Hamiltonian H is parametrized by N rescaled detunings Hii = −∆i/κi with
1 ≤ i ≤ N , N(N − 1)/2 dimensionless couplings gij/

√
κjκi with 1 ≤ i < j ≤ N , and N(N + 1)/2 squeezing

amplitudes νij/
√
κjκi with 1 ≤ i ≤ j ≤ N . These parameters are learning parameters in the continuous optimization.

As pointed out in the main text, the functionality of the device to depends only on dimensionless detunings Hii,
cooperativities Cij = 4|Hij |2, and the gauge-invariant geometrical phases accumulated on closed loops (synthetic field
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fluxes), Φi,j,l,...,k = arg(HijHjl . . . Hki), see Eq. (A9a). If we allow for intrinsic loss channels in the port modes, the
behaviour is furthermore influenced by the dimensionless intrinsic loss rates γ, see Eqs. (A9a) and (A9b).

We note that in the most general case, the S matrix is a 2N × 2N matrix, cf Eqs. (A2), (A10) and (A9a). This
dimensionality reflects the fact that the intensity of the transmitted field can depend on the phase of the input field.
For example if both Sj,i ̸= 0 and Sj,i+N ̸= 0 and the input field enters the circuit from port i with average amplitude
⟨aini ⟩ = |⟨aini ⟩| exp(iφ), the intensity |⟨âoutj ⟩|2 of the field transmitted to port j depends on the phase φ of the input

field, |⟨âoutj ⟩|2 = |Sj,i exp(iφ) + Sj,i+N exp(−iφ)|2|⟨aini ⟩|2.
To simplify the discussion in the main text we have focused on phase-preserving devices. For such devices, the

scattering matrix as defined in Eq. (A9a) has a block-diagonal form with two N × N blocks mapped one into the
other by the particle-hole symmetry [38]. This allows one to define the scattering matrix S as one of the two blocks
obtained from Eq. (A9a) and, thus, to arrive at an N ×N matrix, consistent with Eq. (1) of the main text. In this
cases, our program does not calculate the“large” 2N × 2N matrix but rather only one block.
For purely routing device (without squeezing interaction, ν = 0), the diagonal blocks correspond to the annihilation

and creation operators, respectively. Thus, the “smaller” scattering matrix can be taken to be the block S1:N,1:N of
the “larger matrix” per Eq. (A8). This is also the standard definition of the scattering matrix for excitation conserving
systems.

For phase-preserving amplifiers, we enforce the block structure of the “large” scattering matrix by constraining
the matrix H in the following way: We divide the modes into two subsets M1 and M2 with N1 and N2 = N − N1

modes, respectively. Then, we couple modes in the same set exclusively with beam-splitting interactions, and modes
in different sets via two-mode squeezing interactions. The resulting scattering matrix has a block structure because

the output fields aouti∈M1
and aout†i∈M2

depend only on the input fields aini∈M1
and ain†i∈M2

, and, likewise, for the fields

aouti∈M2
, aout†i∈M1

, aini∈M2
, and ain†i∈M1

. This allows us to take as scattering matrix the block enconding the response of the

output fields aouti∈M1
and aout†i∈M2

to the the input fields aini∈M1
and ain†i∈M2

. In practice, we calculate the “small” N ×N
scattering matrix by replacing all the 2N × 2N matrices (12N , σz, H, and γ) in Eq. (A9a) with the relevant N ×N
block, e.g. we replace σz with (

1N1
0

0 −1N2

)
. (A11)

4. Stability

In the presence of squeezing interactions, the Langevin equations (A3) can describe unstable motion drifting away
from a saddle point. The motion is stable as long as the dynamical matrix D = −iσzHBdG − (κ + Γ)/2 has only
eigenvalues with a negative real part.

Since the solutions obtained using our method are not necessarily stable, we exclude unstable solutions after checking
their stability. We note that the eigenvalues of D as well as the signs of their real parts depend on the actual choice
of κj . This can lead to constraints on these parameters.

Appendix B: Discussion of coupling in transmission

In the main text, we have assumed that each port mode is coupled in “reflection” to the waveguide relaying the
input and output signals, see Fig. S1(a). In this scenario, the port mode is coupled to a single decay channel. In this
section, we discuss how to adapt our method to account for coupling in “transmission”, see Fig. S1(b).

We distinguish between two different scenarios. In the first scenario, the port mode of interest is non-chiral, e.g. a
localized defect mode in a photonic crystal, see Fig. S1(c). In the second scenario, the waveguide is coupled to a pair
of degenerate modes that are mapped one into the other via time-reversal and, thus, have opposite chirality, e.g. a
pair of whispering gallery modes in a microresonator or a race-track resonator, see Fig. S1(d).

In the non-chiral mode scenario, the interaction of the mode with the waveguide can be modeled by introducing two
decay channels, one for each propagation direction, see Fig. S1(c). In the presence of time-reversal symmetry, both
decay channels have the same coupling. It is straightforward to extend our method to include port modes coupled to
two input-output decay channels.

In the chiral modes scenario, the interaction region typically spans several wavelengths, and mode matching ensures
that each chiral mode is coupled only with the radiation propagating in the same direction inside the waveguide.
As a consequence, the interaction between each mode and the waveguide can be modeled by introducing only one
decay channel, as for coupling in reflection, see Fig. S1(d). Thus, our method directly applies to this scenario.
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FIG. S1. (a) and (b) Sketch of two possible waveguide coupling configurations. (c) Coupling in transmission to a non-chiral
mode and equivalent model with two waveguides coupled in reflection to the same mode. (d) Waveguide coupled in transmission
to a racetrack resonator (or equivalent system) supporting two degenerate modes with opposite chirality (clockwise and anti-
clockwise arrows) and equivalent model with two modes coupled in reflection. (e) Scheme for an isolator. Our method uses the
equivalent model to rediscover the solution used in [41–44].

Special considerations are required when setting up the target scattering matrix and interpreting the couplings in the
dimensionless Hamiltonian, e.g. distinguishing between passive and active coupling, see below.

Appendix C: Application to chiral modes

Chiral modes are usually coupled in transmission to exploit their directionality. Analogously to any mode coupled
in reflection, their interaction with the waveguide can be modeled using a single decay channel, see discussion in the
previous section. Thus, a pair of chiral modes coupled in transmission to a waveguide (and coupled to other modes)
are described by the same Langevin equations as two port modes coupled in reflection to two different waveguides
(and with the same coupling to other modes). However, transmission and reflection are exchanged compared to the
equivalent system with two port modes coupled in reflection. For a fixed target functionality, e.g. an isolator, the
target scattering matrix should reflect this change, Starget

ji ↔ Starget
ii and Starget

ij ↔ Starget
jj with i, and j labeling the

pair of chiral port modes.

As an example consider an isolator with the input fields to be injected on opposite ends of the same waveguide
coupled in transmission to a pair of chiral modes. The target scattering matrix for an isolator with the two port
modes coupled in reflection to the respective waveguides would be,

Starget =

(
0 0
1 0

)
. (C1)

Instead, for the setup coupled in transmission we exchange transmission and reflection as described above and use
the target scattering matrix

Starget =

(
1 0
0 0

)
. (C2)

By using our standard method, we find that the simplest solution is a disconnected graph with a single auxiliary
mode, see Fig. S1(d) right-hand side. Here, the auxiliary mode interacts only with the anti-clockwise port mode 2
with dimensionless coupling g̃23 = 1/2 or, equivalently, cooperativity C23 = 1. This scheme was originally proposed
in [41] to implement an optical isolator using a mechanical mode as an auxiliary mode, as experimentally realized in
[42–44].

We note that our classification of the scattering solutions highlighting coupling that can be implemented as passive
coupling does not directly apply here. For example, considering that the port modes are mapped one onto the other
via the time-reversal transformation, it follows that the coupling of an auxiliary mode to just one of them but not the
other (in the isolator setup) breaks the time-reversal symmetry (irrespective of the phase of g̃23) and, thus, can not
be implemented as a passive coupling. In contrast, backscattering in the racetrack resonator, which does not involve
time-symmetry breaking, would be described as a complex coupling g̃12 between the two port modes.
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Appendix D: Effective dissipative model for the limiting case of overdamped auxiliary modes

Here, we derive the effective Markovian dissipative model obtained after integrating out a fast-decaying auxiliary
mode âf . Such a model can be formulated in terms of a set of Langevin equations for the remaining modes or,
equivalently, a Lindblad Master equation.

We assume that the dimensionless Hamiltonian H remains fixed and derive the resulting Langevin equations and
the Lindbladian in terms of H and the decay rates κi. For this purpose, it is convenient to introduce the rescaled
couplings g̃ and ν̃,

g̃ =
1√
κ
g

1√
κ
, ν̃ =

1√
κ
ν

1√
κ
. (D1)

These couplings are blocks of the rescaled Hamiltonian

H =

(
g̃ ν̃
ν̃∗ g̃∗

)
(D2)

and their numerical values are directly obtained using our method. The decay rates κi can be viewed as free parameters.
For simplicity, we consider the special case of a fast-decaying mode not subject to a single-mode squeezing interaction.
This scenario is quite general as it applies to all phase-preserving devices as well as many phase-sensitive devices.

We start by solving the Langevin equation for the auxiliary mode.

˙̂af (t) =
(
i∆f − κf

2

)
âf (t)− i

∑
j ̸=f

gfj âj(t)− i
∑
j ̸=f

νfj â
†
j(t)−

√
κf â

in
f (t) (D3)

to find

âf (t) = −
∫ t

−∞
dt′e(i∆f−κf/2)(t−t′)

i
∑
j ̸=f

gfj âj(t
′) + i

∑
j ̸=f

νfj â
†
j(t

′) +
√
κf â

in
f (t′)

 . (D4)

In the limit κf/κi → ∞ we can set âj(t
′) = âj(t), â

†
j(t

′) = â†j(t), and âinf (t′) = âinf (t) into the integral. With this
Markovian approximation, we can calculate the integral explicitly

âf (t) =
1

i∆f − κf/2

i
∑
j ̸=f

gfj âj(t) + i
∑
j ̸=f

νfj â
†
j(t) +

√
κf â

in
f (t)

 (D5a)

=− 2

κf

1 + 2i∆f/κf

1 + 4(∆f/κf )2

i
∑
j ̸=f

gfj âj(t) + i
∑
j ̸=f

νfj â
†
j(t) +

√
κf â

in
f (t)

 . (D5b)

By plugging Eq. (D5) into the input-output relation

âoutf = ˆ̃ainf +
√
κf âf . (D6)

and expressing in terms of g̃fk and ν̃fk we find

âoutf = −e2iφf âinf − 2i
exp(iφf )√
1 + 4g̃2ff

∑
k ̸=f

√
κk

(
g̃fkâk + ν̃fkâ

†
k

)
, (D7)

with φf = arg(1 − 2ig̃ff ). It is convenient to apply a gauge transformation to the input field, ˆ̃ainf = −e2iφf âinf and
define the Bogoliubov operator

ẑ =
∑
k ̸=f

c−k âk + c+k â
†
k, [ẑ, ẑ†] = sgn(Nz) (D8)

with

c−k = −ieiφf

√
κk

|Nz|
g̃fk, c+k = −ieiφf

√
κk

|Nz|
ν̃fk, Nz =

∑
j ̸=f

κj

(
|g̃fj |2 − |ν̃fj |2

)
. (D9)
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We note that ẑ is an annihilation (creation) operator for Nz > 0 (Nz < 0). The above definitions allow one to rewrite
the input-output relations as

âoutf = ˆ̃ainf +
√
Γeff ẑ, (D10)

with

Γeff =
4|Nz|

1 + 4g̃2ff
. (D11)

We anticipate that ẑ can be interpreted as a jump operator and Γeff as the corresponding dissipative rate. More
precisely, the dissipative dynamics is described by the Lindblad master Equation

˙̂ρ = −i[Ĥeff , ρ̂] +
∑
i ̸=f

κiL[âi](ρ̂) + ΓeffL[ẑ](ρ̂). (D12)

where ρ̂ is the density matrix, Ĥeff an effective second-quantized Hamiltonian in the form,

Ĥeff =
1

2

∑
j,k ̸=f

(
geffjk â

†
j âk + νeffjk â

†
j â

†
k

)
+H.c., (D13)

and L[Â] is the Lindblad superoperator,

L[Â](ρ̂) = Âρ̂Â† − 1

2
ρ̂Â†Â− 1

2
Â†Âρ̂. (D14)

We note that for Nz > 0 (Nz < 0) the collective Bogoliubov excitations decay (are absorbed) into (from) the effective
Markovian bath. We note that Eq. (D12) does not depend on Nz, cf Eqs. (D9) and Eq. (D11). Thus, it is still well
defined in the special limiting case Nz = 0 even though Eq. (D9) is not. In this case, the jump operator ẑ can not be
chosen to be a Bogoliubov operator. An alternative choice is to choose it to be a multimode quadrature

ẑ =
∑
k ̸=f

c−k âk + c+k â
†
k, p̂ = i

∑
k ̸=f

c−∗
k â†k − c+∗

k â†k, [ẑ, p̂] = i, (D15)

with

c−k = −ieiφf

√
κk

|Nz|
g̃fk, c+k = −ieiφf

√
κk

|Nz|
ν̃fk, Nz =

∑
j ̸=f

κj

(
|g̃fj |2 + |ν̃fj |2

)
. (D16)

To further substantiate our interpretations of ẑ and Γeff we plug Eq. (D5) into the Langevin equations for the
remaining modes

˙̂aj(t) = −i
∑
k

gjkâk(t)− i
∑
k

νjkâ
†
k(t)−

κj + Γj

2
âj(t)−

√
κj â

in
j (t)−

√
Γj â

noise
j (t) (D17)

to find the effective Langevin equation

˙̂aj(t) =−
∑
k ̸=f

[(c−∗
j c−k − c+j c

+∗
k )Γeff/2 + igeffjk ]âk(t)−

∑
k ̸=f

[(c−∗
j c+k − c+j c

−∗
k )Γeff/2 + iνeffjk ]â

†
k(t)

− κj + Γj

2
âj(t)−

√
κj â

in
j (t)−

√
Γj â

noise
j (t)−

√
Γeffc−∗

j
ˆ̃ainf (t)−

√
Γeffc+j

ˆ̃ain†f (t), (D18)

with the effective coherent couplings

geffjk = gjk −√
κjκk

4g̃ff
1 + 4g̃2ff

(
g̃jf g̃fk + ν̃jf ν̃

∗
fk

)
(D19)

νeffjk = gjk −√
κjκk

4g̃ff
1 + 4g̃2ff

(
g̃jf ν̃fk + ν̃jf g̃

∗
fk

)
. (D20)
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FIG. S2. All irreducible graphs identified for the fully-directional phase preserving quantum-limited amplifier. Mode 1 is the
input mode, mode 2 the output. Graph (I-V) have a stable parameter regime. For graph (UI) and (UII) we did not identify a
stable regime.

The terms proportional to the decay rate Γeff describe dissipative interactions. By comparing the corresponding
equations for the mean fields ⟨âi⟩ and those straightforwardly calculated from the Lindblad master Eq. (D12), one
can verify that the two sets of equations are identical and, thus, confirm our interpretation of ẑ and Γeff .

To illustrate our general method we apply it to some specific examples of interest. The simplest possible scenario
features a resonant fast-decaying auxiliary mode (g̃ff = 0) coupled to a single port mode j with a beamsplitter
interaction, see e.g. the setups (IV) in Fig. S2. Applying Eqs. (D8-D11) we find ẑ = −ig̃fj/|g̃fj |âj and Γeff =
4κj |g̃fj |2 = 4|gfj |2/κf . Thus, the auxiliary mode can be replaced with a simple loss channel recovering the solution
corresponding to graph (V) in Fig. S2. If the fast-decaying mode and the port mode are coupled via a pair-creation
interaction, as in the setups (I) in Fig. S2, the auxiliary mode can be replaced by a gain channel corresponding to

ẑ = −iν̃fj/|ν̃fj |â†j and Γeff = 4κj |ν̃fj |2 = 4|νfj |2/κf .

Next, we consider the setups discussed in [35] with a resonant fast-decaying auxiliary mode coupled to two port
modes. If the modes are coupled pairwise via passive and nonreciprocal couplings to realize an isolator [see Fig. 3(a)
of the main text] the matrix elements of the dimensionless Hamiltonian obtained using our method read g̃12 = i/2,
g̃23 = 1/2, and g̃31 = 1/2. Applying Eqs. (D8-D11) we find

ẑ = − i√
κ1 + κ2

(
√
κ1â1 +

√
κ2â2), Γeff = κ1 + κ2.

This is the same solution derived in [35] for the special case κ1 = κ2.

One can also operate the same three modes setup as a quantum-limited amplifier. Using our method we recover
the same solution also used in [2, 34–38]. The required dimensionless matrix elements read ν̃12 = ν̃21 = iF (G)/2,

ν̃23 = ν̃32 = F (G)/2, and g̃31 = g̃13 = 1/2 with F (G) =
√
G− 1/(1 +

√
G) (all other matrix elements are zero). As in

[35] we consider κ1 = κ2 which corresponds to a stable system. Applying Eqs. (D8-D11) we find

ẑ = − i√
1− F 2(G)

(â1 + F (G)â†2), Γeff = κ1(1− F 2(G)),

recovering the same dissipative scheme as in [35].

Appendix E: Fully-directional phase-preserving quantum-limited amplifier

Here, we give more details on all irreducible-graph solutions for the fully directional phase-preserving quantum-
limited amplifier, see Fig. 3(c). In Fig. S2, we display all discovered graphs, here, including also those for which we
did not find a stable parameter regime.

The analytical expressions for the scattering matrix S(G) given below are inferred by analytical regression starting
from a dataset of solutions created by applying our method for a set of G values. The corresponding analytical
expressions for the dimensionless Bogoliubov Hamiltonian H(G) are then obtained by solving Eq. (A9a).
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1. Graph I

The scattering matrix for Graph (I) reads

S =


0 0 −i 0√
G 0 0 i

√
G− 1eiφ24

i (G− 1) −i
√
G 0 −

√
G
√
G− 1eiφ24

i
√
G
√
G− 1e−iφ24 −i

√
G− 1e−iφ24 0 −G

 . (E1)

The underlying matrix elements of the dimensionless Hamiltonian read g12/
√
κ1κ2 = i

√
G/2, g13/

√
κ1κ3 = −1/2,

g23/
√
κ2κ3 = −

√
G/2, and ν24/

√
κ2κ4 =

√
G− 1eiφ24/2. We note that the phase φ24 ≡ arg ν24 can be fixed to any

arbitrary value. In this solution, the phase acquired from the input mode 1 to the output mode 2 assumes the value
π/2 while the remaining coupling amplitudes are real, corresponding to an overall flux Φ123 = π/2. We note that

the free phases γ
out/in
j in the cost function allow one to arbitrarily change the coupling phases and still find a valid

solution as long as the flux Φ123 remains the same. In this way, one can change the number of green edges or arrive
at a different valid irreducible graph with a single green edge connecting sites 1 and 3 or 2 and 3. We view all these
solutions as equivalent. We have checked that for κ1 = κ2 = κ3 = κ4 the system is stable for all values of G.

2. Graph II

The scattering matrix for Graph (II) reads

S =


0 0 −i 0√
G 0 0 −i

√
G− 1eiφ14

i (1−G) −i
√
G 0 −

√
G
√
G− 1eiφ14

−i
√
G
√
G− 1e−iφ14 −i

√
G− 1e−iφ14 0 −G

 . (E2)

The underlying matrix elements of the dimensionless Hamiltonian read g12/
√
κ1κ2 = i/(2

√
G), g13/

√
κ1κ3 = −1/2,

ν14/
√
κ1κ4 =

√
G− 1eiφ14/(2

√
G), g23/

√
κ2κ3 = −1/(2

√
G), ν34/

√
κ3κ4 = i

√
G− 1eiφ14/(2

√
G). Here, the phase

φ14 ≡ arg ν14 is a free parameter. Equivalent irreducible graphs have a single green edge connecting modes 1 and 3
or 2 and 3. We have checked that for κ1 = κ2 = κ3 = κ4, the system is stable for all values of G.

3. Graph III

The scattering matrix for Graph (III) reads

S =


0 0 −i 0

−
√
Ge−iφ14 0 0 i

√
G+ 1

i (−G− 1) i
√
Geiφ14 0 −

√
G
√
G+ 1eiφ14

−i
√
G
√
G+ 1e−iφ14 i

√
G+ 1 0 −G

 . (E3)

The underlying matrix elements of the dimensionless Hamiltonian read g13/
√
κ1κ3 = −1/2, ν14/

√
κ1κ4 =√

Geiφ14/(2
√
G+ 1), g24/

√
κ2κ4 = −1/(2

√
G+ 1), ν34/

√
κ3κ4 = i

√
Geiφ14/(2

√
G+ 1). The phase φ14 ≡ arg ν14

is a free parameter. We have checked that for κ1 = κ2 = κ3 = κ4 the system is stable for all values of G.

4. Graph IV

The scattering matrix for Graph (IV) reads

S =


0 0 −i 0

−i
√
Ge−iφ12 0 0 i

√
G+ 1

i (−G− 1) −
√
Geiφ12 0 i

√
G
√
G+ 1eiφ12

−
√
G
√
G+ 1e−iφ12 i

√
G+ 1 0 G

 . (E4)
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The underlying matrix elements of the dimensionless Hamiltonian read ν12/
√
κ1κ2 =

√
Geiφ12/2, g13/

√
κ1κ3 = −1/2,

ν23/
√
κ2κ3 = i

√
Geiφ12/2, g24/

√
κ2κ4 = −

√
G+ 1/2 with the free parameter φ12. We have checked that for κ1 =

κ2 = κ3 and κ4/κ1 = G the system is stable for all values of G.

5. Graph V

The scattering matrix for Graph (V) reads

S =

 0 0 −i

−i
√
Ge−iφ12 0 0

i (−G− 1) −
√
Geiφ12 0

 . (E5)

The underlying matrix elements of the dimensionless Hamiltonian read ν12/
√
κ1κ2 =

√
Geiφ12/2, g13/

√
κ1κ3 = −1/2

and ν23/
√
κ2κ3 = i

√
Geiφ12/2. In addition, the intrinsic loss rate of the output mode is Γ2/κ2 = G + 1. The phase

φ12 is a free parameter. We have checked that for κ1 = κ2 = κ3 the system is stable for all values of G.
As mentioned above solution (V) can be recovered starting from solution (IV) by applying our general method

outlined in the Supplementary Section D to integrate out the auxiliary mode 4.

6. Graph UI

The scattering matrix for Graph (UI) reads

S =


0 0 i 0√

Ge−i(φ14−φ24) 0 0 −i
√
G− 1eiφ24

i (1−G) −i
√
Gei(φ14−φ24) 0 −

√
G
√
G− 1eiφ14

i
√
G
√
G− 1e−iφ14 i

√
G− 1e−iφ24 0 G

 . (E6)

The underlying matrix elements of the dimensionless Hamiltonian read g13/
√
κ1κ3 = 1/2, ν14/

√
κ1κ4 =√

Geiφ14/(2
√
G− 1), ν24/

√
κ2κ4 = eiφ24/(2

√
G− 1), ν34/

√
κ3κ4 = −i

√
Geiφ14/(2

√
G− 1). φ14 and φ24 are coupling

phases and can be chosen arbitrarily. We did not identify any stable parameter regime for this graph.

7. Graph UII

The scattering matrix for Graph (UII) reads

S =


0 0 −i 0

−i
√
G 0 0

√
G+ 1

i (G+ 1) −
√
G 0 −

√
G2 +G

−i
√
G2 +G

√
G+ 1 0 G

 . (E7)

The underlying matrix elements of the dimensionless Hamiltonian read ν12/
√
κ1κ2 = −1/(2

√
G), g13/

√
κ1κ3 = −1/2,

ν14/
√
κ1κ4 = −

√
G+ 1/(2

√
G), ν23/

√
κ2κ3 = −i/(2

√
G), and ν34/

√
κ3κ4 = −i

√
G+ 1/(2

√
G). We chose the coupling

phases of φ12 and φ14 to be π. As long as the sum of phases of each loop is conserved, the phases of all the parametric
couplings can be set to any value. We were not able to identify any stable parameter regime for this graph.

8. Noise analysis

The field operators for the input and noise channels âinj and ânoisej obey the correlators:

⟨â†,inj (t)âinj (t′)⟩ = nin
j δ(t− t′) (E8a)

⟨âinj (t)â†,inj (t′)⟩ = (nin
j + 1)δ(t− t′) (E8b)

⟨â†,noisej (t)ânoisej (t′)⟩ = nnoise
j δ(t− t′) (E8c)

⟨ânoisej (t)â†,noisej (t′)⟩ = (nnoise
j + 1)δ(t− t′) (E8d)
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with nin
j and nnoise

j as the occupation number of the baths connected to the respective mode.
The number of added noise photons on the input (mode 1) and output channel (mode 2) equals:

Nadd
input =

1

2

∑
k

(
(nin

k + 1)|S1k|2 + (nnoise
k + 1)|N1k|2

)
(E9a)

Nadd
output =

1

2

∑
k ̸=1

(
(nin

k + 1)|S2k|2 + (nnoise
k + 1)|N2k|2

)
(E9b)

The quantum limit for a phase-preserving amplifiers is Nadd
input = 1/2 and Nadd

output = (G−1)/2 [39]. We assume that all

the baths are at zero temperature, except the bath connected to the output channel. So, nin
j = 0 if j ̸= 2, nnoise

j = 0

for all j, and nin
2 > 0.

During optimization, we set Nadd
input = 1/2 as an additional constraint during the optimization. Therefore, all

identified architectures fulfill this equality constraint. The quantum limit for the output channel was not as additional
constraint and is analysed in the following.

For Graph (I,II,UI) the number of added photons on the output channel turn out to equal Nadd
output = (G − 1)/2,

therefore, reaching the quantum limit for all G. For the graphs (III–V,UII) Nadd
output = (G+ 1)/2. So, the number of

added photons is close to the quantum limit and approaches it in the limit of G → ∞.

Appendix F: Bus modes

Here, we give more details on how we have augmented our standard method to treat the bus modes in optomechanical
and other hybrid systems that feature constraints in the connectivity of the port modes. These modifications are
introduced to facilitate the discovery of schemes that require infinite cooperativity between the bus modes and other
modes to reach the ideal behavior.

1. Far-detuned bus modes

To discover schemes in which one or more bus modes mediate purely coherent interactions between the port modes
we introduce as an additional building block of our discrete optimization a far-detuned bus mode. Formally, we set
the decay rates of this type of mode to zero and at the same time assume that their detuning is not zero. This allows
us to eliminate all far-detuned modes and incorporate their effect into an effective Hamiltonian for the remaining
modes, as shown below.

For N standard modes âj and M far-detuned modes b̂j the most general quadratic Hamiltonian reads:

Ĥ =
1

2

NN∑
jk=1

(
g
(aa)
jk â†j âk + ν

(aa)
jk â†j â

†
k

)
+

1

2

MM∑
jk=1

(
g
(bb)
jk b̂†j b̂k + ν

(bb)
jk b̂†j b̂

†
k

)
+

NM∑
jk=1

(
g
(ab)
jk â†j b̂k + ν

(ab)
jk â†j b̂

†
k

)
+H.c., (F1)

where g(aa) and g(bb) are hermitian matrices, ν(aa) and ν(bb) are symmetric matrices, and g(ab) and ν(ab) are arbitrary
matrices. To compactly rewriting the effective Hamiltonian, it is convenient to define the matrices

H
(ss′)
BdG =

(
g(ss

′) ν(ss
′)

ν(ss
′)∗ g(ss

′)∗

)
(F2)

with s, s′ = a or b and g(ba) = g(ab)∗ and ν(ba) = ν(ab). These matrices can be viewed as blocks of the underlying
Bogoliubov de Gennes Hamiltonian. The effective Bogoliubov de Gennes Hamiltonian can be written as

H
(eff)
BdG = H

(aa)
BdG −H

(ab)
BdG(H

(bb)
BdG)

−1H
(ba)
BdG. (F3)

The corresponding second-quantized Hamiltonian reads

Ĥ =
1

2

NN∑
jk=1

(
g
(eff)
jk â†j âk + ν

(eff)
jk â†j â

†
k

)
+H.c. (F4)
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with

H
(eff)
BdG =

(
g(eff) ν(eff)

ν(eff)∗ g(eff)∗

)
(F5)

Next, we assume that the Bogoliubov de Gennes Hamiltonian H
(bb)
BdG projected on the far-detuned modes had been

diagonalized to eliminate any coupling between the bus modes. In other words, ν(bb) is zero and g(bb) is diagonal with

g
(bb)
ii = −∆

(b)
i . In this case, we find

g
(eff)
ij = g

(aa)
ij +

∑
k

g
(ab)
ik g

(ab)∗
kj

∆
(b)
k

+
ν
(ab)
ik ν

(ab)∗
kj

∆
(b)
k

(F6)

ν
(eff)
ij = ν

(aa)
ij +

∑
k

g
(ab)
ik ν

(ab)
kj

∆
(b)
k

+
ν
(ab)
ik g

(ab)
kj

∆
(b)
k

. (F7)

Thus, the rescaled Bogoliubov Hamiltonian in Eq. (A9a) is modified as following

Hij =
g
(aa)
ij√
κiκj

+
∑
k

sgn(∆k)

 g
(ab)
ik√

κi

∣∣∣∆(b)
k

∣∣∣
g
(ab)∗
kj√

κj

∣∣∣∆(b)
k

∣∣∣ +
ν
(ab)
ik√

κi

∣∣∣∆(b)
k

∣∣∣
ν
(ab)∗
kj√

κj

∣∣∣∆(b)
k

∣∣∣
 . (F8)

or

Hij =
ν
(aa)
ij√
κiκj

+
∑
k

sgn(∆k)

 g
(ab)
ik√

κi

∣∣∣∆(b)
k

∣∣∣
ν
(ab)
kj√

κj

∣∣∣∆(b)
k

∣∣∣ +
ν
(ab)
ik√

κi

∣∣∣∆(b)
k

∣∣∣
g
(ab)
kj√

κj

∣∣∣∆(b)
k

∣∣∣
 . (F9)

We use the dimensionless parameters and g
(ab)
ik /

√
κi∆

(b)
k with k = 1, ...,M and i = 1, ..., N as additional learning

parameters of our continuous optimization. The signs sgn(∆k) remain fixed during the continuous optimization and
are, instead, chosen within the discrete optimization. Note the different scaling of the learning parameters encoding

the interaction with a bus mode with the detuning ∆
(b)
k playing the role of the decay rate κ

(b)
k . This scaling reflects

that the coherent interactions mediated by the bus modes become independent of the bus mode decay κ
(b)
k in the

asymptotic limit of large cooperativities, 4|g(ab)ik |2/|κiκ
(b)
k | → ∞. Similar to the decay rates κi of the standard modes,

we can view the detunings ∆
(b)
i of the far-detuned bus mode as free parameters (possibly subject to some stability

constraints).
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