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Abstract

Hoeffding’s inequality is a fundamental tool widely applied in probability theory,
statistics, and machine learning. In this paper, we establish Hoeffding’s inequalities
specifically tailored for an irreducible and positive recurrent continuous-time Markov
chain (CTMC) on a countable state space with the invariant probability distribution
π and an L2(π)-spectral gap λ(Q). More precisely, for a function g : E → [a, b] with a
mean π(g), and given t, ε > 0, we derive the inequality

Pπ

(
1

t

∫ t

0
g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
−λ(Q)tε2

(b− a)2

}
,

which can be viewed as a generalization of Hoeffding’s inequality for discrete-time
Markov chains (DTMCs) presented in [J. Fan et al., J. Mach. Learn. Res., 22(2022),
pp. 6185-6219 ] to the realm of CTMCs. The key analysis enabling the attainment of
this inequality lies in the utilization of the techniques of skeleton chains and augmented
truncation approximations. Furthermore, we also discuss Hoeffding’s inequality for a
jump process on a general state space.

Keywords: Continuous-time Markov chains; Hoeffding’s inequality; Spectral gap

1 Introduction

Classical Hoeffding’s inequality [26] provides a specific upper bound on the deviation between
the empirical mean of a series of independent and identically distributed (i.i.d.) random
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variables and their actual expected value. To be specific, for i.i.d. random variables {Xi,
i ≥ 0} such that P(a ≤ Xi ≤ b) = 1, where a and b are a pair of real numbers, Hoeffding’s
inequality gives us

P

(
1

n

n−1∑

i=0

Xi − E[X0] ≥ ε

)
≤ exp

{ −2nε2

(b− a)2

}
,

where ε is a positive real number. It can be seen that Hoeffding’s inequality guarantees that
the probability of the large deviation between the sample mean and the actual expected
value will decrease exponentially with the increase of the sample size. Based on this, Hoeffd-
ing’s inequality has been widely used in various fields, especially in probability limit theory,
statistical learning theory, machine learning and information theory; see, [18, 5, 9] and their
references therein.

Drawing inspiration from the diverse applications of Hoeffding’s inequality, researchers
have developed various generalizations of this powerful tool. One fundamental generalization
involves extending Hoeffding’s inequality to Markov processes, thereby removing the assump-
tion of independence among random variables. This extension allows for the application of
Hoeffding’s inequality in a range of fields, including Markov chain Monte Carlo (MCMC)
algorithms, time series analysis, and multi-armed bandit problems with Markovian rewards;
see, e.g., [27, 37, 11, 10, 20].

There is a wealth of literature available on Hoeffding’s inequality for DTMCs. For exam-
ple, Glynn and Ormoneit [23] employed the minorization and drift conditions to establish
a Hoeffding inequality for uniformly ergodic DTMCs. In the same setting, Boucher [8] uti-
lized the Drazin inverse and obtained similar results to those in the aforementioned study.
More recently, Liu and Liu [31] derived Hoeffding’s inequality for DTMCs via the solution of
Poisson’s equation, thereby eliminating the need for the aperiodic assumption made in the
previous work [23, 8]. On a different note, Dedecker and Gouëzel [17] employed the coupling
technique to derive a Hoeffding inequality specifically for geometrically ergodic DTMCs.
Building upon this work, Wintenberger [36] extended the results from Dedecker and Gouëzel
[17] to encompass unbounded functions. Additionally, Paulin [33] developed Marton cou-
pling techniques to derive McDiarmid’s inequality for DTMCs with a finite mixing time,
which serves as a generalization of Hoeffding’s inequality by replacing the sum of random
variables with a function of random variables.

The spectral gap is another crucial tool for studying Hoeffding’s inequality for Markov
processes. Gillman [22] was the first to utilize the spectral gap to establish a Hoeffding
inequality for a reversible DTMC on a finite state space. Building upon this initial work,
Dinwoodie [19] and Lézaud [30] further refined the Hoeffding bound in reference [22] using
different techniques. As a significant contribution, León and Perron [28] derived an optimal
Hoeffding inequality via the spectral gap. Miasojedow [32] then extended the result of León
and Perron [28] to geometrically ergodic DTMCs on a general state space, eliminating the
requirement of invertibility. More recently, Fan et al. [20] developed a time-dependent
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functional Hoeffding inequality based on the work of León and Perron [28] and Miasojedow
[32]. Additionally, there are other Hoeffding-type inequalities constructed using methods
such as Stein’s method, regeneration techniques, information-theoretical ideas, and others,
as detailed in reference [12, 1, 35].

In the realm of MCMC algorithms, it is an increasing need to deal with cases involving
CTMCs, and there is empirical evidence that these continuous-time MCMC algorithms are
more efficient than their discrete-time counterparts; see, e.g., [7, 21, 6]. Moreover, additional
algorithms, including diffusion Metropolis-Hastings type algorithms [34] and time-invariant
estimating equations [4], also rely on the use of concentration inequalities in the context of
CTMCs to control approximation errors. Consequently, there is a compelling need to develop
Hoeffding’s inequality specifically for CTMCs. Choi and Li [16] built upon the techniques
introduced in the works [23] and [8] to derive a Hoeffding inequality for uniformly ergodic
diffusion processes. Liu and Liu [31], on the other hand, extended the results of [16] to
encompass general continuous-time Markov processes by employing the solution of Poisson’s
equation. Additionally, there are other concentration inequalities available for CTMCs; see,
e.g., [30, 29, 25].

However, the body of research on Hoeffding’s inequality for CTMCs is still relatively
sparse compared to the extensive results available for DTMCs. In this paper, we will utilize
the spectral gap to describe Hoeffding’s inequality for CTMCs, which serves as a parallel
result to the discrete-time case presented in Fan et al. [20], but the two inequalities display
subtle difference in the presentation of its upper bounds, as shown in Theorems 2.1 and 3.1.
Since Theorem 3.1 characterizes the optimal Hoeffding’s inequality for DTMCs using the
spectral gap, see, e.g., [28, 20], this implies that our result represents the optimal Hoeffding’s
inequality for continuous-time case. A comparison with existing results can be found in
Remark 2.2. Meanwhile, we have to note that there is an additional assumption that Q̄ is
regular in Theorems 2.1, which result from essential difference between CTMCs and DTMCs:
for a CTMC with an unbounded Q-martix Q, the regularity assumption on Q is usually
needed to guarantee the uniqueness of the Q-process.

The remainder of this paper is organized as follows. In Section 2, we provide the necessary
background and introduce our version of Hoeffding’s inequality. Section 3 presents the proof
of our main result, utilizing two key tools: the skeleton chain and the collapsed chain. Finally,
in Section 4, we discuss Hoeffding’s inequlity for jump processes on general state spaces.

2 Main Results

As preparation for presenting theorems, we introduce some notations as follows. Let {Xt, t ≥
0} be an irreducible and time-homogeneous CTMC on a countable state space E, and let
Pt = (Pt(i, j))i,j∈E be the transition function of Xt. We focus on the case that Xt is a
Q-process with a totally stable and regular Q-matrix Q = (Q(i, j))i,j∈E. Assume that Xt
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is positive recurrent with the unique invariant probability distribution π. Furthermore, we
assume that the state space E is equipped with a σ-algebra B and a σ-finite measure π on
(E,B). Let L2(E,B, π) := {f : π(f 2) < ∞} be the set of all square-integrable functions
on (E,B, π). For convenience, we write L2(E,B, π) as L2(π). It is known that L2(π) is the
Hilbert space equipped with the following inner product and norm:

〈f, h〉π := π(fh) =
∑

i∈E

π(i)f(i)h(i), ∀f, h ∈ L2(π),

‖f‖π,2 :=
√
〈f, f〉π = (π(f 2))

1
2 , ∀f ∈ L2(π).

For a transition function Pt with the invariant measure π, it can be extended uniquely to
L2(π) as a strongly continuous contraction semigroup, which acts to the right on functions,
i.e.,

Ptf(i) =
∑

j∈E

Pt(i, j)f(j), ∀i ∈ E, ∀f ∈ L2(π).

According to the ordinary semigroup theory, Pt deduces an infinitesimal generator, which is
denoted by A. That is, for any f ∈ L2(π), if we have

lim
t→0+

Ptf − f

t
= g, (2.1)

and g ∈ L2(π), then we define Af = g. Such functions f consist of the domain of A, denoted
by D(A).

In Chapter 9 of [14], the L2(π)-spectral gap of Xt, denoted as λ(Q) for convenience, is
defined as follows.

Definition 2.1. The chain Xt is said to admit an L2(π)-spectral gap λ(Q) if

λ(Q) := inf {−〈Af, f〉π : f ∈ D(A), ‖f‖π,2 = 1, π(f) = 0} > 0.

We call a CTMC Xt is (time) reversible if Pt satisfies

π(i)Pt(i, j) = π(j)Pt(j, i), ∀i, j ∈ E, t ≥ 0,

which is equivalent to
π(i)Q(i, j) = π(j)Q(j, i), ∀i, j ∈ E.

In the case of that Xt is reversible and the state space E is finite, we have

λ(Q) = λ1, (2.2)

where λi is the ith smallest non-trivial eigenvalue of −Q. For the irreversible case, we have
the following symmetrizing procedure. Let P̂t = (P̂t(i, j))i,j∈E be the dual of Pt, i.e.,

P̂t(i, j) =
π(j)Pt(j, i)

π(i)
, ∀i, j ∈ E.
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It deduces the adjoint operator Â of A and the dual Q-matrix Q̂ =
(
Q̂(i, j)

)
i,j∈E

, given by

Q̂(i, j) =
π(j)Q(j, i)

π(i)
, ∀i, j ∈ E. (2.3)

It is easy to check that Q̂ has the same invariant distribution π as Q, and that Q̂ is regular
if Q is regular, see Theorem 4.70 in [14]. Furthermore, A and Â lead to a self-adjoint
operator Ā = (A+ Â)/2. Similarly, we obtain a reversible Q-matrix Q̄ =

(
Q̄(i, j)

)
i,j∈E

with

respective to the same stationary distribution π as follows

Q̄(i, j) =
Q(i, j) + Q̂(i, j)

2
, ∀i, j ∈ E. (2.4)

According to Corollary 9.3 and Theorem 9.12 in [14], we know that

λ(Q) = λ(Q̄). (2.5)

Our main result is the following theorem, which yields a Hoeffding type inequality for
CTMCs with the L2(π)-spectral gap λ(Q).

Theorem 2.1. Assume that the chain Xt admits an L2(π)-spectral gap λ(Q), and that the
Q-matrix Q̄ is regular. Then for any bounded function g : E → [a, b], and t, ε > 0, we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
−λ(Q)tε2

(b− a)2

}
.

Remark 2.1. Although both Q and Q̂ are regular, Q̄ may be not regular, see [13] for example.
Hence the regularity assumption of Q̄ can not be removed.

By Hölder’s inequality, we have the following result directly.

Corollary 2.1. Assume that the assumptions of Theorem 2.1 hold. If the initial measure
ν is absolutely continuous with respect to the invariant distribution π, then for any bounded
function g : E → [a, b], and t, ε > 0, we have

Pν

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤
∥∥∥∥
dν

dπ

∥∥∥∥
π,p

exp

{
− λ(Q)tε2

q(b− a)2

}
,

where ∥∥∥∥
dν

dπ

∥∥∥∥
π,p

:=

{[
π
(∣∣ dν

dπ

∣∣p)]1/p, if 1 < p < ∞,

ess sup
∣∣ dν
dπ

∣∣ , if p = ∞,

and
1

p
+

1

q
= 1.
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Remark 2.2. Lézaud [30] was the first to obtain a chernoff-type bound for a finite state
space CTMC via the L2(π)-spectral gap λ(Q). If the function g satisfies π(g) = 0, ‖g‖∞ =
‖g‖2π,2 = 1, then Theorem 3.4 in [30] gives

Pπ

(
1

t

∫ t

0

g (Xs) ds ≥ ε

)
≤ exp

{
−λ(Q)tε2

12

}
.

Under the same assumptions, our result derives a better bound as follows

Pπ

(
1

t

∫ t

0

g (Xs) ds ≥ ε

)
≤ exp

{
−λ(Q)tε2

4

}
.

Note that under the same assumptions as Theorem 2.1 or Corollary 2.1, Hoeffding’s
inequalities are also established by replacing λ(Q) by one of its lower bounds. In the reversible
case, if there exists a constant β > 0 and a fixed state j ∈ E such that

Ei

[
eβτj
]
< ∞, ∀i ∈ E, (2.6)

where τj := inf{t ≥ 0 : Xt = j} is the first hitting time to the state j, then

λ(Q) ≥ β.

Furthermore, (2.6) holds if and only if there exists a function V ≥ 1 such that

QV (i) ≤ −βV (i), i 6= j,

see Theorem 4.1 in [13].

In addition, the L2(π)-spectral gap λ(Q) can be characterized by its Dirichlet form
(D,D(D)), which will be used in the proof of Theorem 2.1, where D is an operator on
L2(π), defined by

D(f) := lim
t→0

〈f − Ptf, f〉π
t

, ∀f ∈ L2(π),

and D(D) is the domain of D, given by

D(D) =
{
f ∈ L2(π) : D(f) < ∞

}
.

The spectral gap of D is defined by

λ(D) := inf {D(f) : f ∈ D(D), ‖f‖π,2 = 1, π(f) = 0} .

From Theorem 9.1 in [14], we know that

λ(Q) = λ(D). (2.7)

6



There is another Dirichlet form (D∗,D(D∗)), where D∗ is an operator on L2(π), defined
by

D∗(f) :=
1

2

∑

i,j∈E

π(i)Q(i, j) (f(j)− f(i))2 , ∀f ∈ L2(π),

and D(D∗) is the domain of D∗, given by

D(D∗) =
{
f ∈ L2(π) : D∗(f) < ∞

}
.

If Q-matrix Q̄ is regular, it follows from [13] that D = D∗ and D(D) = D(D∗), i.e.,

K is dense in D (D∗) in the ‖ · ‖D∗−norm

(
‖f‖2D∗ := ‖f‖2 +D∗(f)

)
, (2.8)

where K is the set of all functions on E with finite support.

Example 2.1 (Irreversible Case). Consider a CTMC on a finite state space E = {0, 1, 2}
with the Q-matrix as follows

Q =




−2 1 1
1 −3 2
1 0 −1


 .

By calculations, we have

π(0) =
1

3
, π(1) =

1

9
, π(2) =

5

9
.

According to (2.3) and (2.4), we can obtain

Q̂ =




−2 1/3 5/3
3 −3 0
3/5 2/5 −1


 , Q̄ =




−2 2/3 4/3
2 −3 1
4/5 1/5 −1


 .

It is easy to calculate that

λ̄1 =
15−

√
15

5
, λ̄2 =

15 +
√
15

5
.

Then, combining with (2.2) and (2.5), we have

λ(Q) =
15−

√
15

5
.

Example 2.2 (Birth and Death Processes). Consider a birth and death process with death
rates ai, 1 ≤ i ≤ N , and birth rates bi, 0 ≤ i ≤ N − 1, N ≤ ∞.
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In the case of ai = α and bi = β, it follows from [24] that

λ(Q) = α + β − 2
√
αβ cos(

π

N + 1
).

In particular, as N → ∞ and α > β, we have

λ(Q) = α + β − lim
N→∞

2
√
αβ cos(

π

N + 1
) = (

√
α−

√
β)2.

For general birth and death processes, we can give an estimate of the lower bound of the
spectral gap. Define

µ1 = 1, µk =
b1 · · · bk−1

a2 · · · ak
, 2 ≤ k ≤ N ≤ ∞.

If
∑N

i=0 µi < ∞ and δ := supn∈E

∑n
j=0 µj

∑N
k=n

1
µkbk

< ∞, then it follows from Corollary 6.4

in [15] that

λ(Q) ≥ 1

4δ
.

3 Proof of Theorem 2.2

To prove Theorem 2.1, we initially introduce Hoeffding’s inequality for DTMCs based on
the L2(π)-spectral gap. Let {Xk, k ≥ 0} be an irreducible and positive recurrent DTMC on
the countable state space E. Let P = (P (i, j))i,j∈E and π be the one-step transition matrix
and the invariant probability distribution of the chain Xk. It is known that each transition
matrix P of DTMC can be viewed as a linear operator acting on L2(π), which acts to the
right on functions, i.e.,

Pf(i) =
∑

j∈E

P (i, j)f(j), ∀i ∈ E, ∀f ∈ L2(π).

We now introduce the L2(π)-spectral gap of P , denoted by 1− λ(P ).

Definition 3.1. The chain Xk is said to admit an L2(π)-spectral gap 1− λ(P ) if

λ(P ) := sup {〈Ph, h〉π : ‖h‖π,2 = 1, π(h) = 0} < 1. (3.1)

Note that when the state space E is finite and the transition matrix P is reversible, i.e.,
P satisfies

π(i)P (i, j) = π(j)P (j, i), ∀i, j ∈ E,

then λ(P ) coincides with the second largest eigenvalue of P (the largest eigenvalue of P is
identically equal to 1). Similar to CTMCs, it is not difficult to verify that

λ(P ) = λ(P̄ ), (3.2)
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where

P̄ (i, j) =
P (i, j) + P̂ (i, j)

2
and P̂ (i, j) =

π(j)P (j, i)

π(i)
, ∀i, j ∈ E.

According to Theorem 3.3 in [20] and (3.2), we introduce the following Hoeffding inequal-
ity regarding DTMCs with the L2(π)-spectral gap 1− λ(P ).

Theorem 3.1. Assume that the chain Xk admits an L2(π)-spectral gap 1− λ(P ). Then for
any bounded function g : E → [a, b], and n, ε > 0, we have

Pπ

(
1

n

n−1∑

k=0

g (Xk)− π(g) ≥ ε

)
≤ exp

{
−1−max{λ(P ), 0}
1 + max{λ(P ), 0} · 2nε2

(b− a)2

}
.

Next, we will derive the proof of Theorem 2.1 into three steps, which are presented in
Subsections 3.1-3.3. In Subsection 3.1, we first introduce a Hoeffding inequality for finite
state CTMCs, employing Theorem 3.1 and the skeleton chain technique. In Subsection 3.2,
we introduce the collapsed chain and present some basic properties. Finally in Subsection
3.3, we extend the result established for finite state CTMCs to infinitely state by employing
the results established in Subsections 3.1 and 3.2.

3.1 Finite state CTMCs

In this subsection, we present a Hoeffding inequality for a finite state CTMC. To show this, we
introduce the definition of the skeleton chain according to Chapter 5 of [3]. Given a number
δ > 0, the DTMC {Xnδ, n ≥ 1} having the one-step transition matrix P δ = (P δ(i, j))i,j∈E
(and therefore the n-step transition matrix P nδ) is called the δ-skeleton chain of the CTMC
{Xt, t ≥ 0}. It is not difficult to verify that Xnδ and Xt have the same invariant probability
distribution π. In addition, if Xt is reversible, then Xnδ is also reversible. Furthermore, if
Xt has a finite state space, the transition matrix P δ is given by

P δ = exp {δQ} =
∞∑

n=0

δnQn

n!
. (3.3)

Theorem 3.2. Assume that the chain Xt has a finite state space E. Then for any bounded
function g : E → [a, b], and t, ε > 0, we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
−λ(Q)tε2

(b− a)2

}
.

Proof. For any ω ∈ Ω, Xt(ω) is a right-continuous with left limits sample function. Further-
more, since g is bounded, the integral 1

t

∫ t

0
g (Xs) ds can be expressed as the limit of Riemann

sums, such as

1

t

∫ t

0

g (Xs(ω)) ds = lim
k→∞

1

k

k−1∑

i=0

g
(
Xit/k(ω)

)
,

9



from which, we know that

1

k

k−1∑

i=0

g
(
Xit/k

) a.s.−−→ 1

t

∫ t

0

g (Xs) ds, (3.4)

where Xit/k is the t
k
-skeleton chain of Xt. It follows from (3.3) that

P
t
k =

∞∑

n=0

tn

n! · kn
Qn = I +

t

k
Q+ o(

1

k
), (3.5)

where I is the identity matrix and o( 1
k
) is the infinitesimal of higher order with respect to 1

k
.

According to (3.1) and (3.5), we have

λ(P
t
k ) = sup

{
〈P t

k f, f〉π : ‖f‖π,2 = 1, π(f) = 0
}

= sup

{〈(
I +

t

k
Q+ o(

1

k
)

)
f, f

〉

π

: ‖f‖π,2 = 1, π(f) = 0

}

= sup

{
1 +

〈 t
k
Qf, f

〉

π
+ o(

1

k
) : ‖f‖π,2 = 1, π(f) = 0

}

= 1 + sup

{〈 t
k
Qf, f

〉
π
: ‖f‖π,2 = 1, π(f) = 0

}
+ o(

1

k
)

= 1− t

k
inf {−〈Qf, f〉π : ‖f‖π,2 = 1, π(f) = 0}+ o(

1

k
). (3.6)

Since the state space E is finite, it is evident from (2.2) and (2.5) that λ(Q) > 0. In addition,
it follows that for any f ∈ L2(π), we have f ∈ D(A). Thus, when the state space E is finite,
the infinitesimal generator A is equal to the Q-matrix Q. According to Definition 2.1, we
can obtain that

λ(Q) = inf {−〈Qf, f〉π : ‖f‖π,2 = 1, π(f) = 0} > 0. (3.7)

Hence, from (3.6) and (3.7), we have

λ(P
t
k ) = 1− t

k
λ(Q) + o(

1

k
). (3.8)

Since λ(Q) > 0, then for any fixed t > 0, there exists a positive constant K such that

−1 < − t

k
λ(Q) + o(

1

k
) < 0, ∀k > K,

which implies that
0 < λ(P

t
k ) < 1, ∀k > K. (3.9)
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Furthermore, according to (3.8), we have

1− λ(P
t
k ) =

t

k
λ(Q) + o(

1

k
). (3.10)

Therefore, as k > K and for any ε > 0, Theorem 3.1 and (3.9)–(3.10) give

Pπ

(
1

k

k−1∑

i=0

g
(
Xit/k

)
− π(g) ≥ ε

)
≤ exp

{
−2 · 1− λ(P

t
k )

1 + λ(P
t
k )

· kε2

(b− a)2

}

= exp

{
−2 ·

t
k
λ(Q) + o( 1

k
)

2− t
k
λ(Q) + o( 1

k
)
· kε2

(b− a)2

}

= exp

{
−2 · tλ(Q) + k · o( 1

k
)

2− t
k
λ(Q) + o( 1

k
)
· ε2

(b− a)2

}
. (3.11)

Applying (3.4) and Fatou’s lemma, and letting k → ∞ to inequality (3.11) gives the following
result

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
= Pπ

(
lim
k→∞

1

k

k−1∑

i=0

g
(
Xit/k

)
− π(g) ≥ ε

)

≤ lim inf
k→∞

Pπ

(
1

k

k−1∑

i=0

g
(
Xit/k

)
− π(g) ≥ ε

)

≤ lim inf
k→∞

exp

{
−2 · tλ(Q)− k · o( 1

k
)

2− t
k
λ(Q) + o( 1

k
)
· ε2

(b− a)2

}

= exp

{
lim
k→∞

−2 · tλ(Q)− k · o( 1
k
)

2− t
k
λ(Q) + o( 1

k
)
· ε2

(b− a)2

}

= exp

{
−λ(Q)tε2

(b − a)2

}
.

Thus, we obtain the assertion.

Using the same proof of Theorem 3.2, we can obtain the Hoeffding inequality for a infinite
state CTMC with a uniformly bounded Q-matrix (i.e., supi∈E −Q(i, i) < ∞).

Corollary 3.1. Assume that the chain Xt admits an L2(π)-spectral gap λ(Q), and that
the Q-matrix Q is uniformly bounded. Then for any bounded function g : E → [a, b], and
t, ε > 0, we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
−λ(Q)tε2

(b− a)2

}
.

However, since equality (3.3) fails to hold for a CTMC with an unbounded Q-matrix,
the skeleton chain technique is not applicable to more general CTMCs, which urges us to
develop the augmented truncation approximation technique in order to extend the results
from finite state CTMCs to infinite state CTMCs.
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3.2 The collapsed chain

We first introduce the technique of the collapsed chain, one special augmented truncation ap-
proximation. Let {(n)E, n = 1, 2, . . .} be a sequence of subsets in the state space E, satisfying

(n)E ⊂ (n+1)E and limn→∞ (n)E = E. Then, let (n)E
C be the complement of (n)E and con-

sider (n)e = (n)E
C as a new single-point state. For an irreducible and regular Q-matrix Q =

(Q(i, j))i,j∈E, consider the augmented truncation Q-matrix (n+1)Q̃ = ((n+1)Q̃(i, j))i,j∈(n+1)Ẽ

on the state space (n+1)Ẽ = (n)E ∪ {(n)e}, given by

(n+1)Q̃(i, j) = Q(i, j), i, j ∈ (n)E,

(n+1)Q̃(i, (n)e) =
∑

k∈(n)EC

Q(i, k), i ∈ (n)E,

(n+1)Q̃((n)e, i) =

∑
k∈(n)EC π(k)Q(k, i)
∑

k∈(n)EC π(k)
, i ∈ (n)E,

and

(n+1)Q̃((n)e, (n)e) = −
∑

k∈(n)E

(n+1)Q̃((n)e, k).

Denote by
{
(n+1)X̃t, t ≥ 0

}
the CTMC with Q-matrix (n+1)Q̃, whose irreducibility is

inherent from the irreducibility of the original chain. The chain (n+1)X̃t is called the collapsed
chain since it can be interpreted as “the original chains with states collapsed to a single state

(n)e”. This collapsed chain was essentially introduced in Chapter 9 of [14] for continuous-time
reversible Markov chains. Here we do not need the reversibility assumption. The discrete-
time version of the collapsed chain was introduced in Chapter 2 of [2]. Let (n+1)π̃(i) =
π(i), i ∈ (n)E, (n+1)π̃((n)e) =

∑
k∈(n)EC π(k). It is not difficult to verify that (n+1)π̃ is the

unique stationary distribution of the chain (n+1)X̃t.

Let (n+1)g̃ be an (n+1)-dimensional function on (n+1)Ẽ, such that (n+1)g̃(i) = g(i), i ∈ (n)E

and (n+1)g̃((n)e) = 0. For the chain (n)X̃t and the function (n)g̃, we have the following lemma.

Lemma 3.1. For any bounded function g on E, we have

Pi

(
ω ∈ Ω : lim

n→∞
(n)g̃
(
(n)X̃s(ω)

)
= g (Xs(ω))

)
= 1,

and
lim
n→∞

(n)π̃
(
(n)g̃
)
= π(g).

Proof. Since Q-matrix Q is regular, we know that the chain Xt is non-explosive, i.e., for any
fixes s > 0,

Pi (ω ∈ Ω : J(s, ω) < ∞) = 1,

12



where J(s) denotes the number of jumps of Xt in the time interval (0, s). Furthermore, for
any sample path ω, we define Ms(ω) as a subset of E that includes all states visited by
Xt(ω) during the time interval (0, s). Hence, we can find an N such that Ms(ω) ⊂ (n)E for

all n > N . Due to the particular structure of (n)Q̃, we have (n)X̃t(ω) = Xt(ω), 0 ≤ t ≤ s,
n > N . That is, for any fixed s > 0,

Pi

(
ω ∈ Ω : lim

n→∞
(n)X̃s(ω) = Xs(ω)

)
= 1.

Furthermore, for any bounded function g on E, we have

Pi

(
ω ∈ Ω : lim

n→∞
(n)g̃
(
(n)X̃s (ω)

)
= g (Xs (ω))

)
= 1.

On the other hand, by applying the dominated convergence theorem, we can conclude
that

lim
n→∞

(n)π̃
(
(n)g̃
)
= lim

n→∞

∑

i∈(n−1)E

π(i)g(i)

= lim
n→∞

∑

i∈E

π(i)g(i)1{i∈(n−1)Ẽ}

= π(g),

where 1{·} is the indicator function. Thus, we complete the proof of this lemma.

Lemma 3.2. Assume that the original chain Xt admits an L2(π)-spectral gap λ(Q), and
that the Q-matrix Q̄ is regular. Then we have

lim
n→∞

λ((n)Q̃) = λ(Q).

Proof. Since Q̄ is regular, according to (2.7) and (2.8), we have

λ(D) = inf {D∗(f) : ‖f‖π,2 = 1, π(f) = 0}
= inf {D∗(f) : f ∈ K, ‖f‖π,2 = 1, π(f) = 0} , (3.12)

where K is the set of all functions on E with finite support. Without loss of generality,
support that f(i) = d, i ∈ (n−1)E

C , for some n > 1, where d is a constant. The rest of the
proof is modified from the proof of Theorem 9.20 in [14]. It is simple to show that π(f) = 0,
‖f‖π,2 = 1 if and only if (n)π̃((n)f) = 0, ‖(n)f‖(n)π̃,2 = 1. Now, let

(n)D
∗(f) =

1

2

∑

i,j∈(n)E

(n)π̃(i)(n)Q̃(i, j)(f(i)− f(j))2, ∀f ∈ L2((n)π̃).

13



Furthermore, we have

D∗(f) =
1

2

∑

i,j∈E

π(i)Q(i, j) (f(j)− f(i))2

=
1

2

∑

i∈(n−1)E

π(i)
∑

j∈(n−1)E

Q(i, j) (f(j)− f(i))2 +
1

2

∑

i∈(n−1)E

π(i)
∑

j∈(n−1)Ec

Q(i, j) (d− f(i))2

+
1

2

∑

i∈(n−1)EC

π(i)
∑

j∈(n−1)E

Q(i, j) (d− f(j))2

=
1

2

∑

i∈(n−1)E

(n)π̃(i)
∑

j∈(n−1)E

(n)Q̃(i, j) (f(j)− f(i))2 +
1

2

∑

i∈(n−1)E

(n)π̃(i)(n)Q̃(i, n) (d− f(i))2

+
1

2

∑

i∈(n−1)E

(n)π̃(n)(n)Q̃(n, i) (d− f(i))2

=
1

2

∑

i∈(n)E

(n)π̃(i)
∑

j∈(n)E

(n)Q̃(i, j)
(
(n)f(j)− (n)f(i)

)2

= (n)D
∗((n)f).

From (3.12) and the above equation, we know that

λ(Q) = inf
{
D∗(f) : π(f) = 0, ‖f‖π,2 = 1, f(i) = d for i ∈ (n−1)E

C and some n > 1
}

= lim
n→∞

inf
{
D∗(f) : π(f) = 0, ‖f‖π,2 = 1, f(i) = d for i ∈ (n−1)E

C and some n > 1
}

= lim
n→∞

inf
{

(n)D
∗((n)f) : (n)π̃((n)f) = 0, ‖(n)f‖(n)π̃,2 = 1

}

= lim
n→∞

λ((n)Q̃). (3.13)

Thus, combining with (2.7) and (3.13), we obtain the assertion immediately.

3.3 Infinite state CTMCs

We now finish the proof of Theorem 2.1 by extending Hoeffding’s inequality from finite state
CTMCs to infinite state CTMCs.

Proof of Theorem 2.1. According to Theorem 3.2, for any bounded function g : E → [a, b]
and n ≥ 1, we have

P
(n)π̃

(
1

t

∫ t

0
(n)g̃

(
(n)X̃s

)
ds− (n)π((n)g̃) ≥ ε

)
≤ exp

{
−λ((n)Q̃)t

(b− a)2
ε2

}
. (3.14)
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Then, applying Lemmas 3.1-3.2 and Fatou’s Lemma, and letting n → ∞ to inequality (3.14),
we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)

=
∑

i∈E

π(i)Pi

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)

=
∑

i∈E

lim
n→∞

1{i∈(n)Ẽ}(n)π̃(i)Pi

(
1

t

∫ t

0

lim
n→∞

(n)g̃
(
(n)Xs

)
ds− lim

n→∞
(n)π((n)g̃) ≥ ε

)

≤ lim inf
n→∞

∑

i∈(n)Ẽ

(n)π̃(i)Pi

(
1

t

∫ t

0
(n)g̃

(
(n)Xs

)
ds− (n)π((n)g̃) ≥ ε

)

= lim inf
n→∞

P
(n)π̃

(
1

t

∫ t

0
(n)g̃

(
(n)Xs

)
ds− (n)π((n)g̃) ≥ ε

)

≤ lim inf
n→∞

exp

{
−λ((n)Q̃)tε2

(b− a)2

}

= exp

{
lim
n→∞

−λ((n)Q̃)tε2

(b− a)2

}

= exp

{
−λ(Q)tε2

(b − a)2

}
.

4 Extensions to Jump Processes

In this section, let E be a general state space and B represent the associated σ-algebra.
Let {Xt, t ≥ 0} be an irreducible time-homogeneous continuous-time Markov process on E
with the transition function Pt = (Pt(x,A))x∈E,A∈B and the stationary distribution π. We
assume that Pt is continuous at the origin, i.e., Xt is a jump process. Please refer to [14] for
more details about jump processes. Furthermore, we focus on the case that Xt has a q-pair
(q(x), q(x,A)), i.e., for any x ∈ E, A ∈ B, we have

lim
t→0

Pt(x,A)− 1{x∈A}

t
= q(x,A)− q(x)1{x∈A}, x ∈ E,A ∈ B.

Furthermore, we assume that this q-pair (q(x), q(x,A)) is totally stable, conservative and
regular. The infinitesimal generator A generated by Pt is defined by (2.1). We define

λ(q) := inf {−〈Af, f〉π : f ∈ D(A), ‖f‖π,2 = 1, π(f) = 0} ,
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where D(A) is the domain of A. If λ(q) > 0, λ(q) is said to be the L2(π)-spectral gap of Xt.

By the technique of skeleton chains, we can obtain the following result similar to Corollary
3.1.

Lemma 4.1. Assume that the process Xt exists an L2(π)-spectral gap λ(q), and that the
q-pair (q(x), q(x,A)) is uniformly bounded. Then for any bounded continuous function g :
E → [a, b], and t, ε > 0, we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
− λ(q)tε2

(b− a)2

}
.

Similar to the case of countable state space, define

D∗(f) :=
1

2

∫

x,y∈E

π(dx)q(x, dy) (f(x)− f(y))2 , ∀f ∈ L2(π),

and
D(D∗) :=

{
f ∈ L2(π) : D∗(f) < ∞

}
,

where D(D∗) is the domain of D∗. Let K be the set of all functions on E with finite support.
According to Theorem 9.11 in [14], we know that if K is dense in D∗, then

λ(q) = inf {D∗(f) : f ∈ K, ‖f‖π,2 = 1, π(f) = 0} .

Now, let {(n)E, n = 1, 2, . . .} be an increasing sequence compact subsets of E such that
∫

(n)EC

π(dx) > 0, n ≥ 1.

Furthermore, let (n)e = (n)E
C as a new single-point state. We consider the following collapsed

q-pair ((n+1)q̃, (n+1)q̃(x,A)) on (n+1)Ẽ = (n)E ∪ {(n)e}, which is given by

(n+1)q̃(x,A) = q(x,A ∩ (n)E) + 1{(n)e∈A}q(x, (n)E
C), x ∈ (n)E,A ∈ (n+1)B,

(n+1)q̃((n)e, A) =

∫
(n)EC π(dx)q(x,A ∩ (n)E)

∫
(n)EC π(dx)

, A ∈ (n+1)B,

and

(n+1)q̃(x) = (n+1)q̃(x, (n+1)Ẽ), x ∈ (n)E,

where (n+1)B is the σ-algebra generated by (n+1)Ẽ. Then, let
{
(n+1)X̃t, t ≥ 0

}
be the

jump process on (n+1)Ẽ corresponding to the q-pair ((n+1)q̃, (n+1)q̃(x,A)), and (n+1)π̃ be the

stationary distribution of (n+1)X̃t such that (n+1)π̃(A) =
∫
A∩(n)E

π(dx) for (n)e /∈ A and

(n+1)π̃(A) =
∫
A∩(n)E

π(dx) +
∫
(n)EC π(dx) for (n)e ∈ A. Finally, let (n+1)g̃ be a continuous

truncation function satisfying (n+1)g̃(x) = g(x) for x ∈ (n)E and (n+1)g̃((n)e) = 0.

By following a similar proof technique as in Lemma 3.1 and 3.2, we obtain the following
convergence result.
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Lemma 4.2. For the collapsed process (n)X̃t, we have that

(i) if g is a bounded continuous function on E, then

Pi

(
ω ∈ Ω : lim

n→∞
(n)g̃
(
(n)X̃s(ω)

)
= g (Xs(ω))

)
= 1,

and
lim
n→∞

(n)π̃
(
(n)g̃
)
= π(g);

(ii) and if the original process Xt admits an L2(π)-spectral gap λ(q), and K is dense in D∗,
then

lim
n→∞

λ((n)q̃) = λ(q).

By combining Lemmas 4.1 and 4.2, and using a similar argument in the proof of Theorem
2.1, we obtain the following Hoeffding’s inequality for a jump process on a general state space.

Theorem 4.1. Assume that the process Xt exists an L2(π)-spectral gap λ(q), and that K is
dense in D∗. Then for any bounded continuous function g : E → [a, b], and t, ε > 0, we have

Pπ

(
1

t

∫ t

0

g (Xs) ds− π(g) ≥ ε

)
≤ exp

{
− λ(q)tε2

(b− a)2

}
.
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