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SOME INTEGRAL INEQUALITIES VIA CAPUTO AND

LIOUVILLE FRACTIONAL INTEGRAL OPERATORS FOR

m−CONVEX FUNCTIONS

M.EMIN ÖZDEMIR

Abstract. This short study consists of two parts, firstly we obtain some
inequalities on Caputo Fractional derivatives using the elementary inequali-
ties. Secondly we establish several new inequalities including Caputo fractional
derivatives for m−Convex functions. In general, in this work we obtain upper
bounds for the left sides of Lemma 1[10] and lemma 2[20] .

1. Introduction

In mathematical analysis, we know roughly that the classical concept of deriv-
ative can be expressed in a single way as the limit of the slopes of secant lines for
△ x → 0. When it comes to Fractional Derivatives (FC ),

Caputo left-sided derivative

CDα
a+ [f ] (x) =

1

Γ (n− α)

x
∫

a

(x− ξ)
n−α−1 dn (f (ξ))

dξn
dt, x > a

Caputo right-sided derivative

CDα
b− [f ] (x) =

(−1)n

Γ (n− α)

b
∫

x

(ξ − x)
n−α−1 dn (f (ξ))

dξn
dt, x < b

it has to do with the concept of tangent. As can be seen, In Caputo, she first
calculated the derivative of the integer order and then the integral of the non-
integer order.

Liouville left-sided derivative

Iα
a+ [f ] (x) =

1

Γ (n− α)

dn

dxn

x
∫

a

(x− ξ)
n−α−1

f (ξ) dξ, x > a

Liouville right-sided derivative

Iαb− [f ] (x) =
(−1)

n

Γ (n− α)

dn

dxn

b
∫

x

(ξ − x)
n−α−1

f (ξ) dξ, x < b
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In Liouville, the opposite of the process in Caputo is valid. That is, first the
integral of the non-integer order is calculated and then the derivative of the integer
order is calculated.

Since the Caputo Fractional derivative is more restritive than the Liouville one,
both derivatives are defined by means of the each other.

(1.1) CDα
a+ [f ] (x) : In−α

a+

[

f (n)
]

(x)

CDα
b− [f ] (x) : (−1)

n
In−α
b−

[

f (n)
]

(x)

Specially, α = 0 then the left and right Caputo derivatives are equal to each
other.

Today, the concept of FC dates back to Leibniz. Leibniz discussed the concept
of FC with her contemporaries in 1695. Euler noticed in 1738 what a problem
non-integer order derivatives (FC) pose. By 1822, Fourier gave the first definition
of non-positive integers by using integral notation to define the derivative. Abel in
1826 and Liouville in 1832 gave versions of the non-integer order derivative.

Let us present the necessary definitions and preliminary information that we will
use in this study.

Definition 1. [9] The function f : [0, b] → R is said to be m-convex, where m ∈
[0, 1], if for all x, y ∈ [0, b] and t ∈ [0, 1], we have:

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

For many papers connected with m-convex and (α,m)−convex functions see
([1− 8]) and the references therein.

We will need the modified forms of the m-convex function:
m−convexity of f :

f (tx+ (1 − t)y) = f(tx+m(1 − t)
y

m
) ≤ tf(x) +m(1− t)f(

y

m
)

m-convexity of
∣

∣f (n+1)
∣

∣ :
∣

∣

∣ f (n+1) (tx+ (1− t)y)
∣

∣

∣ =
∣

∣

∣f (n+1)(tx+m(1− t)
y

m
)
∣

∣

∣ ≤ t
∣

∣

∣f (n+1) (x)
∣

∣

∣+m(1−t)
∣

∣

∣f (n+1)(
y

m
)
∣

∣

∣

m-convexity of
∣

∣f (n+1)
∣

∣

q
. :

∣

∣

∣ f (n+1) (tx+ (1− t)y)
∣

∣

∣

q

=
∣

∣

∣f (n+1)(tx+m(1− t)
y

m
)
∣

∣

∣

q

≤ t
∣

∣

∣f (n+1) (x)
∣

∣

∣

q

+m(1−t)
∣

∣

∣f (n+1)(
y

m
)
∣

∣

∣

q

Definition 2. [11] Let α ≥ 0 and α /∈ {1, 2, 3, ...}, n = [α] + 1, f ∈ ACn[a, b], the
space of functions having n− th derivatives absolutely continuous. The left-sided
and right-sided Caputo fractional derivatives of order α are defined as follows:

(1.2) (CDα
a+ f)(x) =

1

Γ (n− α)

x
∫

a

f (n) (t)

(x− t)
α−n+1 dt, x > a

and

(CDα
b−
f)(x) =

(−1)
n

Γ (n− α)

b
∫

x

f (n) (t)

(t− x)
α−n+1 dt, x < b
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If n = 1 and α = 0 , we have (CD0
a+ f)(x) = (CD0

b−
f)(x) = f (x) . For many

papers connected fractional operators see ([12− 25])
We will also use the well-known Hölder inequality in the literature : let be p >

1 and p−1+q−1 = 1, If f and g reel functions on [a, b] such that |f |
p
and |f |

q
are

integrable on [a, b] .
Then

b
∫

a

|f (x) g (x)| dx ≤

(

∫ b

a

|f (x)|
p
dx

)
1
p
(

∫ b

a

|g (x)|
q
dx

)
1
q

.

In [10] ,Farid et al. established the following identity for Caputo fractional
operators.

Lemma 1. In [10] Let f : [a, b] → R, be a differentiable mapping on (a, b) with
a < b. If f (n+1) ∈ L[a, b], then the following equality for fractional integrals holds:

f (n) (a) + f (n) (b)

2
−

Γ (n− α+ 1)

2 (b− a)n−α

[

(CDα
a+ f)(b) + (−1)

n
(CDα

b−
f)(a)

]

=
b− a

2

1
∫

0

[

(1− t)
n−α

− tn−α
]

f (n+1) (tx+ (1− t) y)dt

Lemma 2. In [20] Let f : I ⊂ R → R be a differentiable mapping on I ,where
a, b ∈ I with t ∈ [0, 1] . If f (n+1) ∈ L[a, b], Then for all a ≤ x < y ≤ b and
α > 0 we have

1

y − x
f (n) (y)−

(−1)
n
Γ (n− α+ 1)

(y − x)n−α+1

(

CDα

y−
f
)

(x) =

1
∫

0

(1− t)
n−α

f (n+1) (tx+ (1− t) y)dt.

This work is a continuation of my work in [20] . Özdemir et al. constructed an
identity for left sided Caputo derivatives in Lemma 2. In this study, we constructed
differently a few inequalities for both right and left sided Caputo derivatives. The
aim of this paper is to establish new upper bounds. To do this, we used some
classical inequalities.

2. The Results

Theorem 1. Let f : I ⊂ R → R, I ⊂ [0,∞) ,be a differentiable function on I such
that f ∈ ACnL[a, b] where a, b ∈ I with 0 < a < t < x ≤ b. If α > 0 and α /∈
{1, 2, 3, ...}, n = [α] + 1, f (n) > 0.Then

(2.1)

b
∫

a

f (n) (t) dt ≤
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Γ (n− α)
[

(CDα
a+ f)(x) + (−1)

n
(CDα

b−
f)(x)

]

+ Γ (α− n+ 2)
[

(CDα
a+ f)(x) + (−1)

α
(CDα

b−
f)(x)

]

2

Proof. First of all, since (x− t) > 0 we can write the following inequality

(x− t)
n−α−1

+
1

(x− t)
n−α−1 = (x− t)

n−α−1
+ (x− t)

α−n+1
> 2

Now If we multiply each side of the final inequality by f (n) > 0 and then
integrate it over [a, b] we have �

2

b
∫

a

f (n) (t) dt <

b
∫

a

(x− t)n−α−1 f (n) (t) dt+

b
∫

a

(x− t)α−n+1 f (n) (t) dt

=

x
∫

a

(x− t)n−α−1 f (n) (t) dt+

b
∫

x

(x− t)α−n−1 f (n) (t) dt

+

x
∫

a

(x− t)α−n+1 f (n) (t) dt+

b
∫

x

(x− t)α−n+1 f (n) (t) dt

= Γ (n− α) (CDα
a+ f)(x) + (−1)

n
Γ (n− α) (CDα

b−
f)(x)

+Γ (α− n+ 2) (CDα
a+ f)(x) + (−1)

α
Γ (α− n+ 2) (CDα

b−
f)(x)

Taking into account definition (1.2) we obtain inequality (2.1)

Theorem 2. Let α > 0,and α /∈ {1, 2, 3, ...}, n = [α]+1, f (n) > 0. If f : I ⊂ R →
R, I ⊂ [0,∞) ,be a differentiable function on I such that f ∈ ACnL[a, b] .

where a, b ∈ I with 0 < t ≤ a ≤ x ≤ b. Then the following inequality holds :

(2.2)

b
∫

a

√

|(x− t)|
2(n−α)

dt ≤ Γ (n− α+ 1)

[

(CDα
a+ f)(x) + (−1)n (CDα

b−
f)(x)

]

2

Proof. According to relation between the Geometric and Arithmetic means we can
write the basic inequality:

√

|(x− t)|
2(n−α)

=

√

|(x− t)|
(n−α)

|(t− x)|
(n−α)

≤
1

2

[

|(x− t)|
(n−α)

+ |(t− x)|
(n−α)

]

≤
1

2

[

|(x− t)|(n−α) + |(t− x)|(n−α)
]

f (n) (t)

=
1

2

[

|(x− t)|
(n−α)

f (n) (t) + |(t− x)|
(n−α)

f (n) (t)
]

Now, If we integrate both sides of the first and last terms over [a, b] we obtain �
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b
∫

a

√

|(x− t)|
2(n−α)

dt ≤
1

2





x
∫

a

|(x− t)|
(n−α)

f (n) (t) dt+

b
∫

x

|(t− x)|
(n−α)

f (n) (t) dt





=
1

2





x
∫

a

|(x− t)|
(n−α)

f (n) (t) dt+

b
∫

x

|(x− t)|
(n−α)

f (n) (t) dt





+
1

2





x
∫

a

|(t− x)|
(n−α)

f (n) (t) dt+

b
∫

x

|(t− x)|
(n−α)

f (n) (t) dt





=
1

2





x
∫

a

(x− t)
n−α

f (n) (t) dt−

x
∫

b

(x− t)
n−α

f (n) (t) dt





+
1

2



(t− x)n−α f (n) (t) dt−

x
∫

b

|(t− x)|(n−α) f (n) (t) dt





= Γ (n− α+ 1)

[

(CDα
a+ f)(x) + (−1)

n
(CDα

b−
f)(x)

]

2

This completes the proof of inequality (2.2)

Theorem 3. Let f : I ⊂ R → R, I ⊂ [0,∞), be a differentiable function on I such
that f (n+1) ∈ ACnL[a, b]. If and

∣

∣f (n+1)
∣

∣ is m−convex on [x, y] for t ∈ [0, 1], then
for all α > 0,and α /∈ {1, 2, 3, ...}, n = [α] + 1, m ∈ (0, 1] we have

∣

∣

∣

∣

f (n) (a) + fn (b)

2
−

Γ (α− n+ 1)

2 (b− a)
n−α

[

(CDα
a+ f)(b) + (−1)

n
(CDα

b−
f)(a)

]

∣

∣

∣

∣

(2.3)

≤
b− a

2

(

1

2 (n− α+ 1)
+

1

2 (n− α+ 2)

)(

∣

∣

∣f (n+1) (a)
∣

∣

∣+m

∣

∣

∣

∣

f (n+1)

(

b

m

)∣

∣

∣

∣

)

Proof. We know from our elementary knowledge that for α ∈ [0, 1] and ∀t1, t2 ∈

[0, 1],
∣

∣tn−α
1 − tn−α

2

∣

∣ ≤ |t1 − t2|
n−α

. �

let be

K =
f (n) (a) + f (n) (b)

2
−

Γ (n− α+ 1)

2 (b − a)
n−α

[

(CDα
a+ f)(b) + (CDα

b−
f)(a)

]

In Lemma 1, using the properties of the modulus as well as the fact that
∣

∣f (n+1)
∣

∣ is m−convex on [a, b] , we can write the relation below.
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|K| ≤
b− a

2

1
∫

0

∣

∣

∣(1− t)
n−α

− tn−α
∣

∣

∣

∣

∣

∣f (n+1) (ta+ (1− t) b)
∣

∣

∣ dt

≤
b− a

2

1
∫

0

|1− 2t|
n−α

∣

∣

∣f (n+1) (ta+ (1− t) b)
∣

∣

∣ dt

=
b− a

2

1
∫

0

|1− 2t|
n−α

∣

∣

∣

∣

f (n+1)

(

ta+m (1− t)
b

m

)∣

∣

∣

∣

dt

≤
b− a

2























∣

∣f (n+1) (a)
∣

∣

(

∫ 1
2

0

t (1− t)
n−α

dt+

∫ 1

1
2

t (2t− 1)
n−α

dt

)

+

+m
∣

∣f (n+1)
(

b
m

)∣

∣

(

∫ 1
2

0

(1− t) (1− 2t)
n−α

dt+

∫ 1

1
2

(1− t) (2t− 1)
n−α

dt

)























Calculate the integrals in parentheses and multiply by their coefficients,we obtain
inequality (2.3) .

Corollary 1. If α = n ∈ {1, 2, 3, ...} and usual derivative f (n) (a) of order n ex-
ists, then Caputo fractional derivatives (CDα

a+ f)(a) coincides with f (n) (a) whereas

(CDα
b−
f)(b) coincides f (n) (b) to a constant multipler (−1)

n
. Thus if we choose and

α = 0 In (2.3) with m = 1 we obtain
∣

∣

∣

∣

f (a) + f (b)

2
−

1

2 (b− a)
[f(b) + (−1)

n
f(a)]

∣

∣

∣

∣

≤
b− a

4

(∣

∣

∣f
′′

(a)
∣

∣

∣+
∣

∣

∣f
′′

(b)
∣

∣

∣

)

Theorem 4. Let f : [a, b] → (−∞,∞) be a differentiable mapping on a < b, If
α > 0 and α /∈ {1, 2, 3, ...}, n = [α] + 1, q > 1, p = q

q−1 and f (n+1) ∈ L [a, b] and
∣

∣ f (n+1)
∣

∣

q
is m−convex, m ∈ (0, 1]

Then the following inequality holds:

∣

∣

∣

∣

f (n) (a) + f (n) (b)

2
−

Γ (n− α+ 1)

2 (b − a)
n−α

[

(CDα
a+ f)(b) + (−1)n (CDα

b−
f)(a)

]

∣

∣

∣

∣

(2.4)

≤
b− a

21+
1
q

(

1

(p (n− α) + 1)
1
p

)

(

∣

∣

∣
f (n+1) (a)

∣

∣

∣

q

+m

∣

∣

∣

∣

f (n+1)

(

b

m

)∣

∣

∣

∣

q)
1
q

Proof. Let the left side of Lemma 1 be K. �

Since α ∈ [0, 1] and ∀t1, t2 ∈ [0, 1],
∣

∣tn−α
t − tn−α

2

∣

∣ ≤ |t1 − t2|
n−α

we can write
the following inequality with properties of modulus:

|K| ≤
b− a

2

1
∫

0

|1− 2t|
n−α

∣

∣

∣f (n+1) (ta+ (1− t) b)
∣

∣

∣ dt
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By applying Hölder’s inequality to the right hand side of the above inequality with
properties of modulus and after If we use

∣

∣ f (n+1)
∣

∣

q
is m−convex, we have

|K| ≤
b− a

2

1
∫

0

|1− 2t|
n−α

∣

∣

∣f (n+1) (ta+ (1− t) b)
∣

∣

∣ dt

≤
b− a

2





1
∫

0

|1− 2t|p(n−α) dt





1
p




1
∫

0

∣

∣

∣

∣

f (n+1)

(

ta+m (1− t)
b

m

)∣

∣

∣

∣

q





1
q

≤
b− a

2

(

1

(p (n− α) + 1)
1
p

)
1
p
(
∣

∣f (n+1) (a)
∣

∣

q
+m

∣

∣f (n+1)
(

b
m

)∣

∣

q

2

)
1
q

=
b− a

21+
1
q

(

1

(p (n− α) + 1)
1
p

)
1
p (
∣

∣

∣f (n+1) (a)
∣

∣

∣

q

+m

∣

∣

∣

∣

f (n+1)

(

b

m

)∣

∣

∣

∣

q) 1
q

This completes the proof of inequality(2.4) .Here it can be easily checked that





1
∫

0

|1− 2t|
p(n−α)

dt





1
p

=
1

(p (n− α) + 1)
1
p

,

∣

∣

∣f (n+1) (a)
∣

∣

∣

q
1
∫

0

tdt =

∣

∣f (n+1) (a)
∣

∣

q

2
,

m

∣

∣

∣

∣

f (n+1)

(

b

m

)∣

∣

∣

∣

q
1
∫

0

(1− t) dt = m

∣

∣f (n+1)
(

b
m

)∣

∣

q

2

Corollary 2. If we write corollary 1 for the Theorem (2.4) we have

∣

∣

∣

∣

f (a) + f (b)

2
−

1

2 (b− a)
[f(b) + (−1)

n
f(a)]

∣

∣

∣

∣

≤
b− a

21+
1
q

(

1

(p+ 1)
1
p

)

(∣

∣

∣f
′′

(a)
∣

∣

∣

q

+
∣

∣

∣f
′′

(b)
∣

∣

∣

q)
1
q

On the other hand , let a1 =
∣

∣

∣f
′′

(a)
∣

∣

∣

q

, b1 =
∣

∣

∣f
′′

(b)
∣

∣

∣

q

. Here 0 < q−1
q

< 1, for

q > 1 . Using the fact that
n
∑

k=1

(ak + bk)
s ≤

n
∑

k=1

ask + bsk , for (0 ≤ s < 1) ,

a1, a2, a3, ...an ≥ 0, b1, b2, b3, ...bn ≥ 0 and Considering that

lim
p→∞

1

(p+ 1)
1
p

= 1 and lim
q→∞

1

21+
1
q

=
1

2

we obtain

∣

∣

∣

∣

f (a) + f (b)

2
−

1

2 (b− a)
[f(b) + (−1)

n
f(a)]

∣

∣

∣

∣

≤
b− a

2
(|f ′′ (a)|+ |f ′′ (b)|)

Remark 1. Note that the right side of Corollary 1 is a better upper bound than
the right side of Corollary 2.
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Theorem 5. Let f : I ⊂ R → R, I ⊂ [0,∞), be a differentiable function on I
such that f (n+1) ∈ L[a, b] with a ≤ x < y ≤ b, t ∈ [0, 1] .If f (n+1) is m−convex on
[x, y] . The for all α > 0,m ∈ (0, 1]
(2.5)

1

y − x
f (n) (y)−

(−1)
n
Γ (n− α+ 1)

(y − x)
n−α+1

(

CDα

y−
f
)

(x) ≤ f (x)
n− α

n− α+ 2
β (2, n− α)+mf

( y

m

) 1

n− α+ 1
.

Proof. From lemma 2, we have

1

y − x
f (n) (y)−

(−1)n Γ (n− α+ 1)

(y − x)
n−α+1

(

CDα

y−
f
)

(x) =

1
∫

0

(1− t)
n−α

f (n+1)
(

tx+m (1− t)
y

m

)

dt.

≤ f (x)

1
∫

0

t (1− t)n−α dt+mf
( y

m

)

1
∫

0

(1− t)2(n−α) dt

= f (x)β (2, n− α+ 1) +mf
( y

m

) 1

n− α+ 1

= f (x)
n− α

n− α+ 2
β (2, n− α) +mf

( y

m

) 1

n− α+ 1

which gives the required inequality (2.5). Here we used the property of the known
function β.

β (2, n− α+ 1) =
n− α

n− α+ 2
β (2, n− α) .

Corollary 3. If we choose x = a, y = b and m = 1 in (2.5) we have the following
inequality

1

b− a
f (n) (b)−

(−1)
n
Γ (n− α+ 1)

(b− a)n−α+1

(

CDα

b−
f
)

(a) ≤ f (a)
n− α

n− α+ 2
β (2, n− α)+f (b)

1

n− α+ 1

�

Theorem 6. α > 0, let f : I ⊂ R → R, I ⊂ [0,∞), be a differentiable function on

I such that f (n+1) ∈ L[a, b] with a ≤ x < y ≤ b, t ∈ [0, 1] .If
∣

∣f (n+1)
∣

∣

q
is m−convex

on [x, y] , q > 1, p = q
q−1 ,m ∈ (0, 1]

Then

∣

∣

∣

∣

∣

1

y − x
f (n) (y)−

(−1)
n
Γ (n− α+ 1)

(y − x)
n−α+1

(

CDα

y−
f
)

(x)

∣

∣

∣

∣

∣

(2.6)

≤

(

1

(n− α+ 1)
1
p

)

(

∣

∣

∣f (n+1)
∣

∣

∣

q

(x) β (2, n− α+ 1) +m
∣

∣

∣f (n+1)
∣

∣

∣

q ( y

m

) 1

2 (n− α) + 1

)
1
q

Proof. Firstly, from lemma 2 and with properties of modulus and m−convex of the
function

∣

∣f (n+1)
∣

∣

q
, secondly If we use power mean inequality ;
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∣

∣

∣

∣

∣

1

y − x
f (n) (y)−

(−1)n Γ (n− α+ 1)

(y − x)
n−α+1

(

CDα

y−
f
)

(x)

∣

∣

∣

∣

∣

≤

1
∫

0

∣

∣

∣
(1− t)n−α f (n+1) (tx+ (1− t) y)

∣

∣

∣
dt.

=

1
∫

0

(1− t)
n−α

∣

∣

∣f (n+1)
(

tx+m (1− t)
y

m

)∣

∣

∣ dt

=





1
∫

0

(1− t)
n−α

dt





1
p




1
∫

0

(1− t)
n−−α

∣

∣

∣f (n+1)
(

tx+m (1− t)
y

m

)∣

∣

∣

1
q

dt





1
q

�

≤

(

1

(n−α+1)
1
p

)

.

(

∣

∣f (n+1)
∣

∣

q
(x)

∫ 1

0

t (1− t)
n−−α

dt+m
∣

∣f (n+1)
∣

∣

q ( y
m

)

∫ 1

0

(1− t)
2(n−α)

dt

)

1
q

=

(

1

(n− α+ 1)
1
p

)

(

∣

∣

∣
f (n+1)

∣

∣

∣

q

(x) β (2, n− α+ 1) +m
∣

∣

∣
f (n+1)

∣

∣

∣

q ( y

m

) 1

2 (n− α) + 1

)
1
q

which gives the desired inequality(2.6). Here we used

β (2, n− α+ 1) =

1
∫

0

t (1− t)
n−α

dt and

1
∫

0

(1− t)
2(n−α)

dt =
1

2 (n− α) + 1

Corollary 4. If we choose x = a, y = b and m = 1 in (2.6)
∣

∣

∣

∣

∣

1

b− a
f (n) (b)−

(−1)
n
Γ (n− α+ 1)

(b− a)n−α+1

(

CDα

y−
f
)

(a)

∣

∣

∣

∣

∣

≤

(

1

(n− α+ 1)
1
p

)

(

∣

∣

∣f (n+1)
∣

∣

∣

q

(a)β (2, n− α+ 1) +
∣

∣

∣f (n+1)
∣

∣

∣

q

(b)
1

2 (n− α) + 1

)
1
q

The result in corollary (3) is more general than the result in corollary (2) .

3. CONCLUSION

Where it is known that a subset of the set of real numbers has an infinite number
of upper bounds. But, the smallest upper bound of the same set is unique. In
terms of optimization theory, the aim is to capture the supremum of the upper
bounds. Inequalities involving both right-sided and left-sided FC derivatives of non-
integer order offer new estimations for integral inequalities under convex functions.
Considering (1.1) researchers working in this field can write the above theorems
once for Liouville derivatives.
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[21] M. Emin Özdemir, Alper Ekinci, and Ahmet Ocak Akdemir, Generalizations of integral
inequalities for functions whose second derivatives are convex and m−convex, Miskoc Math-
ematical Notes , Vol 13 (2012), No. 2, pp.441-457.
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