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Abstract

We propose a unified theoretical framework to examine the energy dissipation properties at
all stages of explicit exponential Runge-Kutta (EERK) methods for gradient flow problems. The
main part of the novel framework is to construct the differential form of EERK method by using
the difference coefficients of method and the so-called discrete orthogonal convolution kernels. As
the main result, we prove that an EERK method can preserve the original energy dissipation
law unconditionally if the associated differentiation matrix is positive semi-definite. A simple
indicator, namely average dissipation rate, is also introduced for these multi-stage methods to
evaluate the overall energy dissipation rate of an EERK method such that one can choose proper
parameters in some parameterized EERK methods or compare different kinds of EERK methods.
Some existing EERK methods in the literature are evaluated from the perspective of preserving
the original energy dissipation law and the energy dissipation rate. Some numerical examples are
also included to support our theory.

Keywords: gradient flow problem, explicit exponential Runge-Kutta method, discrete orthogo-
nal convolution kernels, stage energy dissipation laws, average dissipation rate
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1 Introduction

We propose a unified theoretical framework to examine the energy dissipation properties at all stages
of explicit exponential Runge-Kutta (EERK) methods for solving the following semi-discrete semi-
linear parabolic problem

u′h(t) + Lhuh(t) = gh(uh(t)), uh(t0) = u0h, (1.1)

where Lh is a symmetric, positive definite matrix resulting from certain spatial discretization of stiff
term, typically the Laplacian operator −∆ with periodic boundary conditions, and gh represents a
nonlinear but non-stiff term. Without losing the generality, the finite difference method is assumed
to approximate spatial operators and we define the discrete L2 inner product ⟨u, v⟩ := vTu and the
L2 norm ∥v∥ :=

√
⟨v, v⟩. Assume that there exists a non-negative Lyapunov function Gh such that

gh(v) = − δ
δvGh(v). Then the problem (1.1) can be formulated into a gradient system

duh
dt

= − δE

δuh
with E[vh] :=

1

2
⟨vh, Lhvh⟩+ ⟨Gh(vh), 1⟩. (1.2)
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The dynamics approaching the steady-state solution u∗h, that is Lhu
∗
h = gh(u

∗
h), of this dissipative

system (1.1) satisfies the following original energy dissipation law

dE

dt
=
〈 δE
δuh

,
duh
dt

〉
= −

〈 duh
dt

,
duh
dt

〉
≤ 0. (1.3)

In simulating the semilinear parabolic problems (1.1) and related gradient flow problems (1.2),
explicit exponential (including exponential integrating factor and exponential time differencing) in-
tegrators turned out to be very competitive, see [1–6, 14–19, 33]. For a detailed overview of such
integrators and their implementation, we refer to [6, 8, 14, 16]. The main idea behind these methods
is to treat the linear part of problem exactly and the nonlinearity in an explicit way and dates back
to the 1960s, see [2,3,12,20,29,31,32]. For stiff problems, Hochbruck and Ostermann [13] constructed
explicit exponential Runge-Kutta (also called exponential time differencing Runge-Kutta, ETDRK)
methods with stiff orders up to four and established the convergence in an abstract Banach space
framework of sectorial operators and locally Lipschitz continuous nonlinearities. Luan and Oster-
mann [26] showed that there does not exist an EERK method of order five with less than or equal to
six stages and constructed a fifth-order method with eight stages for semilinear parabolic problems.
For the stability properties of EERK methods, Maset and Zennaro [28] derived sufficient conditions
of unconditional contractivity and unconditional asymptotic stability and investigated some popular
EERK methods with respect to the two stability properties.

In the past decade, the explicit ETDRK methods [2,3,14] became popular in simulating gradient
flow problems, see [5,6,15–17,21,25,33,34], in the context of partial differential equations. One of main
concerns is whether these ETD type methods can preserve the decaying of original energy E[uh(t)].
Although the first-order ETD1 method has been proven in [5,6,15] to preserve the energy decaying,
the energy dissipation property of high-order EERK methods seems theoretically challenging due to
their multi-stage nature. Very recently, the second-order ETD2RK method in [3] has been shown
to preserve the original energy decaying of the scalar gradient system [9] and the matrix gradient
system [25]. These works are theoretically interesting, while their analysis may be limited since the
proofs for the energy decaying heavily rely on technical skills and would be difficult to extend for
other ETD methods or general situations, such as the parameterized EERK methods constructed by
Hochbruck and Ostermann [13,14].

In this article, we will focus on whether and to what extent the multi-stage EERK methods pre-
serve the original energy dissipation law (1.3). In the next section, a unified theoretical framework
for the stage energy dissipation property of EERK methods is established by constructing the differ-
ential forms of EERK methods and a new concept, namely average dissipation rate, is introduced for
these multi-stage methods to evaluate the overall energy dissipation rate of an EERK method such
that one can choose proper parameters in some parameterized EERK methods or compare different
kinds of EERK methods. Our main results are stated in Theorem 2.1 and Lemma 2.2.

As applications of our theory, three parameterized second-order EERK methods, including the
widespread ETD2RK scheme [3] and the three-stage method by Strehmel and Weiner [31], are dis-
cussed in Section 3. Some popular methods are evaluated and suggested for practical numerical
simulations, see Table 1, in which the abscissa choices for the contractivity and the energy stability
of three second-order EERK methods are summarized. Section 4 addresses four third-order EERK
methods, including the ETD3RK [3], ETD2CF3 [2] and two parameterized methods developed by
Hochbruck and Ostermann [13]. Table 2 collects some abscissa choices for the energy stability of
four third-order EERK methods. Numerical experiments are presented in Section 5 to support our
theory. Short comments on four fourth-order EERK methods from [3,13,19,31] and some concluding
remarks on the new theory are presented in the last section.
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2 Stage energy laws of EERK methods

2.1 General class of EERK methods

Let ukh be the numerical approximation of uh(tk) at the grid point tk for 0 ≤ k ≤ N . To integrate
the semilinear parabolic problem (1.1) from the discrete time tn−1 (n ≥ 1) to the next grid point
tn = tn−1+τ , the construction of one-step EERK methods (typically, τ also represents a variable-step
size) starts from the following variation-of-constants formula

uh(tn−1 + τ) = e−τLhuh(tn−1) +

∫ τ

0
e−(τ−σ)Lhgh [uh(tn−1 + σ)] dσ.

Let Un,i be the approximation of uh(tn−1 + ciτ) at the abscissas c1 := 0, ci ∈ (0, 1] for 2 ≤ i ≤ s,
and cs+1 := 1. By replacing τ by ciτ to define the internal stages tn−1 + ciτ , one can construct the
following general class of EERK methods:

Un,1 = un−1
h , (2.1a)

Un,i+1 = χi+1(−τLh)U
n,1 + τ

i∑
j=1

ai+1,j(−τLh)gh(U
n,j), 1 ≤ i ≤ s− 1, (2.1b)

Un,s+1 = χ(−τLh)U
n,1 + τ

s∑
j=1

bj(−τLh)gh(U
n,j), (2.1c)

unh = Un,s+1. (2.1d)

The method coefficients χi, χ, aij and bj are constructed from linear combinations of the entire
functions φj(z) and scaled versions thereof. These functions are given by

φ0(z) = ez and φj(z) :=

∫ 1

0
e(1−s)z sj−1

(j − 1)!
ds for z ∈ C and j ≥ 1, (2.2)

which satisfy the recursion formula

φk+1(z) =
φk(z)− 1/k!

z
for k ≥ 0. (2.3)

Here the involved matrix functions φj(−τLh) are defined on the spectrum of −τLh, that is, the values
{φj(λk) : 1 ≤ k ≤ dim(−τLh)} exist, where λk are the eigenvalues of −τLh and thus φj(λk) are
the eigenvalues of φj(−τLh). More properties on the matrix functions can be found in [11, Theorem
1.13], and, typically in this article, f(−τLh) is a positive definite operator if the given entire function
f is positive.

Always we assume that χi(0) = 1 and χ(0) = 1 for consistency. This scheme (2.1) reduces to an
explicit Runge-Kutta method with coefficients aij := aij(0) and bj := bj(0) if we put Lh = 0. The
latter method will be called the underlying explicit Runge-Kutta method henceforth. We suppose
throughout the paper that the underlying Runge-Kutta method satisfies

s∑
j=1

bj(0) = 1 and

i−1∑
j=1

aij(0) = ci for i = 1, 2, · · · , s,

which makes it invariant under the transformation of (2.1) to the non-autonomous system. A
desirable property of numerical methods is that they preserve equilibria u∗h of (1.2). Requiring
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Un,i = unh = u∗h for all i and n ≥ 0 immediately yields the necessary and sufficient conditions. It
turns out that the method coefficients have to satisfy

s∑
j=1

bj(z) =
χ(z)− 1

z
and

i−1∑
j=1

aij(z) =
χi(z)− 1

z
for i = 1, 2, · · · , s. (2.4)

Without further mention, we consider the methods with χ(z) = ez and χi(z) = eciz for 1 ≤ i ≤ s.
With the help of (2.4), the functions χi and χ can be eliminated in (2.1). The numerical scheme
(2.1) then takes the form

Un,i+1 = Un,1 + τ
i∑

j=1

ai+1,j(−τLh)
[
gh(U

n,j)− LhU
n,1
]

for 1 ≤ i ≤ s− 1, (2.5a)

Un,s+1 = Un,1 + τ

s∑
j=1

bj(−τLh)
[
gh(U

n,j)− LhU
n,1
]
. (2.5b)

To simplify our notations, define

as+1,j(z) := bj(z), 1 ≤ j ≤ s. (2.6)

Then the EERK method (2.5) applying to (1.1) reads

Un,i+1 = Un,1 + τ

i∑
j=1

ai+1,j(−τLh)
[
gh(U

n,j)− LhU
n,1
]

for 1 ≤ i ≤ s. (2.7)

Always, we assume that ak+1,k(z) ̸= 0 for any 1 ≤ k ≤ s. The associated Butcher tableau reads,
where we use the abbreviations aij := aij(−τLh),

c1 0
c2 a21 0
c3 a31 a32 0
...

...
...

. . .
. . .

cs as,1 as,2 · · · as,s−1 0

as+1,1 as+1,2 · · · as+1,s−1 as+1,s

.

2.2 Our theoretical framework

Motivated by Du et al. [5, 6], we introduce the stabilized operators with a parameter κ ≥ 0,

Lκ := Lh + κI and gκ(u) := gh(u) + κu, (2.8)

such that the problem (1.1) becomes the stabilized version

u′h(t) = −Lκuh(t) + gκ(uh), uh(t0) = u0h. (2.9)

Thus, applying (2.7) to (2.9), we have the following EERK method

Un,i+1 = Un,1 +

i∑
j=1

ai+1,j(−τLκ)
[
τgκ(U

n,j)− τLκU
n,1
]

for 1 ≤ i ≤ s. (2.10)
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To make our idea more concise, we assume further that the nonlinear function gh is Lipschitz
continuous with a constant ℓg > 0, cf. [30] or the recent discussions in [9, subsection 2.2]. In theoretical
manner, the stabilization parameter κ in (2.8) is chosen properly large κ ≥ 2ℓg, see Remark 1 for
an alternative choice, to enhance the dissipation of linear part so that the nonlinear growth of gh
can be formally controlled in the numerical analysis. In this sense, if an EERK method is proven to
maintain the original energy dissipation law (1.3) unconditionally, we mean that this EERK method
can be stabilized by setting a properly large parameter κ (which may not be necessary in actual
calculations). To derive the energy dissipation law of the general EERK method (2.10), we need the
following result. The proof is standard and we include it for completeness.

Lemma 2.1. If gh is Lipschitz-continuous with a constant ℓg > 0 and κ ≥ 2ℓg, then〈
u− v, gκ(v)−

1

2
Lκ(u+ v)

〉
≤ E[v]− E[u],

where the energy E is defined in (1.2).

Proof. Since gh is Lipschitz continuous, [30, Lemma 2.8.20] gives〈
u− v, gh(v)

〉
≤
〈
Gh(v)−Gh(u), 1

〉
+ ℓg

∥∥u− v
∥∥2. (2.11)

It follows that 〈
u− v, gκ(v)−

κ

2
(u+ v)

〉
=
〈
u− v, gh(v)−

κ

2
(u− v)

〉
=
〈
u− v, gh(v)

〉
− κ

2

∥∥u− v
∥∥2 ≤ 〈Gh(v)−Gh(u), 1

〉
− 1

2
(κ− 2ℓg)

∥∥u− v
∥∥2.

Also, it is easy to know that〈
u− v,

κ

2
(u+ v)− 1

2
Lκ(u+ v)

〉
=

1

2

〈
v − u, Lh(u+ v)

〉
=

1

2
⟨v, Lhv⟩ −

1

2
⟨u, Lhu⟩.

Adding up the above two results yields the claimed inequality and completes the proof.

Our theoretical framework contains three main steps:

(1) Compute difference coefficients: we introduce a class of difference coefficients, for i = 1, 2, · · · , s,

ai+1,i(z) := ai+1,i(z) and ai+1,j(z) := ai+1,j(z)− ai,j(z) for 1 ≤ j ≤ i− 1. (2.12)

It is not difficult to derive from (2.10) that

δτU
n,i+1 =

i∑
j=1

ai+1,j(−τLκ)
[
τgκ(U

n,j)− τLκU
n,1
]

for 1 ≤ i ≤ s, (2.13)

where the (stage) time difference δτU
n,i+1 := Un,i+1 − Un,i for 1 ≤ i ≤ s. The associated

Butcher difference (Butcher-Diff) tableau reads

Butcher-Diff tableau:

c1 0
c2 a21 0
c3 a31 a32 0
...

...
...

. . .
. . .

cs as,1 as,2 · · · as,s−1 0

as+1,1 as+1,2 · · · as+1,s−1 as+1,s

.
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(2) Determine DOC kernels and differential form: we introduce the so-called discrete orthogonal
convolution (DOC) kernels θk,j(z) with respect to the coefficient aij , cf. [22–24],

θk,k(z) :=
1

ak+1,k(z)
and θk,j(z) := −

k∑
ℓ=j+1

θk,ℓ(z)
aℓ+1,j(z)

aj+1,j(z)
for 1 ≤ j ≤ k − 1. (2.14)

It is easy to check the following discrete orthogonal identity,

m∑
ℓ=j

θm,ℓ(z)aℓ+1,j(z) ≡ δmj for 1 ≤ j ≤ m ≤ s, (2.15)

where δmj is the Kronecker delta symbol with δmj = 0 if j ̸= m. Multiplying the above equation
(2.13) by the DOC kernels (matrices) θk,i(−τLκ), and summing i from 1 to k, one can apply
the discrete orthogonal identity (2.15) to find that

k∑
i=1

θk,i(−τLκ)δτU
n,i+1 =

k∑
i=1

θk,i(−τLκ)

i∑
j=1

ai+1,j(−τLκ)
[
τgκ(U

n,j)− τLκU
n,1
]

=

k∑
j=1

k∑
i=j

θk,i(−τLκ)ai+1,j(−τLκ)
[
τgκ(U

n,j)− τLκU
n,1
]

= τgκ(U
n,k)− τLκU

n,1

= τgκ(U
n,k)− τLκU

n,k+1 + τLκ

k∑
ℓ=1

δτU
n,ℓ+1 for 1 ≤ k ≤ s.

Thus we have an equivalent form (differential form) of the EERK method (2.10)

k∑
ℓ=1

dkℓ(−τLκ)δτU
n,ℓ+1 = τgκ(U

n,k)− τ

2
Lκ(U

n,k+1 + Un,k) for 1 ≤ k ≤ s, (2.16)

where the functions dkℓ are defined by

dkℓ(z) := θkℓ(z) +
z

2

(
2− δkℓ

)
for 1 ≤ ℓ ≤ k ≤ s and dkℓ(z) := 0 for ℓ > k. (2.17)

The associated lower triangular matrix D := (dkℓ)s×s is called the differentiation matrix. Al-
ways, we denote the symmetric part S(D; z) := 1

2 [D(z) +D(z)T ].

(3) Establish stage energy dissipation law: this process is standard and we have the following result,
which simulates the original energy dissipation law (1.3) at all stages.

Theorem 2.1. If S(D; z) is positive (semi-)definite, the EERK method (2.10) preserves the
original energy dissipation law (1.3) at all stages without any time-step constraints,

E[Un,j+1]− E[Un,1] ≤ − 1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

dkℓ(−τLκ)δτU
n,ℓ+1

〉
for 1 ≤ j ≤ s, (2.18)

and in particular, by taking j := s,

E[unh]− E[un−1
h ] ≤ −1

τ

s∑
k=1

〈
δτU

n,k+1,

k∑
ℓ=1

dkℓ(−τLκ)δτU
n,ℓ+1

〉
for n ≥ 1.
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Proof. Making the inner product of the equivalent form (2.16) with 1
τ δτU

n,k+1 and summing k
from k = 1 to j, one can find that

1

τ

j∑
k=1

〈
δτU

n,k+1,

k∑
ℓ=1

dkℓ(−τLκ)δτU
n,ℓ+1

〉
=

j∑
k=1

〈
δτU

n,k+1, gκ(U
n,k)− 1

2
Lκ(U

n,k+1 + Un,k)
〉

for 1 ≤ j ≤ s. Lemma 2.1 yields the following energy dissipation law at each stage

E[Un,j+1]− E[Un,1]+
1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

dkℓ(−τLκ)δτU
n,ℓ+1

〉
≤ 0

for 1 ≤ j ≤ s. It completes the proof.

For 1 ≤ j ≤ s, let Dj := D[1 : j, 1 : j] be the j-th sequential sub-matrix of the matrix D.

We denote further that δτ U⃗n,j+1 := (δτU
n,2, δτU

n,3, · · · , δτUn,j+1)T . The above stage energy
dissipation law (2.18) can be formulated as

E[Un,j+1]− E[Un,1] ≤ −1

τ

〈
δτ U⃗n,j+1, Dj(−τLκ)δτ U⃗n,j+1

〉
for 1 ≤ j ≤ s. (2.19)

After the completion of this article, we are informed that, by computing the original energy
difference E[unh] − E[un−1

h ] with a key inequality, Fu, Shen and Yang independently derived
the same sufficient condition of Theorem 2.1, cf. [10, Theorem 2.1], to ensure that the EERK
method (2.10) maintains the decreasing of original energy, that is, E[unh] ≤ E[un−1

h ]. In the
following subsection, we will introduce a simple indicator for evaluating to what extent the
multi-stage EERK method (2.10) preserves the original energy dissipation law (1.3).

2.3 Averaged dissipation rate

Theorem 2.1 shows that the EERK method (2.10) is unconditionally energy stable if the differen-
tiation matrix D(z) is semi-positive definite, that is, all eigenvalues λi(z) (i = 1, 2, · · · , s) of the
symmetric part S(D; z) are nonnegative. A necessary condition is that the average eigenvalue is
nonnegative,

λ(z) :=
1

s

s∑
i=1

λi(z) =
1

s
tr
(
D(z)

)
≥ 0.

If λmin ≤ λi(z) ≤ λmax (i = 1, 2, · · · , s) for any z ≤ 0, one has

λmin

〈
v⃗, v⃗
〉
≤
〈
v⃗, D(−τLκ)v⃗

〉
≤ λmax

〈
v⃗, v⃗
〉
.

Then, according to (2.19), the overall energy dissipation rate of the energy E[unh] could be roughly
estimated by the average eigenvalue λ(z) of S(D; z). If λ(z) ≥ 0, one could use the following average
dissipation rate

R(z) :=
1

s
tr
(
D(z)

)
for z ≤ 0, (2.20)

to examine the energy dissipation behaviors among different methods, see detailed arguments for
second-order EERK methods in the next section. By using the definitions (2.17) and (2.14) to
compute the diagonal elements dkk(z) for 1 ≤ k ≤ s, it is not difficult to obtain the following result.
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Lemma 2.2. If the EERK method (2.10) preserves the original energy dissipation law (1.3) uncon-
ditionally, then the average dissipation rate is nonnegative, that is,

R(z) =
z

2
+

1

s

s∑
i=1

1

ai+1,i(z)
≥ 0 for z ≤ 0.

Typically, if R(z) > 1, the discrete energy E[unh] decays faster than the continuous counterpart
E[uh(tn)] and the dynamics approaching the steady-state solution appears a time “ahead” effect. If
0 < R(z) < 1, the discrete energy E[unh] may decay slower and the dynamics appears a time “delay”
effect. In general, a time-stepping method is a “good” candidate to preserve the original energy
dissipation law (1.3) unconditionally if the average dissipation rate R(z) is nonnegative for z ≤ 0
and is as close to 1 as possible within properly large range of z. Lemma 2.2 provides us a simple
criterion to evaluate the overall energy dissipation rate of an EERK method and then choose proper
parameters in some parameterized EERK methods or compare different EERK methods.

Remark 1. The differential form (2.16) and the associated differentiation matrix D(z) of the EERK
method (2.10) would be “optimal” to evaluate the energy dissipation property although they are not
unique. A direct choice is to retain only the pure implicit form of stiff term, that is,

k∑
ℓ=1

d̃kℓ(−τLκ)δτU
n,ℓ+1 = τgκ(U

n,k)− τLκU
n,k+1 for 1 ≤ k ≤ s, (2.21)

where the elements of differentiation matrix D̃ := (d̃kℓ)s×s are defined by

d̃kℓ(z) := θkℓ(z) + z for 1 ≤ ℓ ≤ k ≤ s and d̃kℓ(z) := 0 for ℓ > k. (2.22)

If S(D̃; z) is positive (semi-)definite, one can follow the proof of Theorem 2.1 to get

E[Un,j+1]− E[Un,1] ≤ − 1

τ

j∑
k=1

〈
δτU

n,k+1,

k∑
ℓ=1

d̃kℓ(−τLκ)δτU
n,ℓ+1

〉

− 1

τ

j∑
k=1

〈
δτU

n,k+1,
1

2
τLκδτU

n,k+1
〉

for 1 ≤ j ≤ s, (2.23)

in which the following result similar to Lemma 2.1 has been used,

⟨u− v, gκ(v)− Lκu⟩ ≤ E[v]− E[u]− 1

2
⟨u− v, Lκ(u− v)⟩ for κ ≥ ℓg.

It is easy to see that the positive (semi-)definiteness of S(D̃; z) is much severer than the condition of
Theorem 2.1 because the energy dissipation estimate (2.23) ignores the dissipation effect of the last
term compared with (2.18). Correspondingly, the overall dissipation rate will be also underestimated
via the average dissipation rate R̃(z), that is,

R̃(z) :=
1

s
tr
(
D̃(z)

)
= z +

1

s

s∑
i=1

1

ai+1,i(z)
< R(z) for z < 0.

In this situation, one may make misjudgment on the energy dissipation property of EERK methods.
For example, consider the one-parameter EERK2 method (3.2) described below with

R̃(c2, z) := z +
1

2c2φ1(c2z)
+

c2
2φ2(z)

.

8



It is easy to know that lim
z→−∞

R̃(c2, z) = −∞ if c2 ∈ (0, 1), while lim
z→−∞

R̃(1, z) = 1
2 . This directly leads

to incorrect conclusion that the EERK2 method with c2 = 1 is the only possible case to preserve the
energy dissipation law (1.3); In contrast, Corollary 3.1 says that the EERK2 method preserves the
energy dissipation law (1.3) unconditionally for c2 ∈ [12 , 1]. In summary, the condition of Theorem
2.1 is nearly “optimal” although we can not claim that the positive semi-definiteness of differentiation
matrix D(z) is also necessary to the energy stability of the EERK method (the only loss of dissipation
rate comes from the inequality (2.11) for controlling the nonlinear growth).

2.4 Simple case: ETD1

To end this section, we consider a simple case with s = 1. The only reasonable choice is the
exponential forward Euler [13] or ETD1 [3,5] method with stiff order one. Applied to (2.9), it is

δτu
n,2 = φ1(−τLκ)

[
τgκ(u

n,1)− τLκu
n,1
]

(2.24)

or, recalling the recursive formula (2.3),

un,2 = φ0(−τLκ)u
n,1 + τφ1(−τLκ)gκ(u

n,1). (2.25)

The associated Butcher and Butcher-Diff tableaux are the same, that is,

ETD1 Butcher or Butcher-Diff:
0 0

φ1
.

The definition (2.17) gives

D(1) = (d
(1)
11 ) with d

(1)
11 (z) =

z

2
+

1

φ1(z)
=
z(1 + e−z)

2(1− e−z)
≥ 1 for z ≤ 0.

Here and hereafter, the superscript (p) is always used to indicate the order of the method, that
is to say, D(p) and R(p) denote the associated differential matrix and the average dissipation rate,
respectively, of a formal p-th order EERK method. Obviously, Theorem 2.1 yields

Corollary 2.1. The exponential forward Euler (2.24) preserves the energy dissipation law (1.3),

E[unh]− E[un−1
h ] ≤ −1

τ

〈
δτu

n, D(1)(−τLκ)
(
δτu

n
)〉

for n ≥ 1.

By the definition (2.20), one has R(1)(z) := d
(1)
11 (z) such that R(1)(z) ≥ 1 for any z < 0 and

limz→−∞R(1)(z) = +∞. It means that the dissipation rate of the discrete energy E[unh] approaches
the original rate as the step size τ → 0; while the exponential forward Euler (2.24) always generates
a time “ahead” (compared with the continuous counterpart E[uh(tn)]) for any time-step sizes.

By the form (2.25), it is easy to find that the ETD1 method is unconditionally contractive, also
see [28]. The contractivity of EERK methods is essential to preserve the maximum bound principle
of semilinear parabolic problems, cf. [5,6,21,25,34] and references therein; while detailed discussions
are out of our current scope in this article.

3 Discrete energy laws of second-order methods

Second-order methods require two internal stages, s = 2, at least. Hochbruck and Ostermann [13]
derived the following stiff order conditions (the stiff order describes the behavior of the local error
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independently of the norm of the matrix Lκ) with a parameter c2 (0 < c2 ≤ 1)

a31(−τLκ) + a32(−τLκ) = φ1(−τLκ), (3.1a)

a32(−τLκ)c2 = φ2(−τLκ), (3.1b)

a21(−τLκ) = c2φ1(−c2τLκ). (3.1c)

They lead to the following one-parameter family of second-order EERK (EERK2) method with the
following Butcher tableau

0
c2 c2φ1,2

φ1 − 1
c2
φ2

1
c2
φ2

, (3.2)

where the notations φi,j are defined by

φi,j := φi,j(−τLκ) = φi(−cjτLκ), i ≥ 0, 1 ≤ j ≤ s+ 1. (3.3)

Note that, these abbreviations will be also used in the Butcher tableaus below. This EERK2 method
(3.2) fulfills all conditions in (3.1) and thus is stiff order two. If the abscissa c2 = 1, it reduces to the
so-called ETD2RK [3,5, 9] with the following form

Un,2 =φ0(−τLκ)U
n,1 + τφ1(−τLκ)gκ(U

n,1), (3.4a)

Un,3 =Un,2 + τφ2(−τLκ)
[
gκ(U

n,2)− gκ(U
n,1)
]
. (3.4b)

This case is also the only scenario to ensure the unconditional contractivity of EERK2 method (3.2),
cf. [28], due to the fact φ1(z) ≥ φ2(z) for z ≤ 0.

By weakening the condition (3.1b) to a32(0)c2 = φ2(0) =
1
2 , one has a one-parameter weak variant

(called EERK2-w in short)

0
c2 c2φ1,2

(1− 1
2c2

)φ1
1
2c2
φ1

. (3.5)

Although the EERK2-w method (3.5) does not have stiff order two, it achieves stiff convergence order
two [13, Section 5.1] under certain requirements (boundedness) on the discrete operator τLκ. In the
following, we consider their stage energy dissipation properties in simulating (2.9).

3.1 EERK2 method

To establish the stage energy laws, we present the Butcher-Diff tableau

EERK2 Butcher-Diff:

0
c2 c2φ1,2

φ1 − 1
c2
φ2 − c2φ1,2

1
c2
φ2

. (3.6)

By the procedure (2.14), one can compute the associated DOC kernels

θ11(z) =
1

c2φ1(c2z)
, θ22(z) =

c2
φ2(z)

and θ21(z) =
c2φ1(c2z)− φ1(z) +

1
c2
φ2(z)

φ2(z)φ1(c2z)
.
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The definition (2.17) gives the following differentiation matrix

D(2)(c2, z) :=

 1
c2φ1(c2z)

+ z
2 0

c2φ1(c2z)−φ1(z)+
1
c2

φ2(z)

φ2(z)φ1(c2z)
+ z c2

φ2(z)
+ z

2

 .

Now we consider the matrix S(D(2); c2, z), the symmetric part of D(2)(c2, z). The first leading
principal minor reads

Det
[
S(D(2)

1 ; c2, z)
]
= d

(2)
11 (c2, z) =

z(ec2z + 1)

2(ec2z − 1)
≥ 1

c2
for c2 ∈ (0, 1] and z ≤ 0.

The second leading principal minor (determinant) of S(D(2); c2, z) is given by

Det
[
S(D(2); c2, z)

]
=

(ec2z − 1)−2z2

4(z − ez + 1)2
g21(c2, z) for z < 0,

where the auxiliary function g21 is defined by

g21(c2, z) :=2c2ze
(c2+2)z − c22z

2e2c2z − 2c2ze
c2z+z(1− (c2 − 1)z)− e2z(c22z

2 + 1)

+ 2ez(1− (c2 − 1)z) + (z + 1)((2c2 − 1)z − 1) for z < 0. (3.7)

Now we develop a technique of comparison function to handle the function g21.

Proposition 3.1. The function g21 in (3.7) is positive for c2 ∈ [12 , 1] and z < 0.

Proof. The condition c2 ∈ [12 , 1] comes from the simple fact limz→−∞ g21(c2, z)/z
2 = 2c2 − 1 ≥ 0. To

handle g21, we consider a comparison function (by setting c2 :=
1
2 in all exponents of g21)

g∗21(c2, z) :=2c2ze
5z
2 − c22z

2ez − 2c2ze
3z
2 (1− (c2 − 1)z)− e2z(c22z

2 + 1)

+ 2ez(1− (c2 − 1)z) + (z + 1)((2c2 − 1)z − 1) for z < 0.

It is easy to check that g21(c2, z) ≥ g∗21(c2, z) for c2 ∈ [12 , 1] and z < 0. Actually,

g21(c2, z)− g∗21(c2, z) = c2e
z(ez/2 − ec2z)

[
c2z

2(e−z/2 + ec2z−z − 2)− 2z(ez − 1− z)
]

≥ c2e
z(ez/2 − ec2z)

[
c2z

2(e−z/2 − 1)− 2z(ez − z − 1)
]
≥ 0

due to the facts e−z/2 − 1 > 0 and ez − z − 1 > 0 for z < 0.
Note that, g∗21 is a concave, quadratic polynomial with respect to c2, that is,

g∗21(c2, z) = −ez(ez/2 − 1)2z2c22 + 2z(1− e
3z
2 )(z + 1− ez)c2 − (z + 1− ez)2 for z < 0.

Moreover, one can check that (technical details are omitted here), cf. Figure 1(a),

g∗21(1, z) > 0 and g∗21(
1
2 , z) > 0 for z < 0.

They imply that g∗21(c2, z) > 0 and then g21(c2, z) > 0 for c2 ∈ [12 , 1] and z < 0.

Proposition 3.1 shows that Det
[
S(D(2); c2, z)

]
> 0 for c2 ∈ [12 , 1] and z < 0. Thus, the sequential

principal minors of S(D(2); c2, z) are positive and then the differentiation matrix D(2)(c2, z) is positive
definite. Theorem 2.1 gives the following result.
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(a) g∗21(c2, z) (b) g∗22(c2, z)

Figure 1: Curves of comparison functions g∗21 and g∗22.

Corollary 3.1. The EERK2 method (3.2) with c2 ∈ [12 , 1] preserves the energy dissipation law (1.3)
unconditionally at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ − 1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

d
(2)
kℓ (c2,−τLκ)δτU

n,ℓ+1
〉

= −1

τ

〈
δτ U⃗n,j+1, D

(2)
j (c2,−τLκ)δτ U⃗n,j+1

〉
for 1 ≤ j ≤ 2.

According to Lemma 2.2, the EERK2 method (3.2) has the average dissipation rate

R(2)(c2, z) :=
z

2
+

1

2c2φ1(c2z)
+

c2
2φ2(z)

for c2 ∈ (0, 1] and z ≤ 0. (3.8)

It is different for different choices of c2. One has

lim
z→0

R(2)(c2, z) =
1

2c2
+ c2 and lim

z→−∞
R(2)(c2, z) = +∞ for c2 ∈ (0, 1].

For properly large time-step sizes, the ETD2RK method (3.4) with the case c2 = 1 has the largest
dissipation rate, see Figure 2 (a), while the average dissipation rate of the case c2 =

1
2 is much more

closer to 1. The former is preferred to preserve the unconditional contractivity, while the latter would
be preferred to preserve the energy dissipation law (1.3) unconditionally. As seen, R(2)(c2, z) > 1 for
c2 ∈ [12 , 1] and z ≤ 0, so that the EERK2 method (3.2) always generates a time “ahead” in simulating
the gradient system (2.9).

3.2 Weak variants of EERK2 method

For the EERK2-w methods with tableau (3.5), the associated Butcher-Diff tableau

EERK2-w Butcher-Diff:

0
c2 c2φ1,2

(1− 1
2c2

)φ1 − c2φ1,2
1
2c2
φ1

.

By the procedure (2.14), one can compute the associated DOC kernels

θ
(2,w)
11 =

1

c2φ1(c2z)
, θ

(2,w)
22 =

2c2
φ1(z)

and θ
(2,w)
21 =

2c2
φ1(z)

+
(1− 2c2)

c2φ1(c2z)
.
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(a) EERK2 (b) EERK2-w

Figure 2: Averaged dissipation rates R(2)(c2, z) and R(2,w)(c2, z) for different abscissas c2.

The definition (2.17) gives the following one-parameter differentiation matrix

D(2,w)(c2, z) :=

( 1
c2φ1(c2z)

+ z
2 0

2c2
φ1(z)

+ (1−2c2)
c2φ1(c2z)

+ z 2c2
φ1(z)

+ z
2

)
.

It is not difficult to check that

Det
[
S(D(2,w)

1 ; c2, z)
]
=
z(ec2z + 1)

2(ec2z − 1)
≥ 1

c2
for c2 ∈ (0, 1] and z ≤ 0.

To handle the second leading principal minor, we need the following result.

Proposition 3.2. For the abscissa c2 ∈ [ 311 , 1] and z < 0, it holds that

g22(c2, z) := − 4c22(e
c2z − ez)2 + 4c2(1− ez)(1− ec2z+z)− (1− ez)2 > 0. (3.9)

Proof. We consider the following comparison function

g∗22(c2, z) :=− 4c22
(
e
3z
11 − ez

)2
+ 4c2(1− ez)

(
1− e

24z
11
)
− (1− ez)2 for z < 0.

For c2 ∈ [ 311 , 1] and z < 0, it is obvious that

g22(c2, z)− g∗22(c2, z) =4c2
(
e
3z
11 − ec2z

)
ez
[
c2
(
e−

8z
11 + e(c2−1)z − 2

)
+ (1− ez)

]
≥ 0.

Note that, g∗22 is a concave, quadratic polynomial with respect to c2 due to ∂2c2g
∗
22 < 0. Reminding

that lim
z→−∞

g∗22(c2, z) = 4c2 − 1 > 0 for c2 ∈ [ 311 , 1], it is not difficult to check that, cf. Figure 1(b),

g∗22(1, z) > 0 and g∗22(
3
11 , z) > 0 for z < 0.

They imply that g∗22(c2, z) > 0 and then g22(c2, z) ≥ g∗22(c2, z) > 0 for c2 ∈ [ 311 , 1] and z < 0.

Reminding the auxiliary function (3.9) and Proposition 3.2, we know that the second leading
principal minor of S(D(2,w); c2, z) is positive, that is,

Det
[
S
(
D(2,w); c2, z

)]
=

z2g22(c2, z)

4(ez − 1)2(ec2z − 1)2
> 0 for c2 ∈ [ 311 , 1] and z < 0.

Thus the sequential principal minors of S(D(2,w); c2, z) are positive and then the differentiation matrix
D(2,w)(c2, z) is positive definite. Theorem 2.1 gives the following result.
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Corollary 3.2. The EERK2-w method (3.5) with c2 ∈ [ 311 , 1] preserves the original energy dissipation
law (1.3) at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ −1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

d
(2,w)
kℓ (c2,−τLκ)δτU

n,ℓ+1
〉

for 1 ≤ j ≤ 2.

It is worth mentioning that the choice c2 ∈ [12 , 1] makes the EERK2-w method (3.5) uncondition-
ally contractive [28]. Similar to the ETD2RK scheme (3.4), the EERK2-w method (3.5) arrives at
the following weak variant of ETD2RK scheme for c2 ∈ [12 , 1],

Un,2 =φ0(−c2τLκ)U
n,1 + τc2φ1(−c2τLκ)gκ(U

n,1), (3.10a)

Un,3 =φ0(−τLκ)U
n,1 + (1− 1

2c2
)τφ1(−τLκ)gκ(U

n,1) +
τ

2c2
φ1(−τLκ)gκ(U

n,2). (3.10b)

As an advantage over the ETD2RK scheme (3.4), the weak variant (3.10) provides more choice of
the abscissa c2 to preserve both the contractivity and energy dissipation law unconditionally.

For the one-parameter EERK2-w method (3.5), the average dissipation rate

R(2,w)(c2, z) :=
z

2
+

1

2c2φ1(c2z)
+

c2
φ1(z)

for c2 ∈ (0, 1] and z ≤ 0. (3.11)

It is easy to find that

lim
z→0

R(2,w)(c2, z) =
1

2c2
+ c2 and lim

z→−∞
R(2,w)(c2, z) = +∞ for c2 ∈ (0, 1].

For properly large time-step sizes, the case c2 = 1 has the largest dissipation rate, see Figure 2 (b),
while the case c2 = 1

2 has the smallest rate near z = 0 and the case c2 = 3
11 has the smallest rate

for z < −3. More interestingly, the case c2 = 1
2 seems superior to the ETD2RK method (3.4) since

the dissipation rate of the former is much closer to 1. For all cases c2 ∈ [ 311 , 1], the average rate

R(2,w)(c2, z) > 1 and the EERK2-w method (3.5) always generates a time “ahead” for the gradient
flow system (2.9).

3.3 Remarks for the three-stage EERK method

We present some remarks for the one-parameter family of 3-stage EERK (called EERK2-S in short)
method proposed by Strehmel and Weiner [31] with second-order B-consistency,

0
c2 c2φ1,2

1 φ1,3 − 1
c2
φ2,3

1
c2
φ2,3

φ1 − φ2 0 φ2

. (3.12)

These methods satisfy all conditions up to stiff order two, see (4.1a)-(4.1d), described in Section 4.
By following the arguments in [28], we know that the EERK2-S method (3.12) with the abscissa
c2 = 1 is also unconditionally contractive since φ1(z) ≥ φ2(z) for z ≤ 0.

To establish the stage energy laws, we present the Butcher-Diff tableau

EERK2-S Butcher-Diff:

0
c2 c2φ1,2

1 φ1 − 1
c2
φ2 − c2φ1,2

1
c2
φ2

1−c2
c2

φ2 − 1
c2
φ2 φ2

.
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Note that the first three lines of this Butcher-Diff tableau are the same to the Butcher-Diff tableau
(3.6) of the EERK2 method (3.2). The stage energies E[Un,j ] (j = 2, 3) of the EERK2-S method
(3.12) have the same dissipation rates to those of the two-stage EERK2 method. Thus, to preserve the
energy dissipation law (1.3) at all stages, the condition c2 ∈ [12 , 1] is also necessary for the EERK2-S
method (3.12).

However, the second-order EERK2-S method (3.12) would be not competitive for solving the
gradient system (2.9). Actually, one has the average dissipation rate

R(2,S)(c2, z) =
z

2
+

1

3c2φ1(c2z)
+

c2
3φ2(z)

+
1

3φ2(z)
for z ≤ 0.

It is easy to obtain that

lim
z→0

R(2,S)(c2, z) =
2

3
+

2

3

(
c2 +

1

2c2

)
and lim

z→−∞
R(2,S)(c2, z) = +∞ for c2 ∈ (0, 1].

In Figure 3, we compare the average dissipation rates of the EERK2, EERK2-w and EERK2-S
methods. Taking into the contractivity account, we find that the EERK2-w method (3.5) with
c2 = 1

2 generates the minimum time “ahead” effect since the average dissipation rate R(2,w)(12 , z)
has the smallest value for any time-step sizes, cf. Figure 3 (a), while the EERK2-S method with
c2 = 1 produces the maximum time “ahead” effect. If the contractivity is not considered, Figure 3
(b) suggests that the EERK2 method (3.2) with c2 = 1

2 produces the minimum time “ahead” effect

among the three methods since the average dissipation rate R(2)(12 , z) has the smallest value.

(a) With contractivity (b) General case

Figure 3: Dissipation rate comparisons of EERK2, EERK2-w and EERK2-S methods.

Therefore, from the perspective of preserving the original energy dissipation rate, the EERK2-S
methods (3.12) with c2 ∈ [12 , 1] would be not competitive among second-order EERK methods for the
gradient system (2.9). As noted in [13, subsection 5.2], maybe more importantly, the three-stage the
EERK2-S method (3.12) is not preferred for semilinear parabolic problems because they are more
computationally expensive than the two-stage methods in previous subsections.

As the end of this section, Table 1 lists the abscissa choices for the contractivity and the energy
stability of three second-order EERK methods. Observations indicate that the abscissa condition
maintaining the energy stability is often different from that preserving the contractivity, with the
former being weaker than the latter. For the gradient flow system (1.2), certain time-stepping method
without the contractivity does not necessarily violate the energy dissipation law (1.3). Actually, next
subsection shows that there are many third-order EERK methods preserving the energy dissipation
law (1.3); however, as pointed out by [28, Section 4], scholars have not found that any EERK methods
of stiff convergence order greater than two can maintain the contractivity.
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Table 1: Choice of the abscissa c2 in second-order EERK methods.

Method Contractivity Energy law preserving Best dissipation rate

EERK2 (3.2) c2 = 1 c2 ∈ [12 , 1] c2 =
1
2

EERK2-w (3.5) c2 ∈ [12 , 1] c2 ∈ [ 311 , 1] c2 =
3
11 or 1

2

EERK2-S (3.12) c2 = 1 at least c2 ∈ [12 , 1] c2 =
1
2

4 Discrete energy laws of third-order methods

Third-order methods require three internal stages, s = 3, at least. The order conditions for three-
stage methods (2.7) are given by [13]

a41(−τLκ) + a42(−τLκ) + a43(−τLκ) = φ1(−τLκ), (4.1a)

a42(−τLκ)c2 + a43(−τLκ)c3 = φ2(−τLκ), (4.1b)

a21(−τLκ) = c2φ1(−c2τLκ), (4.1c)

a31(−τLκ) + a32(−τLκ) = c3φ1(−c3τLκ), (4.1d)

a42(−τLκ)c
2
2 + a43(−τLκ)c

2
3 = 2φ3(−τLκ), (4.1e)

a42(−τLκ)Jc
2
2φ2(−c2τLκ) + a43(−τLκ)Jψ2,3 = 0, (4.1f)

where J denotes arbitrary bounded operator and

ψ2,3 := c23φ2(−c3τLκ)− c2a32(−τLκ).

As pointed out in [13, subsection 5.2], condition (4.1f) can be fulfilled by setting (I) a42 = 0 and
ψ2,3 = 0; or (II) a42 = γa43 and c22φ2 + γψ2,3 = 0.

The choice (I) leads to the following one-parameter family of method (called EERK3-1 in short)

0

c2 c2φ1,2

2
3

2
3φ1,3 − 4

9c2
φ2,3

4
9c2
φ2,3

φ1 − 3
2φ2 0 3

2φ2

. (4.2)

The other choice (II) leads to the two-parameter family of method (called EERK3-2)

0

c2 c2φ1,2

c3 c3φ1,3 − a32 γc2φ2,2 +
c23
c2
φ2,3

φ1 − a42 − a43
γ

γc2+c3
φ2

1
γc2+c3

φ2

, (4.3)

where the parameter γ := (3c3−2)c3
(2−3c2)c2

for c2 ̸= 2
3 and c2 ̸= c3 (to ensure a32 ̸= 0). Also, it is to set

c3 ̸= 2
3 since it degrades into the EERK3-1 method (4.2) if c3 =

2
3 .

In the literature, there are some related three-stage methods that involve the function φ3. Cox
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and Matthews [3] constructed the ETD3RK method with Butcher tableau

0
1
2

1
2φ1,2

1 −φ1,3 2φ1,3

4φ3 − 3φ2 + φ1 −8φ3 + 4φ2 4φ3 − φ2

. (4.4)

This method satisfies the conditions (4.1a)-(4.1d), while the conditions (4.1e)-(4.1f) are satisfied only
in a very weak form (setting Lκ = 0). As a variant of the commutator-free Lie group CF3 method
due to Celledoni, Marthinsen, and Owren [2], the so-called ETD2CF3 method is given by

0
1
3

1
3φ1,2

2
3

2
3φ1,3 − 4

3φ2,3
4
3φ2,3

φ1 − 9
2φ2 + 9φ3 6φ2 − 18φ3 −3

2φ2 + 9φ3

. (4.5)

The ETD2CF3 method satisfies the conditions (4.1a)-(4.1c), while conditions (4.1d) and (4.1f) are
satisfied in the weak form (setting Lκ = 0).

4.1 Simplified procedure and two simple cases

As seen, the method coefficients (and the corresponding differentiation matrix as well) of high-order
EERK methods are always more complex than those of lower order methods. Therefore certain
symbolic computation system, such as the Wolfram Mathematica, will be employed to assist our
theoretical derivations for stage energy dissipation laws. To do that, we summarize our theoretical
framework in the subsections 2.1 and 2.2 as follows:

Step1. Compute the differentiation matrix D(z) defined via (2.17), or

D(z) =
(
E−1

s A(z)
)−1

+ zEs −
z

2
I = A(z)−1Es + zEs −

z

2
I,

where A(z) := (aij)s×s is the coefficient matrix with aij := ai+1,j(z) for 1 ≤ i, j ≤ s and
Es := (1i≥j)s×s is the lower triangular matrix full of element 1.

Step2. Compute the j-th leading principal minors Det [S(Dj ; z)] for 1 ≤ j ≤ s and check the positive
definiteness of the symmetric matrix S(D; z) for z ≤ 0.

Step3. Establish the stage energy dissipation laws if S(D; z) is positive definite and compute the
average dissipation rate R(z) using the coefficients ai+1,i (1 ≤ i ≤ s) of the EERK method.

In the following, we will apply the procedure (Step1)-(Step3) to examine the above third-order
EERK methods and pick out those preserving the energy dissipation law (1.3) unconditionally.

Before searching for some third-order EERK methods that preserve the energy dissipation law
(1.3) unconditionally, we first examine the well-known ETD3RK (4.4) and ETD2CF3 (4.5) methods
by computing the associated differential matrices D(3,e)(z) and D(3,f)(z). Figure 4 shows that the
determinant of S(D(3,e); z) is always negative for z < 0 and the differential matrix D(3,e)(z) is not
positive definite for any z < 0. The determinant of S(D(3,f); z) is always negative and the differential
matrix D(3,f)(z) is not positive definite for z < −6. That is to say, when applied to the gradient
system (1.2), both methods may destroy the energy dissipation law (1.3) (especially for large time-
step sizes) no matter how large the stabilization parameter κ we set in (2.8).

17



(a) ETD3RK [3] (b) ETD2CF3 [2]

Figure 4: Leading principal minors (LPM) of associated differential matrices.

4.2 One-parameter EERK3 methods

For the c2-parameterized EERK3-1 method (4.2), one has the following differentiation matrix

D(3,1)(c2, z) :=


1

c2φ1(c2z)
+ z

2 0 0

9c2
4φ2(

2z
3
)
+ 1

c2φ1(c2z)
− 3φ1(

2z
3
)

2φ2(
2z
3
)φ1(c2z)

+ z 9c2
4φ2(

2z
3
)
+ z

2 0

2c2φ1(c2z)−2φ1(z)+3φ2(z)
3c2φ1(c2z)φ2(z)

+ z 2
3φ2(z)

+ z 2
3φ2(z)

+ z
2

 . (4.6)

It is not difficult to check that

Det
[
S(D(3,1)

1 ; c2, z)
]
=
z(ec2z + 1)

2(ec2z − 1)
≥ 1

c2
for c2 ∈ (0, 1] and z ≤ 0.

By using the auxiliary function g31 in (A.5) and Proposition A.1, one has

Det
[
S
(
D

(3,1)
2 ; c2, z

)]
=

(ec2z − 1)−2z2

4(2z − 3e
2z
3 + 3)2

g31(c2, c2, z) > 0 for c2 ∈ [49 , 1] and z < 0.

Also, the third leading principal minor of S(D(3,1); c2, z) is given by

Det
[
S
(
D(3,1); c2, z

)]
=

z4(ec2z − 1)−2g32(c2, c2, z)

72(z − ez + 1)2(2z − 3e
2z
3 + 3)2

> 0 for c2 ∈ [49 , 1] and z < 0,

where g32 is defined by (A.5) and Proposition A.2 has been used. Then the sequential principal
minors of S(D(3,1); c2, z) are positive, and then the differentiation matrix D(3,1)(c2, z) is positive
definite. Theorem 2.1 gives the following result.

Corollary 4.1. The one-parameter EERK3-1 method (4.2) with c2 ∈ [49 , 1] preserves the energy
dissipation law (1.3) at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ −1

τ

j∑
k=1

〈
δτU

n,k+1,

k∑
ℓ=1

d
(3,1)
kℓ (c2,−τLκ)δτU

n,ℓ+1
〉

for 1 ≤ j ≤ 3.

For the one-parameter EERK3-1 method (4.2), the average dissipation rate

R(3,1)(c2, z) =
z

2
+

1

3c2φ1(c2z)
+

3c2

4φ2(
2z
3 )

+
2

9φ2(z)
.

18



It is easy to find that

lim
z→0

R(3,1)(c2, z) =
3c2
2

+
1

3c2
+

4

9
and lim

z→−∞
R(3,1)(c2, z) = +∞ for c2 ∈ [49 , 1].

As seen in Figure 5 (a), the case c2 = 1 has the largest dissipation rate, while the case c2 =
4
9 has the

smallest rate. For all cases c2 ∈ [49 , 1], the average dissipation rate R(3,1)(c2, z) > 1 and the EERK3-1
method (4.2) always generates a time “ahead” for the gradient system (2.9).

(a) R(3,1)(c2, z) (b) R(3,2)(c2, c3, z)

Figure 5: Averaged dissipation rates of EERK3-1 and EERK3-2 methods.

4.3 Two-parameter EERK3 methods

For the two-parameter EERK3-2 method (4.3), it is reasonable to properly confine ourselves possible
choices of the abscissas c2 and c3. According to Lemma 2.2, we consider the following average
dissipation rate

R(3,2)(c2, c3, z) = z +
1

3c2φ1(c2z)
+

1

3γc2φ2(c2z) +
3c23
c2
φ2(c3z)

+
γc2 + c3
3φ2(z)

, (4.7)

where γ := (3c3−2)c3
(2−3c2)c2

for c2 ̸= 2
3 , c2 ̸= c3 and c3 ̸= 2

3 (the choice c3 := 2
3 gives γ = 0 and the method

reduces to the EERK3-1 method (4.2)). It is not difficult to check that the following abscissa
(necessary) condition

6c3(c2 − c3)

(3c2 − 2)
− 1 +

2c2(3c2 − 2)

3c3(c2 − c3)
≥ 0 for c2 ̸=

2

3
and c3 ̸= c2 (4.8)

is sufficient to ensure that lim
z→−∞

R(3,2)(c2, c3, z) ≥ 0.

In general, the quartic inequality (4.8) gives rise to some theoretical trouble in proving the
positive definiteness of the associated differentiation matrix D(3,2)(c2, c3, z). Actually, to prove the

positivity of the second leading principal minor Det
[
S(D(3,2)

2 ; c2, c3, z)
]
, one has to handle sixth

degree polynomials with respect to c2 or c3 (while, in the previous subsection 3.1, only second degree
polynomials, see Propositions A.1 and A.2, should be handled to determine the positive definiteness
of the differentiation matrix D(3,1)(c2, z) of the EERK3-1 method); and the third leading principal

minor Det
[
S(D(3,2)

3 ; c2, c3, z)
]
involves eighth degree polynomials with respect to c2 or c3.

Since we are not able to present a complete discussion on the choices of c2 and c3 for the energy
stability of EERK3-2 method (4.3), this subsection examines some of concrete examples falling into
three cases listed as follows: (a) c2 = 1 with c3 ∈ (0, 1], (b) c2 ∈ (23 , 1) with c3 ∈ (0, c2), and (c)
c2 ∈ (0, 23) with c3 ∈ (c2, 1]. The settings in all cases are necessary for the condition (4.8).
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(a) z0 = −1 (b) z0 = −10

Figure 6: Leading principal minors Det[S(D(3,2)
j ; 1, c3, z0)] for j = 2, 3.

4.3.1 The case c2 = 1 with c3 ∈ (0, 1]

At first glance, the condition (4.8) always holds if c2 = 1. We are to choose c3 = 1
2 according to

some numerical tests, cf. Figure 6 (a)-(b), where the second and third leading principal minors of

S(D(3,2)
2 ; 1, c3, z) are depicted for z0 = −1 and z0 = −10, respectively.
It is not difficult to check that

Det
[
S(D(3,2)

1 ; 1, 12 , z)
]
=
z(ez/2 + 1)

2(ez/2 − 1)
> 0 for z ≤ 0.

Reminding the auxiliary function g41 and g42 defined by (B.7)-(B.8), we know that the second and
third leading principal minors of S(D(3,2); 1, 12 , z) are positive, that is,

Det
[
S
(
D

(3,2)
2 ; 1, 12 , z

)]
=

(ez/2 − 1)−2(ez/2 + 1)−2z2

4(−3z + 4ez/2 + ez − 5)2
g41(z) > 0 for z < 0,

Det
[
S
(
D(3,2); 1, 12 , z

)]
=

(ez − 1)−2(z − ez + 1)−2z4

128(−3z + 4ez/2 + ez − 5)2
g42(z) > 0 for z < 0,

where Proposition B.1 has been used. Then the sequential principal minors of S(D(3,2); 1, 12 , z) are

positive and then the differentiation matrix D(3,2)(1, 12 , z) is positive definite. Theorem 2.1 gives the
following result.

Corollary 4.2. The two-parameter EERK3-2 method (4.3) with c2 = 1 and c3 = 1
2 preserves the

energy dissipation law (1.3) at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ −1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

d
(3,2)
kℓ (1, 12 ,−τLκ)δτU

n,ℓ+1
〉

for 1 ≤ j ≤ 3.

4.3.2 The case c2 ∈ (23 , 1) with c3 ∈ (0, c2)

We consider c2 =
3
4 and choose c3 =

3
5 according to some numerical tests, cf. Figure 7 (a)-(b), where

the second and third leading principal minors of S(D(3,2)
2 ; 34 , c3, z) are depicted for z0 = −20 and

z0 = −30, respectively.
It is not difficult to check that

Det
[
S(D(3,2)

1 ; 34 ,
3
5 , z)

]
=
z(e3z/4 + 1)

2(e3z/4 − 1)
> 0 for z ≤ 0.
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(a) z0 = −20 (b) z0 = −30

Figure 7: Leading principal minors Det[S(D(3,2)
j ; 34 , c3, z0)] for j = 2, 3.

Reminding the auxiliary function g51 and g52 defined by (B.9)-(B.10), we know that the second and
third leading principal minors of S(D(3,2); 34 ,

3
5 , z) are positive, that is,

Det
[
S
(
D

(3,2)
2 ; 34 ,

3
5 , z
)]

=
100(e

3z
4 − 1)−2z2

(27z − 16e
3z
4 − 25e

3z
5 + 41)2

g51(z) > 0 for z < 0,

Det
[
S
(
D(3,2); 34 ,

3
5 , z
)]

=
300(e

3z
4 − 1)−2(z − ez + 1)−2z4

(27z − 16e
3z
4 − 25e

3z
5 + 41)2

g52(z) > 0 for z < 0,

where Proposition B.2 has been used. Then the sequential principal minors of S(D(3,2); 34 ,
3
5 , z) are

positive and then the differentiation matrix D(3,2)(34 ,
3
5 , z) is positive definite. Theorem 2.1 gives the

following result.

Corollary 4.3. The two-parameter EERK3-2 method (4.3) with c2 = 3
4 and c3 = 3

5 preserves the
energy dissipation law (1.3) at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ −1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

d
(3,2)
kℓ (34 ,

3
5 ,−τLκ)δτU

n,ℓ+1
〉

for 1 ≤ j ≤ 3.

4.3.3 The case c2 ∈ (0, 23) with c3 ∈ (c2, 1]

(a) z0 = −1 (b) z0 = −20

Figure 8: Leading principal minors Det[S(D(3,2)
j ; 12 , c3, z0)] for j = 2, 3.
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We consider c2 =
1
2 and choose the abscissa c3 =

7
10 according to some numerical tests, cf. Figure

8 (a)-(b), where the second and third leading principal minors of S(D(3,2)
2 ; 12 , c3, z) are depicted for

z0 = −1 and z0 = −20, respectively.
It is not difficult to check that

Det
[
S(D(3,2)

1 ; 12 ,
7
10 , z)

]
=
z(ez/2 + 1)

2(ez/2 − 1)
> 0 for z ≤ 0.

Reminding the auxiliary function g61 and g62 defined by (B.11)-(B.12), we know that the second and
third leading principal minors of S(D(3,2); 12 ,

7
10 , z) are positive, that is,

Det
[
S(D(3,2)

2 ; 12 ,
7
10 , z)

]
=

(ez/2 − 1)−2z2

(21z − 7ez/2 − 25e
7z
10 + 32)2

g61(z) > 0 for z < 0,

Det
[
S(D(3,2); 12 ,

7
10 , z)

]
=

100(ez/2 − 1)−2(z − ez + 1)−2z4

(21z − 7ez/2 − 25e
7z
10 + 32)2

g62(z) > 0 for z < 0,

where Proposition B.3 has been used. Then the sequential principal minors of S(D(3,2); 12 ,
7
10 , z) are

positive and then the differentiation matrix D(3,2)(12 ,
7
10 , z) is positive definite. Theorem 2.1 gives the

following result.

Corollary 4.4. The two-parameter EERK3-2 method (4.3) with c2 = 1
2 and c3 = 7

10 preserves the
energy dissipation law (1.3) at all stages in the sense that

E[Un,j+1]− E[Un,1] ≤ −1

τ

j∑
k=1

〈
δτU

n,k+1,
k∑

ℓ=1

d
(3,2)
kℓ (12 ,

7
10 ,−τLκ)δτU

n,ℓ+1
〉

for 1 ≤ j ≤ 3.

By the formula (4.7), we compute the average dissipation rates R(3,2)(c2, c3, z) for the above three
examples in Corollaries 4.2, 4.3 and 4.4. For the above three cases of EERK3-2 method (4.3), see
Figure 5 (b), the case c2 = 1 with c3 =

1
2 has the largest dissipation rate, while the case c2 =

1
2 with

c3 = 7
10 has the smallest dissipation rate. Also, Figure 3 (b) suggests that the EERK3-1 method

(3.2) with c2 =
4
9 produces the minimum time “ahead” effect among the third-order EERK methods

in this section since the average dissipation rate R(3,1)(49 , z) has the smallest value. As the end of this
section, Table 2 summarizes the abscissa choices for the energy stability of some third-order EERK
methods.

Table 2: The parameter choices in third-order EERK methods.

Method Unconditional energy law preserving Best dissipation rate

EERK3-1 (4.2) c2 ∈ [49 , 1] c2 =
4
9

EERK3-2 (4.3)
c2 = 1, c3 =

1
2

c2 =
1
2 , c3 =

7
10c2 =

3
4 , c3 =

3
5

c2 =
1
2 , c3 =

7
10

ETD3RK (4.4) NPD* –

ETD2CF3 (4.5) NPD –
* NPD means that there exists a z0 < 0 such that the associated differential matrix D(z0) is not positive semi-definite.
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5 Numerical experiments

For the sake of generality, we use the Cahn-Hilliard model, ∂tu + ϵ2∆2u = ∆(u3 − u), to perform
some numerical tests because this paper mainly focuses on the original energy dissipation properties
of various EERK methods (2.7). Let Lh be the discrete matrix of the Laplacian operator −∆. In
such situation, the results of Theorem 2.1 are valid by setting Lκ := ϵ2L2

h + κLh and replacing the
L2 inner product ⟨u, v⟩ by the H−1 inner product ⟨u, v⟩−1 := ⟨u, L−1

h v⟩ on the zero-mean function
space {v|⟨v, 1⟩ = 0}. That is, we have the following discrete energy law

E[Un,j+1]− E[Un,1] ≤ − 1

τ

j∑
k=1

〈
δτU

n,k+1,

k∑
ℓ=1

dkℓ
(
− ϵ2τL2

h − κτLh

)
δτU

n,ℓ+1
〉
−1

for 1 ≤ j ≤ s.

In the first example, we examine the convergence by considering the EERK2-w methods (3.5) and
the EERK3-1 methods (4.2) for different abscissas c2. In the second example, the energy dissipation
rates are demonstrated for different choices of the method parameters including the abscissa c2, the
stabilized parameter κ and the time-step size τ .

5.1 Convergence tests

Example 1. Consider the Cahn-Hilliard model on Ω = (0, 2π) with ϵ = 0.2 subject to the initial data
u0 = 0.5 sin(x) and Dirichlet boundary condition. Always, we use the center difference approximation
with the spacing h = π/320 for spatial discretization.

Table 3: EERK2-w errors with different abscissas c2 for Example 1.

τ = 0.01
c2 = 1 c2 =

3
4 c2 =

1
2 c2 =

3
11

e(τ) Order e(τ) Order e(τ) Order e(τ) Order

τ 6.106e-03 - 5.149e-03 - 4.122e-03 - 3.119e-03 -

τ/2 1.750e-03 1.80 1.462e-03 1.82 1.161e-03 1.83 8.756e-04 1.83

τ/4 4.744e-04 1.88 3.932e-04 1.89 3.098e-04 1.91 2.323e-04 1.91

τ/8 1.220e-04 1.96 1.001e-04 1.97 7.798e-05 1.99 5.756e-05 2.01

We always choose the final time T = 8 and the stabilized parameter κ = 2 in our tests. We run
the EERK2-w methods (3.5) with four different abscissas c2 = 1, 3

4 ,
1
2 and 3

11 for a small time step
τ = 0.001. The four schemes work well and the corresponding solution and energy curves (omitted
here) are hard to distinguish from each other. The numerical solution of the EERK2-w method with
c2 =

3
11 and τ = 0.01/32 is taken as the reference solution u⋆h in the convergence tests. The solution

errors recorded in Table 3 are obtained on halving time steps τ = 0.01/2k for k = 0, 1, · · · , 3 and
the convergence order is computed by Order ≈ log2 (e(τ)/e(τ/2)) where e(τ) is the L∞ norm error
defined by e(τ) := max1≤n≤N ∥unh − u⋆h∥∞. The numerical results in Table 3 confirm the second-order
time accuracy of the EERK2-w methods (3.5).

It is interesting to note that, for each time step, the EERK2-w solutions with different c2 have
slight differences in precision, and the method with c2 = 3

11 generates a bit more accurate solution
than other cases. This interesting phenomenon is also observed from the solutions (omitted here) of
EERK2 methods (3.2): the method with c2 = 1

2 generates a bit more accurate solution than other
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Table 4: EERK3-1 errors with different abscissas c2 for Example 1.

τ = 0.01
c2 = 1 c2 =

2
3 c2 =

1
2 c2 =

4
9

e(τ) Order e(τ) Order e(τ) Order e(τ) Order

τ 6.369e-4 - 4.670e-4 - 3.708e-4 - 3.368e-4 -

τ/2 1.107e-4 2.52 7.922e-5 2.56 6.202e-5 2.58 5.604e-5 2.59

τ/4 1.737e-5 2.67 1.218e-5 2.70 9.425e-6 2.72 8.479e-6 2.72

τ/8 2.511e-6 2.79 1.729e-6 2.82 1.321e-6 2.83 1.183e-6 2.84

choices c2 >
1
2 including the widespread ETDRK method [3] with c2 = 1, at least for Example 1.

Coincidentally, the minimum abscissa choice preserving the energy dissipation law (1.3) are c2 =
1
2 for

the EERK2 methods (3.2) and c2 =
3
11 for the EERK2-w methods (3.5), respectively, see Corollaries

3.1 and 3.2.
The numerical results of EERK3-1 methods (4.2), listed in Table 4, are obtained in similar to

those in Table 3. As seen, the EERK3-1 methods always generate third-order solutions, at least for
the smooth initial data. Also, we observe that the methods with c2 >

4
9 generate a bit less accurate

solution than the choice c2 = 4
9 , which is the minimum abscissa preserving the energy dissipation

law (1.3) for the EERK3-1 methods, see Corollary 4.1.

5.2 Energy dissipation property

Example 2. Consider the Cahn-Hilliard model on Ω = (0, 2π) with ϵ = 0.2 and zero-valued Dirichlet
boundary condition subject to the following initial data, see [7, guide19],

u0 =
1

3
tanh(2 sinx)− e−23.5(x−π

2
)2 + e−27(x−4.2)2 + e−38(x−5.4)2 .

We use the center difference approximation with the spacing h = π/320 for spatial discretization.

Taking the parameter κ = 2 and the time-step τ = 0.1, we run the EERK2-w methods (3.5)
with four different abscissas c2 = 1, 34 ,

1
2 ,

3
11 , and the EERK3-1 methods (4.2) with four different

abscissas c2 = 1, 23 ,
1
2 ,

4
9 to the final time T = 160. The corresponding numerical solution and discrete

energy are depicted in Figures 9-10, respectively. Taking a small step size τ = 0.001, we compute
the reference solutions and energies (marked by “Ref” here and hereafter) by using the EERK2-w
method with c2 =

3
11 and the EERK3-1 method with c2 =

4
9 , respectively. As predicted by Corollaries

3.2 and 4.1, the original energies E[unh] generated by the two methods always decay over the time.
As seen in Figure 9(b), there are some obvious differences in energy dissipation rates for different

abscissas c2. It is not mysterious, according to the discrete energy law in Corollary 3.2, because the
EERK2-w methods with different abscissas c2 have different differentiation matricesD(2,w)(c2, z). For
this example, the discrete energy produced by the case c2 = 1 decays fastest, while that generated by
the case c2 =

3
11 decays slowest. Qualitatively, they may be explained by the average dissipation rate

R(2,w)(c2, z) in Figure 2(b), in which we see that R(2,w)(1, z) has the largest value and R(2,w)( 3
11 , z)

has the smallest one for properly large |z| ≥ 4. Similarly, the differences in energy dissipation rates
for the EERK3-1 methods with different abscissas c2, see Figure 10(b), can be attributed to the
differences of differentiation matrices D(3,1)(c2, z) defined in (4.6). Also, they may be qualitatively
explained by the average dissipation rate R(3,1)(c2, z) in Figure 5(a), in which we see that R(3,1)(1, z)
has the largest value and R(3,1)(49 , z) has the smallest one for any z < 0.
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(a) final solution uN
h (b) energy E[un

h]

Figure 9: Energy dissipation of the EERK2-w methods (3.5) with κ = 2 and τ = 0.1.

(a) final solution uN
h (b) energy E[un

h]

Figure 10: Energy dissipation of the EERK3-1 methods (4.2) with κ = 2 and τ = 0.1.

(a) final solution uN
h (b) energy E[un

h]

Figure 11: Energy dissipation of the EERK3-1 method (4.2) with c2 =
4
9 and τ = 0.1.

Obviously, in addition to the different dissipation rates brought by the different choices of c2, the
time step size τ and stabilized parameter κ also have some significant impacts on the discrete energy
dissipation property. To explore the influence of stabilized parameter κ, we take a fixed time-step
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(a) final solution uN
h (b) energy E[un

h]

Figure 12: Energy dissipation of the EERK3-1 method (4.2) with c2 =
4
9 and κ = 2.

τ = 0.1 and run the EERK3-1 method with c2 = 4
9 to the final time T = 160 for four different

parameters κ = 0.1, 1, 2 and 4, cf. Figure 11, where the reference solution is computed with κ = 4
and τ = 0.001. The discrete energy for κ = 0.1 appears non-physical oscillations since the nonlinear
stability could not be controlled by the small stabilized parameter. In practice, a properly large κ
is always necessary to maintain the stability especially when some large time step τ is employed.
With the increase of κ, the energy curve appears some “ahead” effect, that is, the discrete energy
dissipates faster as the stabilization parameter κ becomes larger.

Now we fix the stabilized parameter κ = 2 and run the EERK3-1 method with c2 = 4
9 for four

different time steps τ = 0.5, 0.1, 0.05 and 0.01, cf. Figure 12, in which the reference solution is
obtained with τ = 0.001. We see that, with the increase of time-step size, the energy curve shows
some “ahead” effect, that is, the discrete energy dissipate faster as the step size τ becomes larger.
Note that, the numerical behaviors in Figure 12(b) and 11(b) would be predictable by the average
dissipation rate R(3,1)(49 , z), see Figure 5(a), since it is increasing with respect to |z|. Actually, we
also run the EERK2-w method with c2 =

1
2 for Example 2 and find similar behaviors (omitted here)

of the discrete energy curves for different time steps τ and different stabilized parameters κ.

6 Fourth-order EERK methods and concluding remarks

We consider firstly three four-stage fourth-order EERK methods from [3, 19, 31]. As noted in [13],
these methods do not have the stiff order four although they show a higher order of convergence
(generically up to order four) under favorable circumstances. The first one is the following exponential
variant of the classical Runge-Kutta method developed by Cox and Matthews [3]

0
1
2

1
2φ1,2

1
2 0 1

2φ1,3

1 1
2φ1,3(φ0,3 − 1) 0 φ1,3

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 4φ3 − φ2

. (6.1)
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The second one is the Krogstad’s method [19] given by

0
1
2

1
2φ1,2

1
2

1
2φ1,3 − φ2,3 φ2,3

1 φ1,4 − 2φ2,4 0 2φ2,4

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 −φ2 + 4φ3

. (6.2)

The last is the following method from Strehmel and Weiner [31, Example 4.5.5],

0
1
2

1
2φ1,2

1
2

1
2φ1,3 − 1

2φ2,3
1
2φ2,3

1 φ1,4 − 2φ2,4 −2φ2,4 4φ2,4

φ1 − 3φ2 + 4φ3 0 4φ2 − 8φ3 −φ2 + 4φ3

. (6.3)

We compute the associated differential matrices D(4,C)(z), D(4,K)(z) and D(4,S)(z) of the above three
methods (6.1)-(6.3). Numerical results in Figure 13 (a)-(c) show that the third and fourth leading
principal minors are not always positive for z < 0. That is, the differential matrices D(4,C)(z),
D(4,K)(z) and D(4,S)(z) are not positive (semi-)definite. It seems that these EERK methods would
not be stabilized to preserve the energy dissipation law (1.3) no matter how large the stabilization
parameter κ we set in (2.8).

(a) Cox and Matthews (2002) (b) Krogstad (2005)

(c) Strehmel and Weine (1992) (d) Hochbruck and Ostermann (2005)

Figure 13: Some leading principal minors (LPM) of associated differential matrices generated by
existing fourth-order EERK methods in [3, 13,19,31].
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Hochbruck and Ostermann [13] constructed the following five-stage EERK method which has
been proved to have the stiff order four,

0
1
2

1
2φ1,2

1
2

1
2φ1,3 − φ2,3 φ2,3

1 φ1,4 − 2φ2,4 φ2,4 φ2,4

1
2

1
2φ1,5 − 2a5,2 − a5,4 a5,2 a5,2

1
4φ2,5 − a5,2

φ1 − 3φ2 + 4φ3 0 0 −φ2 + 4φ3 4φ2 − 8φ3

, (6.4)

with a5,2 = 1
2φ2,5 − φ3,4 +

1
4φ2,4 − 1

2φ3,5. Although this five-stage method is fourth-order accurate
for semilinear parabolic problems, it may be not a good candidate for solving the gradient system
(2.9). Actually, it would not be stabilized to preserve the energy dissipation law (1.3) unconditionally
because the associated differentiation matrix D(4,H)(z) is not positive definite, see Figure 13(d), in
which the curves of fourth and fifth leading principal minors of S(D(4,H); z) are depicted.

Up to now, we are not able to find a fourth-order EERK method that preserves the energy
dissipation law (1.3) unconditionally. Nonetheless, this issue would be theoretically interesting and
practically important in simulating the gradient system (1.2).

To end this article, we summarize our results in the following. With a unified theoretical frame-
work and a new indicator, namely average dissipation rate, for the energy dissipation properties of
EERK methods, we examine some of popular methods and find:

(i) Among second-order EERK methods, the average dissipation rate of the EERK2 method (3.2)
with c2 =

1
2 is the closest to the continuous one so that it preserves the energy dissipation law

(1.3) best although the ETD2RK method (3.4), corresponding to the EERK2 method (3.2)
with c2 = 1, seems the most popular for gradient flows, see [3, 5, 6, 9, 15, 25, 34]. If taking into
the contractivity account, the EERK2-w method (3.5) with c2 =

1
2 generates less time “ahead”

effect than the well-known ETD2RK method.

(ii) Among third-order EERKmethods, the popular ETD3RK and ETD2CF3 methods may destroy
the energy dissipation law (1.3), especially for large time-step sizes. For the EERK3-1 (4.2) and
EERK3-2 (4.3) methods, one can choose proper parameters (abscissas) to ensure the preserving
of original dissipation law, while the EERK3-1 method (4.2) with c2 =

4
9 produces the minimum

time “ahead” effect among the considered third-order EERK methods.

At the same time, our theory is far away from complete. There are many interesting issues that we
have not yet addressed. Some of them are listed as follows:

(a) As mentioned, we are not able to find (or prove the non-existence of) a fourth-order EERK
method that preserves the energy dissipation law (1.3) unconditionally.

(b) It is noticed that the average dissipation ratesR(z) of the mentioned EERK methods preserving
the energy dissipation law (1.3) are greater than 1 and unbounded, that is, R(z) → +∞ as
z → −∞. The method with a bounded average dissipation rate would be significantly preferred
in the long-time adaptive simulation approaching the steady state. Is there such an EERK
method or how do we construct it?

(c) At least, is there a second-order EERK method that has a better dissipation rate than the
EERK2 method (3.2) with c2 = 1

2? Is there a third-order EERK method that has a better
dissipation rate than the EERK3-1 method (4.2) with c2 =

4
9?
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A Auxiliary functions for EERK3-1 methods (4.2)

To examine the second and third leading principal minors of S(D(3,1); c2, z) with the differentiation
matrix (4.6), we introduce two auxiliary functions g31 and g32 as follows,

g31(c2, σ, z) := −9c22z
2e2σz + 18c2ze

(σ+ 4
3
)z + 6c2ze

(σ+ 2
3
)z((3c2 − 2)z − 3)− 9e

4z
3 (c22z

2 + 1)

− 6e
2z
3 ((3c2 − 2)z − 3) + (2z + 3)(2(3c2 − 1)z − 3), (A.5)

g32(c2, σ, z) := −27c22z(−z2 + 2z + 3e2z − 2ez(z + 3) + 3)(e
2z
3 − eσz)2 − 4(e2z − 1)z(2z − 3e

2z
3 + 3)2

+ 6c2
[
−12z2e(σ+ 4

3
)z + 4(2z + 3)z2e(σ+ 2

3
)z + 2(2z2 + 9z + 9)zeσz+z + 18ze(σ+ 8

3
)z − 6(z + 3)ze(σ+ 5

3
)z
]

+ 6c2
[
−6(2z + 3)ze(σ+2)z + 9e

2z
3 (z2 − 2z − 3)− 6ez(2z2 + 9z + 9)− 3e

8z
3 (8z2 + 6z + 9)− 6e

7z
3 (z + 3)z

]
+ 6c2

[
+2e

5z
3 (2z3 + 9z2 + 18z + 27) + e2z(8z3 + 12z2 + 18z + 27) + 3(−2z3 + z2 + 12z + 9) + 18e

10z
3 z

]
. (A.6)

For any constants p2 > 0 and p1 ≥ 0, one has limz→−∞ zp1ep2z → 0. The dominant parts of g31
and g32 are simple although the expressions of them seem rather complex. Thus the computer-aided
proof is always applied for simplicity of presentation. We will prove the following results by applying
the technique of comparison function developed in Propositions 3.1 and 3.2.

Proposition A.1. For the function g31 in (A.5), g31(c2, c2, z) > 0 if c2 ∈ [49 , 1] and z < 0.

Proof. For the function g31 in (A.5), we consider a comparison function g∗31(c2, z) = g31(c2,
4
9 , z) such

that the difference

g31(c2, c2, z)− g∗31(c2, z) = 3c2(e
4z
9 − ec2z)e

4z
9

(
3c2z

2 + 3c2z
2e(c2−

4
9
)z − 2e

2z
9 ((3c2 − 2)z2 − 3z)− 6ze

8z
9

)
≥ − 3c22z(e

4z
9 − ec2z)e

4z
9

(
− 3z(1 + e

5z
9 − 2e

2z
9 ) + 2c−1

2 e
2z
9 (3e

2z
3 − 3− 2z)

)
≥ − 3c22z(e

4z
9 − ec2z)e

4z
9 r31(z) ≥ 0 for c2 ∈ [49 , 1] and z < 0,

where the auxiliary function r31(z) := −3z(1 + e
5z
9 − 2e

2z
9 ) + 2e

2z
9 (3e

2z
3 − 3 − 2z) is decreasing and

positive for z < 0, cf. Figure 14 (a). Note that, g∗31(c2, z) is a concave, quadratic polynomial with
respect to c2 because

∂2c2g
∗
31(c2, z) = −9e

8z
9 (e

2z
9 − 1)2z2 < 0.

Through lengthy and simple calculations, it is not difficult to check that, cf. Figure 14 (b),

g∗31(1, z) > 0 and g∗31(
4
9 , z) > 0 for z < 0.

They imply that g∗31(c2, z) > 0 and then g31(c2, c2, z) > 0 for c2 ∈ [49 , 1] and z < 0.

Proposition A.2. For the function g32 in (A.6), g32(c2, c2, z) > 0 if c2 ∈ [49 , 1] and z < 0.

Proof. For the function g32 in (A.6), we consider a comparison function g∗32(c2, z) := g32(c2,
4
9 , z) such

that the difference

g32(c2, c2, z)− g∗32(c2, z) = − 3c22z(e
4z
9 − ec2z)e

2z
3

[
9
(
e(c2−

2
3
)z + e−

2z
9 − 2

)
r32,1(z) + 4c−1

2 r32,2(z)
]

≥ − 3c22z(e
4z
9 − ec2z)e

2z
3

[
9(e

z
3 + e−

2z
9 − 2)r32,1(z) + 4r32,2(z)

]
,
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(a) r31(z) (b) g∗31(c2, z)

(c) r32,1(z) and r32,2(z) (d) g∗32(c2, z)

Figure 14: Auxiliary functions r31, g
∗
31, r32,1, r32,2 and g∗32.

where the two auxiliary functions r32,1 and r32,2 defined by

r32,1(z) := z2 − 2z − 3e2z + 2ez(z + 3)− 3,

r32,2(z) := 4z2 + 6z + e
z
3 (2z2 + 9z + 9)− 6e

2z
3 z + 9e2z − 3ez(z + 3)− 3e

4z
3 (2z + 3).

Since the functions r32,1 and r32,2 are decreasing and positive for z < 0, cf. Figure 14 (c), we see that
g32(c2, c2, z) ≥ g∗32(c2, z) for c2 ∈ [49 , 1] and z < 0.

Note that, g∗32(c2, z) is a concave, quadratic polynomial with respect to c2 due to

∂2c2g
∗
32 = 27ze

8z
9 (e

2z
9 − 1)2r32,1(z) < 0 for z < 0.

By simple but lengthy calculations, it is not difficult to check that, cf. Figure 14 (d),

g∗32(1, z) > 0 and g∗32(
4
9 , z) > 0 for z < 0.

They imply that g∗32(c2, z) > 0 and then g32(c2, c2, z) > 0 for c2 ∈ [49 , 1] and z < 0.

B Auxiliary functions for EERK3-2 methods (4.3)

To examine the second and third leading principal minors of S(D(3,2); 1, 12 , z), we introduce two
auxiliary functions g41 and g42 as follows,

g41(z) := 5(3z2 + 2z − 5) + 8e
3z
2 (z2 − 5z − 1)− 2ez(8z2 + z + 3)

+ e2z(−16z2 + 32z − 1)− 8ez/2(z − 5) + 8e
5z
2 z. (B.7)

g42(z) := 800 + 1241z + 334z2 − 71z3 + 8ez/2(z2 − 97z − 80)− 8e
5z
2 (121z2 + 253z + 80)

− 2e3z(149z2 + 19z + 80) + 8e
3z
2 (5z3 + 160z2 + 216z + 160) + 2ez(40z3 − 331z2 − 981z − 880)

+ e2z(431z3 + 306z2 + 928z + 1120) + 1072e
7z
2 z − 169e4zz. (B.8)
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For simplicity of presentation, we always use the computer-aided proof to prove the positivity of the
involved auxiliary functions.

(a) r41(z) (b) g41(z)

(c) r42(z) (d) g42(z)

Figure 15: Curves of the functions g41(z) and g42(z).

Proposition B.1. The functions g41 and g42 in (B.7)-(B.8) are positive for z < 0.

Proof. Note that, the quadratic polynomial part ḡ41(z) := 5(3z2+2z−5) of g41(z) is decreasing with
respect to z ∈ (−1/3, 0) and limz→−∞ ḡ41(z) = +∞. The remaining part r41(z) := g41(z) − ḡ41(z)
approaches zero when |z| is properly large such as z ≤ z0 := −30, see Figure 15(a). Actually,
r41(z0) ≈ −8.6× 10−5. That is to say, ḡ41 is dominant for z ∈ (−∞, z0). As seen in Figure 15(b), g41
is decreasing and positive inside the finite interval (z0, 0). They lead to g41(z) > 0 for z < 0.

Similarly, the cubic polynomial part ḡ42(z) := 800+1241z+334z2−71z3 of g42(z) is decreasing for
z ∈ (−3/2, 0) and limz→−∞ ḡ42(z) = +∞. The remaining part r42(z) := g42(z) − ḡ42(z) approaches
zero when |z| is properly large such as z ≤ z0 := −30, see Figure 15(c). Actually, r42(z0) ≈
−9.1 × 10−3. That is to say, ḡ42 is dominant for z ∈ (−∞, z0). As seen in Figure 15(d), g42 is
decreasing and positive inside (z0, 0). They imply that g42(z) > 0 for z < 0.

To examine the second and third leading principal minors of S(D(3,2); 34 ,
3
5 , z), we define two
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auxiliary functions g51 and g52 as follows,

g51(z) :=
1

6400

[
8(567z2 − 1353z − 3362)− 625e

6z
5 (9z2 + 16)− 50e

27z
20 (99z2 + 492z + 256)

−e
3z
2 (5625z2 + 4096) + 9600e

21z
10 z + 15000e

39z
20 z + 128e

3z
4 (33z + 164) + 200e

3z
5 (33z + 164)

]
, (B.9)

g52(z) :=
1

8× 106

[
8(−96681z3 + 600979z2 + 1843541z + 1050625) + 1875e

6z
5 (533z2 − 1148z − 385)z − 2332800e

21z
10 z2

+ 150e
27z
20 (7319z2 + 46552z + 46361)z + 3e

3z
2 (453125z2 + 62500z − 58849)z − 1000e

13z
5 (2754z2 + 1107z + 5125)

− 400ez(6018z2 + 35569z + 42025)− 128e
3z
4 (7319z2 + 46552z + 25625)− 200e

3z
5 (7319z2 + 46552z + 25625)

− 8e
11z
4 (529821z2 + 54243z + 410000) + 200e

8z
5 (2106z3 + 37287z2 + 52087z + 51250)− 3645000e

39z
20 z2

+ 200e
7z
4 (6642z3 + 24111z2 + 31963z + 32800) + 8e2z(137781z3 − 328779z2 − 65091z + 1050625)− 7203e

7z
2 z

−46875e
16z
5 z + 7650750e

67z
20 z − 7350e

5z
2 (2z − 25)z + 18750e

11z
5 (14z + 41)z − 300e

47z
20 (6482z + 48683)z

]
. (B.10)

(a) r51(z) (b) g51(z)

(c) r52(z) (d) g52(z)

Figure 16: Curves of the functions g51(z) and g52(z).

Proposition B.2. The functions g51 and g52 in (B.9)-(B.10) are positive for z < 0.

Proof. The quadratic polynomial part ḡ51(z) :=
1

800(567z
2−1353z−3362) of g51(z) is decreasing with

respect to z ∈ (−∞, 0) and limz→−∞ ḡ51(z) = +∞. The remaining part r51(z) := g51(z) − ḡ51(z)
approaches zero when |z| is properly large such as z ≤ z0 := −20, see Figure 16(a). Actually,
r51(z0) ≈ −9.8× 10−5. That is to say, ḡ51 is dominant for z ∈ (−∞, z0). As seen in Figure 16(b), g51
is decreasing and positive inside (z0, 0). It is easy to conclude that g51(z) > 0 for z < 0.

Similarly, the cubic polynomial part ḡ52(z) :=
1

106
(−96681z3 + 600979z2 + 1843541z + 1050625)

of g52(z) is decreasing for z ∈ (−3/2, 0) and limz→−∞ ḡ52(z) = +∞. The remaining part r52(z) :=
g52(z) − ḡ52(z) approaches zero when |z| is properly large such as z ≤ z0 := −20, see Figure 16(c).
Actually, r52(z0) ≈ −3.2× 10−4. That is to say, ḡ52 is dominant for z ∈ (−∞, z0). As seen in Figure
16(d), g52 is decreasing and positive inside (z0, 0). They imply that g52(z) > 0 for z < 0.
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To examine the second and third leading principal minors of S(D(3,2); 12 , 7/10, z), we define two
auxiliary functions g61 and g62 as follows,

g61(z) :=
1

16

[
−625e

7z
5 (z2 + 4)− 50e

6z
5 (17z2 + 64z + 28) + 16(21z2 − 136z − 256)

−ez(625z2 + 196) + 700e
17z
10 z + 2500e

19z
10 z + 28ez/2(17z + 64) + 100e

7z
10 (17z + 64)

]
, (B.11)

g62(z) :=
1

2000000

[
2560000 + 4806561z + 2007966z2 − 25151z3 − 1102500e

19z
10 z2 + 2500e

7z
5

(
80z2 − 176z + 185

)
z

+ 50e
6z
5

(
8597z2 + 38299z + 32348

)
z − 250e

27z
10

(
1911z2 − 2688z + 8000

)
− 28ez/2

(
8597z2 + 38299z + 20000

)
− 100e

7z
10

(
8597z2 + 38299z + 20000

)
− 14e

5z
2

(
76881z2 + 63552z + 40000

)
+ 350e

3z
2

(
1029z3 + 4443z2 + 5606z + 3200

)
+ 50e

17z
10

(
6027z3 + 33159z2 + 63158z + 80000

)
+ e2z

(
148176z3 − 893416z2 + 318039z + 2560000

)
+ ez

(
265625z3 − 1032550z2 − 5015039z − 5120000

)
+2165500e

16z
5 z − 62500e

17z
5 z − 109561e3zz − 12500e

12z
5 (11z + 32)z − 50e

11z
5 (17509z + 75658)z

]
. (B.12)

(a) r61(z) (b) g61(z)

(c) r62(z) (d) g62(z)

Figure 17: Curves of the functions g61(z) and g62(z).

Proposition B.3. The functions g61 and g62 in (B.11)-(B.12) are positive for z < 0.

Proof. The quadratic polynomial part ḡ61(z) := 21z2 − 136z − 256 of g61(z) is decreasing with
respect to z ∈ (−∞, 0) and limz→−∞ ḡ61(z) = +∞. The remaining part r61(z) := g61(z) − ḡ61(z)
approaches zero when |z| is properly large such as z ≤ z0 := −30, see Figure 17(a). Actually,
r61(z0) ≈ −2.4× 10−4. That is to say, ḡ61 is dominant for z ∈ (−∞, z0). As seen in Figure 17(b), g61
is decreasing and positive inside (z0, 0). It is easy to conclude that g61(z) > 0 for z < 0.

Similarly, the cubic polynomial part ḡ62(z) :=
1

2000000(2560000+4806561z+2007966z2−25151z3)
of g62(z) is decreasing for z ∈ (−3/2, 0) and limz→−∞ ḡ62(z) = +∞. The remaining part r62(z) :=
g62(z) − ḡ62(z) approaches zero when |z| is properly large such as z ≤ z0 := −30, see Figure 17(c).
Actually, r62(z0) ≈ −2.9× 10−5. That is to say, ḡ62 is dominant for z ∈ (−∞, z0). As seen in Figure
17(d), g62 is decreasing and positive inside (z0, 0). They imply that g62(z) > 0 for z < 0.
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