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A Spatiotemporal Hand-Eye Calibration for
Trajectory Alignment in

Visual(-Inertial) Odometry Evaluation
Zichao Shu1, Lijun Li1, Rui Wang2 and Zetao Chen1

Abstract—A common prerequisite for evaluating a visual(-
inertial) odometry (VO/VIO) algorithm is to align the timestamps
and the reference frame of its estimated trajectory with a refer-
ence ground-truth derived from a system of superior precision,
such as a motion capture system. The trajectory-based alignment,
typically modeled as a classic hand-eye calibration, significantly
influences the accuracy of evaluation metrics. However, tradi-
tional calibration methods are susceptible to the quality of the
input poses. Few studies have taken this into account when
evaluating VO/VIO trajectories that usually suffer from noise and
drift. To fill this gap, we propose a novel spatiotemporal hand-
eye calibration algorithm that fully leverages multiple constraints
from screw theory for enhanced accuracy and robustness. Exper-
imental results show that our algorithm has better performance
and is less noise-prone than state-of-the-art methods.

Index Terms—Calibration and Identification, Performance
Evaluation and Benchmarking, Visual-Inertial SLAM.

I. INTRODUCTION

V ISUAL(-INERTIAL) odometry (VO/VIO) is known to
provide state estimation of motion devices and has a

wide range of application domains, such as robotics, extended
reality, and autonomous driving. The performance evaluation is
a fundamental task in VO/VIO research and application, where
metrics are typically quantified by evaluating the estimated
trajectory from VO/VIO with respect to the ground-truth.
Commonly, the ground-truth trajectory can be obtained by
tracking the motion device simultaneously with a system
of superior precision, e.g., using a motion capture (MoCap)
system, laser tracker, etc [1]–[3]. There are two main problems
when comparing the estimated trajectory against the ground-
truth: the trajectory pair is usually on different clock domains
(thus with non-corresponding timestamps) and expressed in
different global and local reference frames. While well-known
methods such as the Umeyama algorithm [4] can align the
global frames, the spatiotemporal alignment, which calculates
the offsets of timestamps and local frames of the trajectory
pair, still needs meticulous handling.
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Switzerland. {wangr@microsoft.com}

Digital Object Identifier (DOI): see top of this page.

The spatiotemporal alignment problem above can be mod-
eled as a classic hand-eye calibration problem: given the local
frames of the ground-truth and estimated trajectory as the
hand and the eye respectively, calculate the timestamp offset
and estimate the homogeneous transformation between them.
While the essence of hand-eye calibration problem has been
well addressed in numerous studies [5]–[10], the accuracy and
robustness may still be compromised in practical applications.
The error introduced in this step will affect the transformation
of the ground-truth trajectory, thereby exerting a substantial
influence on the subsequent evaluation metrics.

A. Motivation

In this work, we consider the scenario in which only the
trajectory information is available. This is common among
commercial consumer devices, such as extended reality head-
sets or home robots, where the original raw sensor data used
to derive the device trajectories are not accessible by users.
Existing hand-eye calibration algorithms can be categorized
into two distinct approaches: tightly-coupled and loosely-
coupled. The former typically joints raw data from the sensors
such as images with information of the calibration boards [6]–
[8] or IMU measurements [1], [2], and optimizes the result
in a maximum likelihood estimation (MLE) framework. The
latter, on the other hand, directly calculates the offset between
the hand and the eye based on their independently estimated
poses [9], [10]. While tightly-coupled approaches can theo-
retically achieve higher accuracy and are used in well-known
benchmarks such as EuRoC [1] and TUM-VI [2], they are not
applicable in cases where only the trajectory information is
available. Loosely-coupled approaches can perform calibration
in the pose-only condition, but due to the ubiquitous noise and
accumulated error in the VO/VIO estimation, the accuracy and
robustness of existing methods are generally insufficient.

B. Contribution

In this letter, we propose a novel loosely-coupled spatiotem-
poral hand-eye calibration method tailored for VO/VIO evalu-
ation. This method demonstrates robustness against noise and
accumulated error in the input trajectories. For time alignment,
we improve the correlation analysis of the screw invariant and
obtain synchronized trajectories. For spatial calibration, we
construct linear equations using local relative poses based on
rotational constraint to fully utilize the motion information,

ar
X

iv
:2

40
4.

14
89

4v
1 

 [
cs

.R
O

] 
 2

3 
A

pr
 2

02
4



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

MoCap system

…… ……

Tracking markers

VR headset

WG

1H
1E

1GHq̂

HEq̂

GWq̂

Fig. 1. Our spatiotemporal hand-eye calibration platform and the convention
of the reference frames. The global frame for MoCap trajectory is denoted as
G, and the local frame is referenced to a specific tracking marker indicated as
H. The global frame for VIO trajectory is denoted as W, and the local frame
E coincides with the IMU body frame. During this process, dashed lines
represent transformations that change over time, while solid lines indicate
static offsets.

rather than the naive global or inter-frame strategies [8]–
[10]. Additionally, we introduce a well-designed robust kernel
based on the screw theory to stabilize the linear solution.
These operations are iteratively completed within the random
sample consensus (RANSAC) framework to recover inlier
data. Finally, we design a nonlinear optimization tool to
jointly refine the time offset and the linear extrinsic solution.
To validate the effectiveness of our algorithm, we conduct
experiments on public and simulated datasets, as well as our
own datasets collected by a virtual reality (VR) headset with
VIO capability and a MoCap system (see in Fig. 1).

The rest of this letter is organized as follows. Section II
reviews related work on spatiotemporal hand-eye calibration.
The new method is described in Section III and its perfor-
mance is evaluated in Section IV. Section V concludes the
letter.

II. RELATED WORK

Spatiotemporal hand-eye calibration based on different
strategies is a widely studied area. In our review, we briefly
discuss the related work that shares the same strategy as
the proposed method, i.e., the loosely-coupled methods, and
motivate the design adapted in our work.

A. Spatial Hand-Eye Calibration

In our application scenario, the loosely-coupled hand-eye
calibration can be formulated as AX = XB [11], where
A and B are the hand and the eye poses between two
frames respectively, and X is the unknown homogeneous
transformation between the hand and the eye. The solution for
X can be categorized into two approaches: either separately
or simultaneously solving the rotation and translation parts for
the transformation.

One of the earliest separated approaches was presented
by Shiu and Ahmad [11]. They represented rotation using
angle-axis and proposed a closed-form solution for the AX
= XB formulation. Tsai and Lenz [12] proposed a similar
but simplified method to improve computational efficiency,
which has been widely used to this day (e.g. in OpenCV).
Later methods focused on utilizing various parameterizations
of the rotation, such as angle-axis [13], quaternion [14], Lie

algebra [15], and Kronecker product [16], to achieve more
efficient solution. Although separated methods are computa-
tionally efficient, they are error-prone due to the independence
assumption between the rotation and translation, which are
actually nonlinearly coupled [17].

In contrast, the simultaneous methods calibrate the rotation
and translation parts jointly. Representative methods include
screw motion [18], Kronecker product [19], dual quaternion
[20] and dual tensor [21], which use alternative analytical
parameterizations to express the complete homogeneous trans-
formation. Additionally, there are also algorithms based on
numerical optimization [22]–[24]. While the computational
cost may increase, they are generally more accurate than
the separated methods. In addition to improving accuracy,
recent researchers have also focused on enhancing the ro-
bustness of algorithms across various applications [9], [10],
[25], [26]. However, these efforts were mostly focused on
scenarios characterized by comparatively high-precision pose
data. This differs from our use case where the trajectories are
substantially affected by noise or accumulated error. In this
paper, we utilize a dual quaternion scheme similar to [10], [20]
and construct a robust linear solving system using multiple
constraints from screw theory to address the challenges from
the VO/VIO trajectory.

B. Temporal Alignment

Given that the hand and the eye sensors usually operate
on different clocks, the temporal correspondence between
A and B is usually unknown. The time alignment prior
to spatial calibration is thus necessary. Kelly and Sukhatme
[27] considered the problem to be a registration task and
solved it by utilizing the iterative closest point algorithm.
Based on the discrete Fourier transform (DFT) theory, the time
alignment of trajectories can be converted to the correlation
analysis between two invariant signals derived from screw
motion. This simple and effective method has been widely
used in data synchronization for hand-eye calibration [10],
[28]–[30]. However, the precision of this method is limited by
the temporal resolution of the correlation function, with low-
frequency data resulting in reduced time alignment accuracy.
Alternatively, the TUM-VI benchmark [2] achieves time align-
ment by utilizing information from an error function, which is
calculated through a grid search between the motion invariants.
Additionally, a parabolic fitting is applied to the error function
to enhance the precision of the time alignment. Unlike the grid
search method in the time domain employed in TUM-VI, our
approach builds upon the more commonly used DFT-based
approach. To overcome the limitation posed by data frequency,
we adopt a similar technique inspired by TUM-VI.

In some studies of continuous-time state estimation, by pa-
rameterizing the state variables as continuous-time functions,
it is possible to achieve simultaneous spatiotemporal multi-
sensor calibration within a MLE framework [31]–[33]. These
high-precision methods can be easily extended to the pose-
only scenario, but they are sensitive to the initial condition.
In our work, we use the result of our linear calibration as the
initial guess and perform a further refinement.
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Fig. 2. Flowchart of the proposed spatiotemporal hand-eye calibration, where the green and blue parallelograms represent the inputs and outputs respectively,
and the orange rectangles represent the critical processing steps.

                    

   

   

   

   

   

             

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                     

                 

                 

 

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 

                   

                                     

           

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                    

       

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                     

                 

                 

 

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 

                   

                                     

           

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                    

       

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                     

                 

                 

 

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 

                   

                                     

           

        

   

   

   

   

   

   

   

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                    

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0

200

400

600

800

A
n

g
u

la
r 

v
el

o
ci

ty
 (

ra
d

/s
)

A
n

g
u

la
r 

v
el

o
ci

ty
 (

ra
d

/s
) GH

WE
GH

WE

0 20 40 60 0 10 20 30 504010 30 50
time (s) time (s)

Before time alignment After time alignment

Correlation function Quadratic polynomial fitting

C
o

rr
el

at
io

n
 v

al
u

e

C
o

rr
el

at
io

n
 v

al
u

e

0 1000 2000 3000 4000

Index

2275 2280 2285 2290 2295

750

760

770

780

790

Original correlation function

Refine maximum index

Original correlation function

Curve fitting

Original maximum index

Refine maximum index

Index

Fig. 3. Illustration of time alignment. The time offset can be determined
by performing a quadratic polynomial curve fitting around the maximum
(highlighted in gray) of the correlation function and obtaining the index of
the maximum. This method enables synchronization of angular velocity at a
finer granularity.

III. METHODOLOGY

To better illustrate our algorithm, we take our hand-eye
calibration platform as an example (see in Fig. 1). The unit
dual quaternions q̂ ∈ DQ is used to represent the homo-
geneous transformation. A dual quaternion q̂ has the form
q̂ = q+ ϵq′ = (q,q′), where Hamiltonian quaternions q and
q′ are the standard part and the dual part of q̂ respectively,
and ϵ is the infinitesimal unit satisfying ϵ2 = 0. Our goal is to
estimate the time offset ∆tHE and the extrinsic q̂HE between
the MoCap (hand) trajectory q̂GH and the estimated VIO (eye)
trajectory q̂WE. Fig. 2 provides an overview of the proposed
algorithm, which comprises three modules. The main steps
of the algorithm will be described in the remaining of this
section.

A. Time Alignment

In order to process poses from sensors with different clocks,
the first crucial step is to align the two sets of timestamps. To
achieve this, we can leverage the constraint from screw motion,
i.e., based on the equality of the angular velocities ωGH and

ωWE of trajectories q̂GH and q̂WE, which is independent of
calibration parameters. This simplifies the time alignment to
the synchronization of angular velocity signals. Based on the-
ory of DFT, the correlation between two time domain signals
is greater when they exhibit higher similarity. Therefore, the
synchronization involves finding the time shift, τshift, where
the correlation function reaches its maximum:

τshift = argmax
index

(Corr (ωGH, ωWE)) , (1)

where Corr (·) is the correlation function.
Given the discrete character of the angular velocity signals,

the correlation function also appears discrete in the time do-
main, with the precision of the obtained time shift depending
on the temporal resolution of the function. Assuming the
data around the maximum follows a quadratic polynomial
distribution, we perform curve fitting to refine our time shift
similar to [2]. As illustrated in Fig. 3, this approach allows
us to accurately determine the index of maximum correlation
and trace it back to the corresponding time offset, ∆tHE.

B. Linear Calibration

Given the time aligned trajectories q̂GH and q̂WE, we can
perform spatial hand-eye calibration. As shown in Fig. 1, for
any hand-eye motion from i to j in the trajectories, we have:

q̂GHi
q̂HEq̂

−1
WEi

= q̂GHj
q̂HEq̂

−1
WEj

. (2)

Using the relative transformation between two poses, i.e.,
q̂HiHj

= q̂−1
GHi

q̂GHj
and q̂EiEj

= q̂−1
WEi

q̂WEj
, (2) can be

rewritten in the form of AX = XB as q̂HiHj
q̂HE = q̂HEq̂EiEj

.
This fundamental equation can be divided into the standard
and dual parts, yielding:

qHiHj
qHE − qHEqEiEj

= 0,

q′
HiHj

qHE − qHEq
′
EiEj

+ qHiHj
q′

HE − q′
HEqEiEj

= 0.
(3)

Due to the redundancy of the scalar part of the dual quater-
nion, we set r =

(
qHiHj

)
v
, r′ =

(
q′

HiHj

)
v
, s =

(
qEiEj

)
v

and s′ =
(
q′

EiEj

)
v
, where (·)v denotes the vector part of

the quaternion. The linear equation for extrinsic calibration
derived from a single motion can be written as:[

r− s (r+ s)
∧

03×1 03×3

r′ − s′ (r′ + s′)
∧

r− s (r+ s)
∧

] [
qHE

q′
HE

]
= 0, (4)

where (·)∧ denotes the antisymmetric matrix of a vector, and
the coefficient matrix with dimensions of 6×8 will be denoted
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Fig. 4. Illustration of relative poses construction, different methods are
represented by three different lines, and ours shown as the solid green line.

as S. With n ≥ 2 motions, we can stack S to obtain a 6n× 8
matrix with rank 6 in the noise-free case as:

M =
[
ST
1 ,S

T
2 , . . . ,S

T
n

]T
. (5)

The singular value decomposition (SVD) algorithm is then
used to find the linear least squares solution of the extrinsic
with the constraint of the unit dual quaternion. For more
detailed information about the fundamental principles of dual
quaternion-based hand-eye calibration, please refer to [20].

SVD is known to be sensitive to noise and outliers. In the
following, we will propose three strategies to enhance the
accuracy and robustness of the algorithm.

1) Relative poses construction: As shown in (4), the equa-
tion entirely relies on the relative poses of the hand-eye
motion, therefore, the relative poses construction method will
significantly affect the quality of the solution. Conventional
methods either use a global or an inter-frame strategy. The
former fixes a certain frame and calculates the relative poses
of the remaining frames with respect to it. However, this
method is prone to coupling the trajectory drift in the VO/VIO
scenario. The latter calculates the relative poses between two
successive frames, but may suffer from the noise caused
by insufficient motion. Moreover, for a relative pose with
pure translation, the matrix in (4) will degenerate and cannot
constrain the dual part of the extrinsic.

We use a rotationally constrained approach to select the
hand-eye keyframes to construct the relative poses, aiming to
mitigate the error coupling and solution degeneracy. Specif-
ically, one can keep searching forward from a frame q̂i in
the hand or eye trajectory, and build the relative pose when a
frame q̂j satisfies the constraint:

2 arccos
((
q̂−1
i q̂j

)
w

)
≥ η, (6)

where (·)w denotes the scalar part of the standard component
of the dual quaternion, and η is an adjustable threshold
which we set to 5 degrees. Fig. 4 illustrates the construction
of relative poses using both conventional methods and our
proposed method for comparison.

2) Robust kernel: Despite the effort to construct high-
quality relative poses, they still contain varying degrees of
noise. To quantify the weights of different relative poses, we
propose a robust kernel in the linear system construction.

For a unit dual quaternion q̂, its scalar part is defined as:

Scalar (q̂) =

(
q̂+ q̂−1

)
2

, (7)

which can be expressed in the form of a vector, written as:

Scalar (q̂) = [ω,01×3, ω
′,01×3]

T

=
[
cos

θ

2
,01×3,−

d

2
sin

θ

2
,01×3

]T
,

(8)

where ω and ω′ are the scalar parts of the standard part and
the dual part of the dual quaternion respectively, θ denotes
the rotation angle, and d represents the translation norm of
the screw motion.

The screw concatenation between the hand and eye can be
further transformed from the form of AX = XB to q̂HiHj

=
q̂HEq̂EiEj

q̂−1
HE . Based on the definition of the scalar part in (7),

we have:

Scalar
(
q̂HiHj

)
=

1

2

(
q̂HiHj

+ q̂−1
HiHj

)
=

1

2

(
q̂HEq̂EiEj

q̂−1
HE + q̂HEq̂

−1
EiEj

q̂−1
HE

)
=

1

2
q̂HE

(
q̂EiEj

+ q̂−1
EiEj

)
q̂−1

HE

= q̂HE Scalar
(
q̂EiEj

)
q̂−1

HE

= Scalar
(
q̂EiEj

)
q̂HEq̂

−1
HE

= Scalar
(
q̂EiEj

)
,

(9)

which demonstrates that the scalar parts of the hand-eye
relative pose pair are completely equal in the absence of noise.
According to (8), this constraint can be transformed into the
equality of rotation angles in local frames and translation
norms along the principal axes of rotation, known as the screw
congruence theorem.

We design the function as (10) to evaluate the quality of
the hand-eye relative poses based on the scalar part of the
dual quaternion in (8). The function yields a result of 1 when
the screw motion constraint in (9) is strictly satisfied, while
deviating from 1 as the noise increases.

Ei

(
q̂HiHj

, q̂EiEj

)
=E′

i

(
Scalar

(
q̂HiHj

)
,Scalar

(
q̂EiEj

))
=
1

2

(
max

(∣∣ωHiHj

∣∣ , ∣∣ωEiEj

∣∣)
min

(∣∣ωHiHj

∣∣ , ∣∣ωEiEj

∣∣) +
max

(∣∣ω′
HiHj

∣∣, ∣∣ω′
EiEj

∣∣)
min

(∣∣ω′
HiHj

∣∣, ∣∣ω′
EiEj

∣∣)
)
.

(10)
Based on (10), we can define the robust kernel W as:

Wi

(
q̂HiHj

, q̂EiEj

)
= exp

(
µ
(
1− Ei

(
q̂HiHj

, q̂EiEj

)2))
,

(11)
where the parameter µ is an adjustable magnification factor,
which we set to 5. Hence, the linear calibration matrix in (5)
can be robustified for better numerical stability:

Mr =
[
W1S

T
1 ,W2S

T
2 , . . . ,WnS

T
n

]T
. (12)

3) Outlier elimination: During the calibration process, it is
also important to identify and discard outliers that exhibit sig-
nificant error. We incorporate the RANSAC algorithm which
utilizes an iterative sampling strategy, and has the ability to
recover the inliers from noisy data.

Note that at least two pairs of relative poses are required to
construct the linear calibration system. For each iteration, we
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Algorithm 1: Robust linear hand-eye calibration
Input: Time aligned hand-eye trajectories q̂GH, q̂WE.
Output: Hand-eye extrinsic q̂∗

HE.
1
{
q̂EiEj

, q̂HiHj

}
∈ C ← Construct the relative poses

based on the rotational constraint in (6);
2 while not reached the iteration limit do
3 Subset D ← Randomly sampling from C;
4 Construct M12×8 based on D using (5);
5 q̂init

HE ← Apply SVD to M;
6 foreach pose pair ∈ C do
7 G ← Select inliers using (13) with q̂init

HE ;
8 end
9 Construct M′

2n×8 with robust kernel based on G
using (12);

10 q̂refine
HE ← Apply SVD to M′;

11 q̂∗
HE ← q̂refine

HE with the smallest σ7

σ6
value;

12 end

randomly sample a pose pair subset consisting of two members
and determine inliers by using the quantitative criterion as:

e1 =
(
q̂HEq̂EiEj

q̂−1
HE q̂

−1
HiHj

)
rot

< φ,

e2 =
(
q̂HEq̂EiEj

q̂−1
HE q̂

−1
HiHj

)
trans

< ψ,
(13)

where (·)rot and (·)trans are the rotation angle and translation
norm of the dual quaternion, respectively. Inliers are required
to have both indicators in (13) less than the thresholds φ and
ψ, which we set to 0.5 degrees and 0.02 m experimentally.

Additionally, we need to assess the quality of the solutions
during the iteration. Given that the matrix Mr in (12) possesses
a two-dimensional null space, the singular values, σ7 and σ8,
which are the last two in the descending diagonal matrix Σ
from the SVD result Mr = UΣVT, are expected to be zero in
the absence of noise. However, when noise is present, these
two singular values, corresponding to the noise, dispropor-
tionately increase compared to the remaining singular values.
The ratio of σ7 to the third-to-last singular value, σ6, can
serve as an indicator of this disproportionality, and a lower
ratio suggests a reduced impact of noise. Consequently, we
can establish a direct metric for quantifying the quality of the
solutions, rather than relying on traditional measures such as
the number of inliers or the root mean square error (RMSE)
of the solutions with respect to inliers. The specific imple-
mentation of the linear spatial hand-eye calibration within the
RANSAC framework is detailed in Algorithm 1.

C. Batch Estimation

Despite the fact that our linear calibration method achieves
good accuracy and robustness in the experiments of Section
IV, it can be further improved by introducing the correlation
between the temporal and spatial calibration parameters. In
this section we follow the continuous-time batch estimation
methods proposed in [32], [33] and provide an estimator
within the rigorous theoretical framework of MLE, to jointly
optimize the time offset and the spatial transformation. Since

the estimator is hard to converge globally, we used the results
derived in Section III-A and III-B as the initial guesses.

Specifically, the original hand trajectory is parameter-
ized using a B-spline functions TGH (t), with the trans-
lation part represented by a B-spline in three-dimensional
vector space, and the rotation part parameterized by a
B-spline on SO (3). For the B-spline q (t) on SO (3)
with order ξ, knots {ti|i ∈ {1, 2, 3, . . . , N}}, and satisfying
N ≥ 2ξ, the function can be defined in each subinterval
{t ∈ [ti, ti+1) |ξ ≤ i ≤ N − ξ} as:

q (t) = ql(i)

ξ−1∏
j=1

EXP

(( i∑
k=η

fk

)
LOG

(
q−1
η−1qη

))
, (14)

where l (i) = i − ξ + 1 and η = l (i) + j, f and q represent
the B-spline basis functions and the control vertices in unit
quaternion form, respectively. EXP denotes the mapping from
the Lie algebra to the Lie group, while LOG represents the
inverse process.

The parameters determined by our estimator include
TGH (t), homogeneous transformation THE, and time offset
∆tHE. With the observations of hand-eye trajectories, we
minimize the negative log-likelihood function as:

g =

H−1∑
h=1

ρ
(∥∥d (TGH (th) ,TGH (th+1) ,TGHh

,TGHh+1

)∥∥2
ΣH

)
+

E−1∑
e=1

ρ
(∥∥d (TWE (te) ,TWE (te+1) ,TWEe ,TWEe+1

)∥∥2
ΣE

)
,

(15)
where H and E denote the number of pose observations of
the hand and the eye respectively, and ρ (·) is the Huber
loss function. Due to the rigid connection between the hand
and the eye, we have TWE (t) = TWGTGH (t−∆tHE)THE.
Meanwhile, we define the residual function in a relative form
to eliminate the influence of the unknown TWG as:

d
(
Ti,Ti+1,T

′
i,T

′
i+1

)
= LOG

(
T−1

i Ti+1

(
T′−1

i T′
i+1

)−1
)
.

(16)
For the above cost function, the Levenberg–Marquardt al-

gorithm is used to obtain the refined calibration result.

IV. EXPERIMENTAL RESULTS

A. Ablation Studies

To validate the effectiveness of the key improvement strate-
gies proposed in our methodology, we conduct comparative ex-
periments using the simulated datasets. Specifically, to obtain
the required data, we model a real motion trajectory using the
B-spline. Subsequently, we extract two trajectories from the
model at 100Hz and 20Hz to simulate MoCap and VO/VIO
trajectories for hand-eye calibration. Throughout the process,
we introduce frame-wise cumulative error into each eye pose
to simulate the noise and drift typically present in the VO/VIO
trajectory. The standard deviations for translation and rotation
errors are divided into ten levels, ranging from 0 to 5 mm and
0 to 0.2 degrees, respectively.

We first test the time alignment algorithm proposed in Sec-
tion III-A to verify the enhancement provided by the quadratic
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Fig. 5. Performance comparison of different time alignment methods under
various noise levels. We report the mean and standard deviation of the time
alignment error.
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Fig. 6. Performance comparison of different strategies used in linear cali-
bration under various noise levels. We calculate the translation error and the
rotation error separately, and report the mean and standard deviation.

polynomial curve fitting in the correlation analysis compared
to the baseline approach used in [10]. In this experiment, we
introduce random delays into the eye trajectories derived from
the B-spline to simulate the time offsets. To facilitate the
correlation function computation, standardizing the frequen-
cies of the trajectory pair is necessary. Specifically, we adjust
the frequencies to match those of hand and eye trajectories,
which are respectively 100Hz and 20Hz. As shown in Fig.
5, correlation analysis-based time alignment methods exhibit
minimal sensitivity to trajectory noise. However, limited by the
temporal resolution of the correlation function, time alignment
error of the baseline method is essentially determined by the
trajectory frequency. Acquiring the high-frequency trajectory
is challenging and requires significant computational effort.
By implementing the curve fitting strategy, we can determine
the maximum index of the correlation function with greater
accuracy, leading to higher precision in time alignment, even
at low frequency.

Additionally, we evaluate the effectiveness of the strategies
for spatial linear calibration proposed in Section III-B. The
three relative poses construction methods, namely global,
inter-frame, and rotationally constrained, are comparatively
validated, and different thresholds in (6) are explored within
the proposed rotationally constrained approach. Meanwhile,
we test the impact of the robust kernel (RB). In this experi-
ment, the calibration error is used as a quantitative metric for
assessment. Fig. 6 indicates that the calibration errors for all
scenarios trend to increase as noise levels rise. Nonetheless,
our method, which constructs rotationally constrained relative
poses yields smaller error due to its ability to derive the linear
equation with higher signal-to-noise ratio. At the same time,
the rotational constraint threshold also affects the accuracy of
the solution, with 5 degrees proving to be optimal in our tests.
Furthermore, our robust kernel strategy demonstrates superior
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Fig. 7. Performance comparison of different linear calibration methods on
public datasets. We select two sequences in each scenario and count the
distribution of the translation error and the rotation error separately.

robustness in the presence of increasing noise, as indicated
by the relatively small rise in calibration error and standard
deviation.

B. Overall Evaluation

We evaluate the performance of our hand-eye calibration
algorithm using real-world datasets, including public VIO
datasets, and datasets collected by our system (see in Fig.
1). For comparison, we also evaluate two other state-of-the-
art (SOTA) linear hand-eye calibration algorithms based on
dual quaternion and random sampling, as implemented in
[10], namely RANSAC scalar-based inlier check (RS) and
RANSAC classic (RC). We use the well-known VIO algorithm
OpenVINS [34] to estimate the trajectory of the eye, while the
trajectory of the hand is derived from the ground-truth system.

We first test on the TUM-VI room scenario [2] as well as
machine hall (MH) and Vicon room (V) scenarios provided
by EuRoC benchmark [1]. All three scenarios provide com-
plete raw data of ground-truth trajectories, and achieve high-
precision hand-eye calibration through the tightly-coupled
method. We align the estimated VIO trajectories with the
raw ground-truth trajectories using different hand-eye cali-
bration algorithms. For evaluation metrics, we compare with
the calibration results provided by the public datasets, and
calculate the translation error and the rotation error. As shown
in Fig. 7, we first evaluate our linear calibration (LC). The
comparison results demonstrate that our algorithm achieves
the highest accuracy and repeatability in all sequences. In
challenging sequences such as MH 04 and V2 03, where the
VIO algorithm struggles to deliver high-quality trajectories,
traditional calibration algorithms are prone to fail, but our
algorithm handles these situations effectively.

Table I details the performance of our algorithm in each
sequence, including the time alignment errors and the results
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TABLE I
DETAILED PERFORMANCE OF THE PROPOSED METHODS AND THE TRAJECTORY METRICS ON PUBLIC DATASETS

Sequences
Error of our LC Error of our BE Original metrics Our metrics

Time (ms) Trans (m) Rot (deg) Time (ms) Trans (m) Rot (deg) APE (m) ARE (deg) APE (m) ARE (deg)

Room 1 1.393 0.003 0.284 0.198 0.004 0.106 0.059 1.593 0.059 1.593
Room 6 1.266 0.024 0.675 0.296 0.016 0.199 0.085 1.686 0.085 1.683
MH 01 3.430 0.032 0.596 0.883 0.018 0.641 0.156 1.884 0.157 1.683
MH 04 5.404 0.031 0.927 3.691 0.018 0.749 0.161 0.950 0.157 0.561
V1 01 3.718 0.053 4.444 1.982 0.049 4.479 0.061 5.520 0.047 1.064
V2 03 3.092 0.015 0.280 2.135 0.007 0.118 0.095 1.157 0.095 1.139

Pose at t1 Pose at t2

Virtual box

(a)

Pose at t1 Pose at t2

(b)

Fig. 8. AR visualization of the EuRoC V1 01 sequence, featuring a virtual
box rendered in the scene. This visualization utilizes (a) transformed ground-
truth poses provided by the EuRoC benchmark and (b) transformed ground-
truth poses based on the raw pre-calibrated trajectory and our calibration
result. The red dashed circle highlights the difference in consistency between
the virtual and real elements when using different poses.

of our batch estimation (BE). Additionally, to analyze the
impact of hand-eye calibration on VIO trajectory evaluation,
we use our calibration results to transform the raw ground-
truth trajectories and calculate the absolute positional error
(APE) and absolute rotational error (ARE) [3], which are
important metrics in VIO evaluation. As a comparison, we also
calculate the original metrics using the transformed ground-
truth provided by the public datasets. The obtained results
demonstrate that our LC effectively accomplishes spatiotem-
poral hand-eye calibration, and our BE can further optimizes
the result to achieve higher accuracy. In most of the sequences,
our calibration algorithm provides accurate transformations
for ground-truths with minimal impact on evaluation metrics.
However, it is interesting to note that in some sequences,
particularly V1 01, our algorithm exhibits some errors. This
may stem from the inherent inaccuracies in the calibration re-
sults of the benchmarks, corroborated by a similar conclusion
in [34]. To provide a more intuitive illustration, we render
a virtual box on the images of the V1 01 sequence using
two different transformed ground-truth trajectories. The first is
provided by the EuRoC benchmark and the second is obtained
based on our hand-eye calibration result. Inaccurate hand-eye
calibration can lead to misalignment between the virtual and
the real elements in this augmented reality (AR) application.

VR headset

Tracking markers

Translation

Fig. 9. Experimental setup for evaluating the hand-eye calibration using
a relative translation method. The VR headset remains stationary, and the
tracking markers can be translated along the red arrow.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT CALIBRATION METHODS ON
SELF-COLLECTED DATASETS. WE COUNT THE TRANSLATION ERROR AT

DIFFERENT RELATIVE TRANSLATION DISTANCES

Sequences Error of
RS (m)

Error of
RC (m)

Error of
our LC (m)

Error of
our BE (m)

0.1m easy 0.035 0.028 0.007 0.003
0.2m easy 0.026 0.022 0.005 0.003
0.3m easy 0.049 0.034 0.007 0.002

0.1m difficult 0.041 0.045 0.007 0.004
0.2m difficult 0.056 0.038 0.006 0.004
0.3m difficult 0.062 0.047 0.010 0.004

As shown in the comparison results in Fig. 8, the virtual box
is more consistent with the real world in our AR result, i.e.,
implying higher calibration accuracy.

In real-world system, evaluating hand-eye calibration is in-
herently difficult, as the ground-truth of offset is not available.
To address this, we employ a relative approach using self-
collected data. The experimental setup, as illustrated in Fig.
9, involved mounting a VR headset and tracking markers on
the same object for motion. After obtaining a set of hand-eye
trajectories, we translate the tracking markers in a specified
direction to gather additional calibration data. We compute
the norm of the relative translation using the extrinsics derived
from the calibrations performed before and after the transla-
tion. Calibration error is then determined by comparing this
norm against the high-precision, directly measured result.

Table II presents the errors obtained from different hand-eye
calibration methods when the tracking markers are translated
by 0.1 m, 0.2 m, and 0.3 m, respectively. We categorize
the scenarios into easy (texture-rich and slow-moving) and
difficult (texture-less and fast-moving) in the context of VIO,
to test the robustness of the calibration algorithms. The
experimental results show that our algorithm performs best
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in all sequences. Additionally, both our LC and BE achieve
millimeter-level calibration accuracy and are less affected by
trajectory error.

V. CONCLUSIONS

In this letter, we propose an improved spatiotemporal hand-
eye calibration algorithm for trajectory alignment in VO/VIO
evaluation. Aiming to optimize for VO/VIO scenarios, we
have designed multiple strategies based on screw theory to
enhance both the accuracy and robustness of our proposed
algorithm. The validation experiments demonstrate that our
algorithm outperforms SOTA methods, exhibiting superior
accuracy while effectively mitigating the influence of noise.
Our method is well poised to be applied in the evaluation
of modern VO/VIO algorithms. Nevertheless, our algorithm
is less effective over an extended period. This limitation
arises partly because our calibration algorithm processes the
entire trajectory, leading to inefficiency with long sequences.
Furthermore, our algorithm presupposes a constant time offset,
an assumption unsuitable over a long time. In future work, we
will focus on spatiotemporal hand-eye calibration tailored for
long-duration trajectories. The aim is to develop an algorithm
that can process extensive data efficiently and address the
problem of time offset drift over an extended period.
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