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Majorana bound states emerge in topological superconductors as zero-energy edge states exhibit-
ing spatial nonlocality. Despite the enormous advances, the detection of Majorana bound states is
still challenging mainly because topologically trivial Andreev bound states produce similar signa-
tures. In this work we consider a topological superconductor with Majorana bound states coupled
to quantum dots and investigate the dynamics of their quantum correlations with the aim to explore
their entanglement properties. In particular, we characterize entanglement by using concurrence and
discord, which are also complemented by the entanglement dynamics and return probability. We
find that Majorana bound states at truly zero energy can transform an initially entangled system
into its classical state, while they can create maximally entangled states at a finite energy overlap.
Interestingly, we show that the system can generate a maximally entangled state between MBSs and
a quantum dot by simply controlling the Majorana nonlocality. We demonstrate that these results
hold in the scenarios when the initial state is either maximally entangled or separable, albeit in the
latter maximally entangled states are achieved in the long time dynamics. Furthermore, we con-
trast our findings with those produced by a regular fermion and obtain very distinct entanglement
signatures. Our work offers an alternative approach to characterize Majorana bound states, which
can be also useful towards their utilization for quantum information tasks.

I. INTRODUCTION

Majorana bound states (MBSs) have become one of the
central topics in condensed matter physics [1–9] largely
due to their promising properties for fault tolerant quan-
tum computation [10–14]. MBSs were initially predicted
to appear in the topological phase of spinless p-wave su-
perconductors, which later were shown to be realized
by combining spin-orbit coupling, an external magnetic
field, and conventional spin-singlet s-wave superconduc-
tivity, see e.g., Ref. [9]. MBSs emerge at zero-energy with
their wavefunctions located at the system edges, thus ex-
hibiting an inherent spatial nonlocality. In this regard,
truly zero-energy MBSs are needed for realizing qubits
that are robust against local perturbations [10]. However,
zero-energy signatures can be also produced by trivial
Andreev bound states [15–28], which proliferate in real
devices and have challenged the detection of MBSs [7].

A less explored property of MBSs is their spatial non-
locality, which can be revealed by inducing a finite spatial
overlap between Majorana wavefunctions [18, 29–31]. In
this case, MBSs acquire a finite energy splitting, which,
although not beneficial for realizing topological qubits, is
useful for distinguishing the inherent Majorana nature.
Following this idea, it has been recently shown that test-
ing the Majorana nonlocality allows to distinguish be-
tween MBSs and trivial Andreev bound states [32–40].
Even though accessing the Majorana nonlocality might
be difficult, it offers a solid way for the unambiguous
detection of MBSs [34]. Moreover, since the spatial non-
locality reflects the MBSs at spatially separated regions,
it is natural to wonder if such a spatial nonlocality carries
quantum correlations and influences entanglement prop-
erties of the system.

In this work we consider a topological superconduc-
tor with two MBSs coupled to quantum dots (QDs) as

QD

λ1 λ2

ε1 ε2

𝛄1

εM QDQD

𝛄2

FIG. 1. Sketch of the studied system: a topological supercon-
ductor (red) hosting MBSs γ1,2 is coupled by λ1,2 to two QDs
(blue) with onsite energies ε1,2. The spatial overlap between
γ1 and γ2 originates and energy splitting represented by εM.

in Fig. 1 and investigate their entanglement properties.
In particular, we characterize entanglement by explor-
ing the dynamics of concurrence and discord, quantum
correlations that we also complement by obtaining the
entanglement dynamics and return probability. We find
that zero-energy MBSs, which are completely localized at
the edges, can evolve an initial state of maximally entan-
gled QDs to a classical state of the system. Interestingly,
we discover that a finite Majorana overlap enables maxi-
mally entangled states between MBSs and a QD, an effect
that is fully controllable by the couplings to the QDs. We
show that the entanglement generation occurs when the
initial state is maximally entangled and, surprisingly, also
for an initial separable state, where maximal entangle-
ment in the latter is achieved in the long time dynamics.
In both cases, the entanglement signatures are intimmely
tied to energy overlap between MBSs and, therefore, as-
sociated to their spatial nonlocality. We also show that
QDs mediated by a regular fermion does not produce the
entanglement signatures found for MBSs.

The paper is organised as follows: In Section II, we
describe the model Hamiltonians of the systems and ob-
tain their eigenspectrums. In Sec. III, we briefly de-
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scribe the different measures of quantum correlations and
state dynamical quantities. Following that, in Sec. IV,
we compute the state dynamical functions and quantum
correlation measures and give analytical expressions for
all quantities for different initial states. Subsequently, we
discuss the results in the later part of the section. Finally,
in Section V, we summarise and conclude the results.

II. THE MODEL HAMILTONIANS AND
METHODS

We are interested in exploring quantum correlations
and entanglement signatures of MBSs. For this purpose,
we consider a topological superconductor hosting MBSs
and couple them to two QDs, as shown in Fig. 1. More-
over, we contrast this topological model by replacing the
nonlocal fermion, arising due to both MBSs, with a regu-
lar fermion. In what follows we present these two models,
discuss their properties, and introduce the methods used
in this work to quantify entanglement measures.

A. QDs coupled through MBSs

The Hamiltonian describing the two MBSs coupled to
QDs is given by

H =
iϵM
2
γ1γ2 +

∑
j=1,2

ϵjd
†
jdj + λj(d

†
j − dj)γj , (1)

where γi represents a Majorana operator, ϵM is the en-

ergy of their splitting between MBSs, d†j(dj) creates (an-

nihilates) a fermionic state in the QDs, and λj charac-
terizes the coupling between QDs MBSs. We note that
the energy splitting ϵM reflects the Majorana nonlocal-
ity and can be approximated as ϵM ∼ e−L/l, where L is
the length of the topological superconductor and l is the
Majorana localisation length.

To access quantum correlations and entanglement, it
is convenient to write Eq. (1) in terms of fermionic op-
erators and then handle it in a number represent basis.
Thus, the two Majorana operators are transformed into
a nonlocal fermion by using γ1 = i(f† − f), γ2 = f† + f ,
where f represents the nonlocal fermion made of Ma-
jorana operators. Now, the two QDs plus the nonlocal
fermion represent a three fermion system, with number

operators ndi = d†idi for the QDs while nf = f†f for
the nonlocal fermion operator. This allows us to define
a three qubit system which will be analyzed next.

Before going further, we adopt some simplifications
that will allow us to derive analytical expressions. The
on-site energies of the QDs are set to zero ϵd1

= ϵd2
= 0,

the coupling to the left QD is set to unity λ1 = 1,
ω = ϵM/2, λ2 = λ, and ℏ = 1. Hence, tuning λ and
ω allow us to control the properties of the entire system.
We now proceed to write Eq. (1) in the number repre-
sentation basis defined by |nd1

, nd2
, nf ⟩. In this regard,

we note that, since the Hamiltonian commutes with the
fermion parity operator (−1)N , with N being the total
number of fermions, the odd and the even sectors do not
mix and can be solved separately. We focus on the even
sector with basis states |000⟩, |011⟩, |101⟩, and |110⟩. The
even Hamiltonian can be then written as,

He =

−ω λ −1 0
λ ω 0 −1
−1 0 ω λ
0 −1 λ −ω

 . (2)

The eigenvalues of the even sector are then given by

Ei = ±
√
(λ± 1)2 + ω2 , (3)

where E1(2) = ∓∆ and E3(4) = ∓∆1, with ∆ =√
(λ− 1)2 + ω2 and ∆1 =

√
(λ+ 1)2 + ω2. The eigen-

vectors |Ej⟩ in increasing value of j can be written as
un-normalized column vectors in the order of its corre-
sponding eigenvalues as

EV = (|E1⟩ | |E2⟩ | |E3⟩ | |E4⟩) , (4)

where |E1⟩ = (1, (ω − ∆)/(λ − 1), (ω − ∆)/(λ − 1), 1)T

and T is the transpose operation. Moreover, |E2⟩ =
|E1(δ → −δ)⟩,

∣∣E3(4)

〉
=

∣∣E1(2)(∆ → ∆1)
〉
. We note

that all the eigenvalues in Eqs. (3) have contributions
from both λ and ω, while the respective eigenstates in
Eq. (4) exhibit contributions from all configurations the
even ket states listed above Eq. (2). This distribution
of the Hamiltonian parameters in the eigenvalues and
eigenvectors arises precisely from the nonlocal fermionic
structure of MBSs.

B. QDs coupled through a normal fermion

To contrast our results, here we discuss a model where
the QDs are coupled via a normal fermion, which is
not nonlocal and therefore of no Majorana origin. We
model this normal fermion system (NFS) by the follow-
ing Hamiltonian,

HNFS = ϵcc
†c+

∑
j

ϵjd
†
jdj + λj(d

†
jc+ h.c.) , (5)

where ϵc is onsite fermion energy, c†(c) creation (annihila-

tion) operators of the normal fermion, while d†i (di) is the
creation (annihilation) operator in the QDs. Here, the
coupling between QDs and the normal fermion is charac-
terized by λj . We set ϵc = 2ω so that we treat the ener-
gies of the nonlocal and regular fermion in Eqs. (1) and
Eq. (5) at the same level. As for the Majorana system,
we solve Eq. (5) in the even sector spanned by number
operator basis states, |nd1

nd2
nc⟩ and consider the same

energy unit λ1 = 1 so that the coupling to the right QD
is λ2 = λ. We then obtain the eigenvalues which for the
even sector are given by

E′
i = {0, 2ω,∆−,∆+} , (6)



3

where ∆± = ω±
√
1 + λ2 + ω2. Moreover, the associated

unnormalized eigenstates for increasing values of i in E′
i

are given by

EVNFS = (|E′
1⟩ | |E′

2⟩ | |E′
3⟩ | |E′

4⟩) , (7)

where |E′
1⟩ = (1, 0, 0, 0)T , |E′

2⟩ = (0, λ, 1, 0)T ,
|E′

3⟩ = (0, 1/∆+,−λ/∆+, 1)
T , and |E′

4⟩ =
(0, 1/∆−,−λ/∆−, 1)

T . Before going further, it is
worth pointing out that the first eigenvalue is zero
with eigenstate |E′

1⟩, which implies that it has only the
configuration |000⟩ where no excitations are present.
In this first state, neither the onsite energy nor the
hopping terms of the Hamiltonian contribute to the
energy, resulting in a zero eigenvalue. The second
eigenvalue solely depends on the energy associated with
the normal fermion ϵc = 2ω, indicating the presence
of the normal fermion in its eigenstate |E′

2⟩ by having
|011⟩ and |101⟩ terms but not |000⟩ and |110⟩. The
last two eigenvalues depend on the parameters of the
Hamiltonian and acquire eigenstates having mixtures
of all possible excitations, except |000⟩. This point is
of interest because if |000⟩ is not present in the initial
state, it will not emerge throughout the dynamics, as we
will show later.

C. Methods to quantify entanglement and the
state dynamics

We are interested in exploring the effect of nonlocality
on entanglement and quantum correlations in the sys-
tems discussed in previous section. To address this task,
we focus on bipartite subsystems described by a reduced
density matrix ρd obtained as [41]

ρd = Trd′(ρ) , (8)

where ρ is the density matrix of the composite three qubit
system, Trd′ represents the partial trace operation over
a subsystem such that ρd describes a two qubit system.
We remind that the three qubit system is formed by the
two QDs and either the nonlocal fermion due to MBSs
or a normal fermion, see Section II for more details on
the models. The density matrix in Eq. (8) is obtained by
using a standard approach ρ = |ψ⟩ ⟨ψ|, where |ψ⟩ cor-
responds to the state of the system [41]. We anticipate
that, because we are interested in the dynamical prop-
erties, we use the time-evolved states of the Majorana
and normal fermion systems discussed in previous sec-
tion, taking into account different initial states in both
systems. Then, all the bipartite quantum correlations
can be studied by calculating the reduced density matrix
ρd given by Eq. (8), thus providing a starting point for
exploring various entanglement measures. In particular,
we will address the concurrence and discord because they
provide a unify way to quantify entanglement and quan-
tum correlations [41]. To complement these quantities,
we will also address the state dynamics by employing the

return probability and the entanglement dynamics. To
make this work self contained, in what follows we briefly
describe the fundamental aspects of these quantities.

1. Concurrence

The concurrence, denoted here by C, measures entan-
glement between two qubits in a mixed state [42]. The
concurrence is calculated as [42]

C = max(λ1 − λ2 − λ3 − λ1, 0) , (9)

which correspond to the maximum of the eigenvalues λi,
with them being the eigenvalues in decreasing order of
the matrix R =

√√
ρdρ̃d

√
ρd. The matrix ρ̃d is defined

as ρ̃d = σy⊗σyρ∗dσy⊗σy, where ρ∗d is the complex conju-
gate reduced density matrix ρd given by Eq. (8). In our
systems, the reduced density matrices in the basis states
of |00⟩, |01⟩, |10⟩, and |11⟩ acquire the following form

ρd =

u 0 0 y∗

0 w1 x∗ 0
0 x w2 0
y 0 0 v

 , (10)

which takes the form of a X-state because the subsys-
tems are in even sectors, and the odd and even sectors
do not mix within the system [43]. We note that the
non-zero matrix elements in Eq. (10) represent correla-
tion functions between the two qubits, which, as we will
see in the next section, turn out to be functions of the
coefficients of the eigenfunctions. The zero elements rep-
resent the fact that the odd and even states do not mix in
the system. For the reduced density matrix by Eq. (10),
the concurrence can be written as

C = 2max(|x| −
√
uv, |y| −

√
w1w2, 0) . (11)

Before going further, a few comments are in order at this
stage. The concurrence given by Eq. (11) remains finite
if the off-diagonal correlation functions (x, y) dominate
over their diagonal counterparts (

√
uv,

√
w1w2); other-

wise, C goes to zero. A zero concurrence C = 0 signals
that appearance of an unentangled state of the system
but, importantly, this does not imply that the total quan-
tum correlations in the system are completely lost or ab-
sent [44]. The approach discussed here will be used later
to obtain the concurrence and investigate entanglement
in a bipartite system.

2. Quantum discord

To quantify quantum correlations beyond entangle-
ment, we focus on the quantum discord because it mea-
sures purely quantum correlations in a bipartite system.
The quantum discord is of particular relevance when ex-
ploring the dynamics of the system, which, although ac-
quiring a non-entangled state at certain times, may still
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exhibit finite quantum correlations [45–52]. The discord
is a bipartite correlation measure, and, in this sense, it is
similar to concurrence. It is defined by the difference be-
tween two classically equivalent expressions of the total
correlation, characterized by the quantum mutual infor-
mation [53]. It is thus useful to first introduce the quan-
tum mutual information, which, for subsystems A and B,
is characterized by [53]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) ,

J(ρAB) = S(ρA)− Cθ,ϕ(ρA|B)) ,
(12)

where S(ρ) is the entropy associated to ρ and calculated
as S(ρ) = −Tr(ρ log2 ρ), while Cθ,ϕ(ρA|B) is the condi-
tional entropy of A given the state of B. Moreover, ρA(B)

is the reduced density matrix of A(B), ρAB is the com-
posite reduced density matrix of the subsystem AB, and
ρA|B represents the conditional density matrix. Further-
more, the conditional entropy is obtained as [53]

Cθ,ϕ(ρA|B) = min
{Bκ̃}

∑
κ̃

pκ̃S(ρA|Bκ̃
) , (13)

where θ and ϕ are angles that parametrize the mea-
surement basis of B, {Bκ̃} = {|κ̃⟩ ⟨κ̃|} is a complete
set of projection operators corresponding to local mea-
surements on B, and min indicates that a minimiza-
tion operation with respect to {Bκ̃} is carried out to
find C. Also, pκ̃ on the right hand side of Eq. (13) de-
notes the probability of measurement outcome κ̃ and
is defined as pκ̃ = Tr[(σ0 ⊗ Bκ̃)ρAB(σ0 ⊗ Bκ̃)], with
σ0 representing the identity matrix for A. Moreover,
ρκ̃ = (σ0 ⊗ Bκ̃)ρAB(σ0 ⊗ Bκ̃)/pκ̃, which represents that
it is the density matrix ρAB conditioned to the measure-
ment outcomes κ̃ and weighted over different outcomes
of marginal conditional entropies S(ρA|Bκ̃

). The term
ρA|Bκ̃

represents the conditional density matrices in the
|κ̃⟩ basis. In terms of all the above considerations, the
quantum discord is defined as [53]

DAB = min[I(ρAB)− J(ρAB)] . (14)

where I(ρAB) and J(ρAB) are given by Eqs. (12). The
minimization of the conditional entropy makes the quan-
tum discord a quantifier of truly quantum correlation.
In Appendix A, we provide step-by-step calculations of
discord in different subsections for both MS and NFS.

3. State dynamics

One of the basic interests in quantum systems is to
study the decay or revival of the initial state in the dy-
namics of the system. However, the state dynamics can
also be manipulated to understand the entanglement sig-
natures of the subsystems over time. Motivated by these
ideas, in this work we also address the dynamics of a
maximally entangled state, called entanglement dynam-

ics and denoted by Ed, and the return probability de-
noted by Rp. These two quantities are obtained as

Rp = | ⟨ψ(0)| e−iHt |ψ(0)⟩ |2 ,
Ed = | ⟨ϕ| e−iHt |ψ(0)⟩ |2 .

(15)

As we observe, the return probability Rp is defined by
overlapping a time-evolved state with its initial state,
while the entanglement dynamics Ed is defined by pro-
jecting a time-evolved state function onto a desired state
|ϕ⟩, whose explicit form will be given later. It is worth
noting that, due to the definitions in Eqs. (15), the re-
turn probability always begins with unity, regardless of
the chosen initial states. However, the initial value for the
entanglement dynamics depends on both the initial and
the desired states. With Eqs. (15) as well as with those
for concurrence and discord, we are now in position to
explore the quantum correlations and entanglement sig-
natures for the subsystems discussed in Section II.

III. RESULTS FOR A MAXIMALLY
ENTANGLED INITIAL STATE

In this part, we follow the discussion of previous section
and obtain the quantum correlations and state dynamic
probabilities for the two systems described in Section II,
taking into account a maximally entangled initial state.
We remind that the first introduced setup corresponds
to a Majorana system (MS), where QDs are coupled via
nonlocal fermion of Majorana origin. The second setup
consists of QDs coupled via a normal fermion, coined
normal fermion system (NFS). Since the manipulation
of QDs was shown to be a feasible task [54, 55], see also
Refs. [56–58], we consider that the two QDs are in a max-
imally entangled initial state, while the nonlocal fermion
due to MBSs is in the zero state. We note that it is neces-
sary to consider the zero state of the nonlocal fermion in
order to maintain the even parity of the system, which is
the sector we investigate, see Section II. The separability
of the non-local fermion with entangled QDs is justified
by assuming that the topological superconductor and QD
are not coupled before the evolution of the entire system
starts.
The initial state can be thus written as

|ψ(0)⟩ = 1√
2
[|000⟩+ |110⟩] =

[
|00⟩+ |11⟩√

2

]
|0⟩ , (16)

which corresponds to one of the Bell’s states for the two
QDs signalling that they are maximally entangled. The
dynamics of the other maximally entangled states can be
calculated in a similar fashion. We anticipate that the
Bell’s state (|00⟩ − |11⟩)/

√
2 emerges in the dynamics,

while the other two Bell’s states are prohibited by the
parity of the system. Then, the state function for the
initial state given in Eq. (16) is obtained as

|ψ(t)⟩ = e−iHt |ψ(0)⟩ =
4∑
j

e−iEjt |Ej⟩ ⟨Ej |ψ(0)⟩ , (17)
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where |Ej⟩ represents the eigenstates of the MS or NFS
(|Ej⟩ →

∣∣E′
j

〉
) given by Eqs. (4) or Eqs. (7), depending

on the system under investigation. Before going further,
we point out that the contribution from the eigenstates
in Eq. (17) also depends on the form of the initial states.
In this regard, we have that the primary contributions in
the MS come from eigenstates |E1⟩ and |E2⟩ with energies
−∆ and ∆, respectively. The eigenstates |E3⟩ and |E4⟩
are orthogonal to the initial state, ⟨Ej |ψ(0)⟩ = 0, which
implies that they do not contribute to the dynamics given
by Eq. (17). Contrary to the MS, the dynamics of the
NFS is given by the contribution of all states.

A. Majorana system

In the case of the system with MBSs, the time-evolved
state given by Eq. (17) acquires the form given by

|ψ(t)⟩ = 1√
2
|0⟩ (η |00⟩+ χ |11⟩)

+
1√
2
|1⟩ (η |10⟩+ χ |01⟩) ,

(18)

where χ and η are time-dependent and given by

η(t) =
1

∆
(∆cos∆t+ iω sin∆t) ,

χ(t) =
−i
∆

(λ− 1) sin∆t .

(19)

Here, ∆, λ, and ω is the lowest positive eigenvalue, the
coupling between nonlocal fermion and right QD, and the
energy splitting between MBSs, see Subsection 4. The
coefficients η and χ in the above state function shape
the dynamics of the entanglement generations between
the MBSs and the second QD. They can also be manip-
ulated to see the type of maximally entangled state (of
the Bell’s state form) that may be achieved in the evo-
lution. Therefore, below we now compute the quantities
discussed in Section IIC.

1. Return probability and entanglement dynamics

By using Eqs. (15), we obtain the entanglement dy-
namics Ed and the return probability Rp. For Ed we
need to specify the desired state onto which will be pro-
jected the time-evolved function |ψ(t)⟩. For this purpose,
we consider |ϕ⟩ describing a maximally entangled nonlo-
cal fermion and the second QD given by

|ϕ⟩ = 1√
2
[|000⟩+ |011⟩] = |0⟩ 1√

2
(|00⟩+ |11⟩) , (20)

where the second equality expresses the essence of
the considered maximal entanglement. Then, using
Eqs. (15), along with Eq. (17), Eq. (16), and Eq. (20), we

find that the return probability and entanglement dy-
namics are given by

Rp = |η|2 ,

Ed =
∣∣∣η + χ

2

∣∣∣2 , (21)

where η and χ correspond to the time-dependent coeffi-
cients of the time-evolved state and given by Eqs. (19).
Interestingly, we see that the entanglement dynamics Ed

is sensitive to the local phases in the state function, un-
like the return probability. This sensitivity is crucial for
visualizing other maximally entangled states generated
during the evolution.

2. Concurrence

We are interested in computing the concurrence be-
tween the two QDs for the initial state written in
Eq. (16). For this purpose, we follow the recipe dis-
cussed in Subsection IIC 1, which involves obtaining the
density matrix elements associated to the time-evolved
state Eq. (18) and then using Eq. (11). We obtain the
density matrix and find that its elements are given by
u = v = y = |η|2/2, w1 = w2 = x = |χ|2/2. Therefore,
using Eq. (11), we find that the concurrence is given by

C = ||η|2 − |χ|2| , (22)

where the modulus in the expression on the right-hand
side arises from the fact that particular sets of diago-
nal and off-diagonal elements of the density matrix have
the same expression. From Eq. (22), we identify that the
concurrence vanishes with C = 0 only when |η| = |χ|. It
is worth noting that zero concurrence has many proper-
ties, including the signature of entanglement monogamy
[59], which states that the entanglement cannot be freely
shared between more than two parties. We will provide
a deeper analysis of the zero concurrence regime by com-
paring it with the entanglement dynamics and the return
probability later in this section.

3. Quantum discord

To compute quantum discord in MS, we follow the dis-
cussion provided in Subsection IIC 2 along with Eq. (14)
to obtain the discord between the two QDs represented
by A and B. Detailed calculations are carried out in the
first subsection of Appendix A, formulating the quantum
discord as follows:

DAB = min
(θ,ϕ)

Cθ,ϕ(ρA|B)− S(ρAB) + S(ρB) , (23)

where the term Cθ,ϕ(ρA|B) represents the conditional en-
tropy of the first QD when the measurement basis of the
second QD is parameterized by angles θ and ϕ. The term
SAB denotes the composite entropy of the two QDs, while
SB is the single-qubit entropy of the second QD. Further
details of the calculation is given in Appendix A.
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B. Normal fermion system

In this part we carry out the same calculations as in
the previous subsection but when the QDs are coupled
via a normal fermion. The time-evolved state function
for the initial state from Eq. (16) is here given by

|ψ(t)⟩ = c̄1 |000⟩+ c̄2 |011⟩+ c̄3 |101⟩+ c̄4 |110⟩ , (24)

where c̄i are time-dependent coefficients given by

c̄1(t) =
1√
2
,

c̄2(t) =
1

2
√
2(1 + λ2 + ω2)

(e−i∆−t − e−i∆+t) ,

c̄3(t) =
−λ

2
√
2(1 + λ2 + ω2)

(e−i∆−t − e−i∆+t) ,

c̄4(t) =
1

2
√
2(1 + λ2 + ω2)

(∆+e
−i∆−t −∆−e

−i∆+t) .

(25)

Hence, having all the coefficients finite implies that |ψ(t)⟩
for the NFS has a general and complex structure, which
makes it difficult to simplify the expressions of the entan-
glement measures in the system, unlike what we found
for the MS in the subsection IIIA. Then, we find that
the return probability, entanglement dynamics, and con-
currence are given by

Rp =
|c̄1(t) + c̄4(t)|2

2
,

Ed =
|c̄1(t) + c̄2(t)|2

2
,

C = 2max(||c̄1(t)||c̄4(t)| − |c̄2(t)||c̄3(t)||) ,

(26)

while the discord acquires a more complicated form,
whose details are discussed in AppendixA 2. We note
that to calculate Ed, we consider Eq. (20) as the desired
state onto which the time-evolved state Eq. (24) was pro-
jected. For the NFS, Eq. (20) has a slightly different
meaning because the last qubit represents the normal
fermion instead of the nonlocal fermion due to MBSs.
Moreover, to find Rp, the initial state is taken as in
Eq. (16). These considerations facilitate the comparison
of NFS with MS. Even though the expressions in Eq. (26)
acquire a complex form since c̄i are not simple at all, we
will point out their simplification in special cases during
the discussion of our results.

C. Discussion of the state dynamics and quantum
correlations

Having presented the general expressions obtained of
concurrence (C), discord (D), entanglement dynamics
(Ed) and return probability (Rp) for the MS and the
NFS with maximally entangled QDs, here we discuss

their time evolution. To vizualize the time evolution,
in Fig. 2 we plot C, D, Ed, and Rp as a function of time t
for the two systems under consideration (MS and NFS).
Fig. 2(a-d) and Fig. 2(e-h) correspond to QDs with sym-
metric (λ = 1) and asymmetric (λ ̸= 1) couplings in the
MS or NFS. As discussed before, in the MS setup QDs
are coupled via MBSs, while QDs are coupled via a nor-
mal fermion in the NFS. To truly exploit the inherent
Majorana nonlocality, in Fig. 2 we contrast regimes at
zero and finite energies.
We first analyze the case of symmetric couplings and

at zero energy, which corresponds to ω = 0 and λ = 1 in
Fig. 2(a,b). In the case of the MS, this regime has zero-
energy MBSs and the first feature to notice is that the
quantities C, D, and Rp remain at 1, while Ed = 0.25,
as shown in Fig. 2(a), see also subsection IIIA. Since the
initial state involves maximally entangled QDs, having
a constant time evolution reveals that such a maximal
entanglement is not affected. The constant time evolu-
tion can be understood by noting that the eigenstates of
the Hamiltonian given by Eq. (4), except for the third
eigenstate, are orthonormal to the initial state given by
Eq. (17), giving a vanishing overlap that does not con-
tribute to the dynamics as seen in Fig. 2(a). The third
eigenstate of the MS is the same as the initial state
[Eq. (16)] and has zero energy [Eq. (3)], implying that
neither the quantities nor the state evolve at all.
In contrast to the MS setup, the quantum correlations

and state dynamics for the NFS case exhibit an oscilla-
tory behaviour with time, which start from unity reflect-
ing the initial maximally entangled QDs, see Fig. 2(b).
The distinct time evolution occurs because the contribut-
ing eigenvalues in Eq. (7) are finite for the NFS, implying
that all the coefficients from Eqs. (25) contribute to the
time evolution that becomes oscillatory over time. As
time progresses, we observe that there are times where
C = 0 but D ̸= 0, signalling that there is a finite quan-
tum correlation between the two QDs even when the NFS
reaches its separable state whose specific form is not evi-
dent. Also, Fig. 2(b) shows that there are other times t at
which C = 1 and D = 1 when Rp = 0, a regime showing
that additional maximally entangled states of the QDs
are being generated during the dynamics in the NFS [60].
For the return probability and entanglement dynamics of
the NFS, their oscillatory behaviour can be easily seen
analytically from Eqs. (26): Rp = |(1+ cos

√
2t)/2|2 with

period T = ((2n+1)π/
√
2) ℏ/λ1, being n an integer and

ℏ/λ1 the unit of time, while Ed = |(1 + i
√
2 sin

√
2t)/2|2

with period T = (π/
√
2) ℏ/λ1. It is straightforward

to get Rp = 1 and Ed = 1/4 at t = 0, while at

t = (nπ/
√
2) ℏ/λ1 we get Rp = 0 and Ed develops min-

ima leading to a fall of the state into the eigenstate |000⟩,
see by green and black curves in Fig. 2(b). The over-
all behaviour of the entanglement measures in the NFS
setup is clearly different to what we found for the MS sys-
tem. Therefore, zero-energy MBSs and zero-energy regu-
lar normal fermions induce distinct entanglement signa-
tures
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FIG. 2. Time evolution of concurrence, discord, return probability, and entanglement dynamics, denoted by C, D, Rp, and
Ed, with an initial state of maximally entangled QDs for MS and NFS. Top row corresponds to a symmetric coupling to the
left and right QDs λ = 1, with MBSs and normal fermion having zero energy ω = 0 in (a,b), while MBSs and normal fermion
having finite energy ω ̸= 0 in (c,d). Bottom row shows the same as in top row but for left and right QDs having asymmetric
couplings to MBSs and normal fermion, namely, λ ̸= 1.

In the case of finite energies ω ̸= 0 at symmetric cou-
plings λ = 1, the time evolution of the entanglement
measures exhibit a rather similar behaviour as the one
for zero energy discussed in the previous two paragraphs,
see Fig. 2(c,d). For the MS in Fig. 2(c), we find Rd,
C, and D exhibiting a constant value equal to 1, while
Ed = 0.25, which is the same to what we saw in Fig. 2(a)
at ω = 0. To understand the intriguing behaviour at
ω ̸= 0, we note that the coefficient χ [Eq. (19)] of the time
evolved state given by Eq. (18) vanishes at λ = 1 while
the other coefficient becomes η(t) = cos(|ω|t)+ isin(|ω|t)
and is thus entirely determined by the energy splitting of
MBSs. As a result, the time-evolved state from Eq. (18)
evolves with a constant phase, determined by ω, where
|η(t)|2 = 1 enables C, D, and Rp to remain constant at
1 and Ed = 0.25, see Eq. (19). The quantities equal to
1 then imply that the system remains with maximally
entangled QDs and Ed = 0.25 that there is only a contri-
bution from the |000⟩ configuration in the entanglement
dynamics. For the NFS at λ = 1 and ω ̸= 0 in Fig. 2(d),
the entanglement measures exhibit a time evolution that
is similar to the ω = 0 case but with some subtle differ-
ences. At ω ̸= 0, the periodic C and D develop maxima,
which, however, are not accompanied by Rp = 0, imply-
ing that there is no revival of the initial state at short
times [61]. This situation implies that another entangled
state, having a component of the initial state, is being
generated during the evolution. Moreover, the minima
of Ed states that one of the configurations in |ϕ⟩ remains
in the state function throughout the dynamics.

When the couplings become asymmetric λ ̸= 1, the
entanglement measures of the MS as well as those of the
NFS develop an oscillatory profile, see Fig. 2(e-h). At
ω = 0, the MS with zero-energy MBSs achieves D = 0
and C = 0 at certain times, which is contrary to the NFS
case, where D ̸= 0 when C = 0, see Fig. 2(e,f). Besides
this point, we also note that in the MS system the con-
currence and discord reach unity when Rp = 0, showing

an another state, (|000⟩ − |110⟩)/
√
2, of two maximally

entangled QDs has been created. Moreover, the entangle-
ment dynamics for the MS remains constant because the
initial state changes only to (|000⟩−|110⟩)/

√
2, and then

it revives back, resulting in a constant value of Ed = 0.25,
while it oscillates for the NFS, again contrasting the dis-
tinct signatures of both systems [Fig. 2(e,f)]. At finite
energies (ω ̸= 0) and asymmetric couplings (λ ̸= 1), the
MS and the NFS exhibit similar properties as seen in
Fig. 2(g,h) but still with some small differences. The sim-
ilar behavior is associated to the oscillatory profile which
stems from having extra configurations participating in
the dynamics because the coefficient of the time-evolved
state in Eq. (19) is non zero, χ ̸= 0. It is worth noting
that the entanglement measures for the MS setup have
larger periodicity [Fig. 2(g)], which occurs because the
eigenenergies in Eq. (4) have contributions from λ and
ω, see also Eqs. (19) and Eq. (18). Among the differ-
ences at ω ̸= 0 and λ ̸= 1, we find that the Majorana
system MS achieves regimes with C, D, and Rp equal
to 1 (as shown in Fig. 2(g)), which means that the fi-
nite ω prefers the revival of the initial state rather than
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changing the local phase, which would result in achieving
another maximally entangled state of quantum dots, as
depicted for the MS in Fig. 2(e). This phenomenon, how-
ever, is not observed in the NFS, as shown in Fig. 2(h).
Another difference is that in the NFS case, the quanti-
ties Ed and Rp exhibit a fall that reveal the presence of
arbitrary configurations in the state; their peaks show
that the different entangled states between the two QDs
are being generated and destroyed. Thus, even though
the oscillatory profile of the entanglement measures for
the MS and NFS exhibit some similarities, there still are
significant differences that could allow identifying MBSs.

Before closing this part, we highlight that the periodic
characteristic of the state dynamics suggests the possible
generation of maximally entangled states. Since we con-
sider an initial state of maximally entangled QDs, it is
natural to ask whether it is possible to generate maximal
entanglement between other parts of the system, such as
between MBSs and QDs. We address this question in the
next subsection.

D. Generating a maximally entangled state
between MBSs and a QD

As pointed out before, the oscillatory behaviour of the
entanglement measures as functions of time imply a pos-
sible generation of maximally entangled states. Since
the considered systems are composed of three subsys-
tems (qubits), with an initial state of maximally entan-
gled QDs, we focus on achieving a maximally entangled
state between MBSs and the right QD. To find a max-
imally entangled state, it is necessary to have η = χ in
Eq. (19), because this conditions places the time-evolved
state given by Eq. (18) in the form of two qubit Bell’s
states, which are maximally entangled states [41]. Thus,
taking this condition into account, we find the required
parameters for achieving maximal entanglement. Then,
we can choose t = ((2n+1)π/2∆) ℏ/λ1 so that η is purely
imaginary; then, by comparing the imaginary parts of χ
and η, we find that they are equal when ω = 1 − λ,
which, using the expression for ∆ below Eq. (3), gives

∆ =
√
2|1 − λ|. Under these conditions, we obtain

η = χ = 1/
√
2, which is expected to lead to a maxi-

mally entangled state between MBSs and QDs because,
as we explained above, the time-evolved state acquires
the form of two-qubit Bell states.

In spite of the seemingly stringent conditions to achieve
maximally entanglement during the evolution, in Fig. 3
we show that it is possible at ω = 1 − λ and λ = 0.7
by plotting the time evolution of Rp, Ed, C, and D
for the MS and NFS setups. Apart from the already
seen oscillatory behaviour, there are two points we would
like to highlight, which are marked by red and magenta
stars in Fig. 3(a) for the MS setup. First, at the begin-
ning of the evolution t = 0, we have Rp = 1, C = 1,
D = 1, and Ed = 0.25, a regime that corresponds to
the maximally entangled QDs. Second, at times given
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FIG. 3. Generation of a maximally entangled state between
MBSs with a QD. (a,b) Time evolution of concurrence, dis-
cord, return probability, and entanglement dynamics, denoted
by C, D, Rp, and Ed, with an initial state of maximally en-
tangled QDs for MS and NFS. Here, λ = 0.7 and ω = 1 − λ
in panels (a,b). The red star in (a) shows that the QDs are
maximally entangled at the beginning of the evolution t = 0,
whereas the magenta stars show that maximally entanglement
between MBSs and the second QD is achieved at later times.
(c) Schematic representation of the entangled systems indi-
cated by red and magenta stars in (a), with the thick cyan
arrow showing the entangled parts. The NFS does not have
this characteristic.

by t = π/2∆ = 3.7 ℏ/λ1, the entanglement dynamics
and return probability become Ed = 0.5 and Rp = 0.5,
implying the creation of a maximally entangled state of
MBSs and the second QD, see magenta star in Fig. 3(a).
This maximal entanglement is further confirmed by get-
ting vanishing concurrence C = 0 at such times, a sit-
uation that displays the monogamy behaviour of entan-
glement: when MBSs and the right QD are maximally
entangled, the right QD cannot be entangled with the
left QD, thus leading to C = 0. Interestingly, the van-
ishing concurrence of the MS (C = 0) is accompanied
by vanishing discord (D = 0), which reveals the absence
of quantum correlations and that the system transitions
into a classical state, an effect only obtained in the MS
but not in the NFS, see Fig. 3(a,b). To further visualize
the achieved entanglement between MBSs and right QD,
in Fig. 3(c) we schematically illustrate the entanglement
shift that corresponds to the two times of the evolution
indicated by red and magenta stars in Fig. 3(a). This en-
tanglement shift reveals the possibility of starting with
two maximally entangled QDs and then generate max-
imally entanglement between MBSs and right QD dur-
ing the time evolution. In contrast to the MS system,
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the entanglement measures for the NFS develop a profile
where it is not simple to determine the generation max-
imal entanglement between MBSs and QDs, Fig. 3(b);
their evolution is similar to Fig. 2(b,d,f,h). Therefore, it
is possible to induce maximally entangled states between
MBSs and QDs, even though for this purpose finite en-
ergy MBSs are needed, which, however, are not nonlocal
and might not serve the purpose of encoding information
nonlocally.

IV. RESULTS FOR A SEPARABLE INITIAL
STATE

Having studied the state dynamics and quantum cor-
relations for a maximally entangled initial state, in this
section we focus on the same quantities but taking an ini-
tial state that is completely separable in both systems,
the MS and NFS. Thus, using the same notation as be-
fore, we consider the initial state to be given by

|ψ(0)⟩ = |110⟩ , (27)

which represents a separable state because it can be
written as |110⟩ = |1⟩ |1⟩ |0⟩. This state has excita-
tions in the two QDs, but the nonlocal fermion (or nor-
mal fermion when dealing with the NFS) is in the |0⟩
state. We note that this separable state is also realis-
tic because the two QDs can be initially prepared to be
occupied, with a vanishing coupling to the topological
superconductor controlled by voltage gates [56–58], see
also Refs. [54, 55]. Moreover, we consider the |0⟩ state of
the nonlocal fermion because it preserves the even parity
of the system. To maintain consistency with the initial
state of Section III and our findings therein, here we do
not consider the other two separable states, |011⟩ and
|101⟩, because they require the nonlocal fermion (or lo-
cal fermion in the NFS) in the |1⟩ state. Furthermore,
we do not address state |000⟩ because this state becomes
an eigenstate for the NFS, implying that the state will
evolve with a constant phase which does not affect the
entanglement measures over time. The desired state for
obtaining the entanglement dynamics using Eq. (15) is
also taken to be the same as in Eq. (20). For the sep-
arable initial state, the expressions of the entanglement
measures for the MS and NFS cannot be expressed in a
simplified form. Nevertheless, we list the time-dependent
coefficients of the time evolved states which are required
for obtaining quantum correlations and state dynamics,
as discussed in Section III.

We calculate the time evolution of the |110⟩ state for
the MS and NFS systems, which can be written in a
similar form as |ψ(t)⟩ in Eq. (24). The coefficients of

evolution for the MS are given by

c1(4)(t) =
1

2

{[
cos∆t+ i

ω

∆
sin∆t

]
∓
[
cos∆1t+ i

ω

∆1
sin∆1t

]}
,

c2(3)(t) =
i

2

{−(λ− 1)

∆
sin∆t

± (λ+ 1)

∆1
sin∆1t

}
,

(28)

while for the NFS we obtain

c̄′1(t) = 0 ,

c̄′2(t) =
1

2
√
1 + λ2 + ω2

(e−i∆−t − e−i∆+t) ,

c̄′3(t) =
−λ

2
√
1 + λ2 + ω2

(e−i∆−t − e−i∆+t) ,

c̄′4(t) =
1

2
√
1 + λ2 + ω2

(∆+e
−i∆−t −∆−e

−i∆+t) ,

(29)

where λ characterizes the coupling to the right QD, ω is
the energy of MBSs (normal fermion), ∆, ∆1, and ∆pm

are given below Eqs. (3) and Eqs. (6). It is important to
note that all the coefficients for MS setup are finite and
hence a complex time evolution is expected. Moreover,
contrary to the coefficients of |ψ(t)⟩ for initially maxi-
mally entangled states of the QDs in Eq. (25) for NFS,
the first coefficient, c̄′1(t), goes to zero. This occurs be-
cause the state |000⟩ is an eigenstate of the system, and
the initial state does not contain the configuration |000⟩.
Therefore, it does not contribute to the evolution (see
Eq. (17)). The other coefficients are non-zero and show a
similar form of dependence on λ and ω, as we will observe
in the dynamics. Using the coefficients from Eq. (28) and
Eq. (29) for MS and NFS, and following the steps to cal-
culate the state dynamical function and quantum corre-
lations given in Section III, we obtain Ed, C, and D and
discuss their time evolution next.

A. Discussion of the state dynamics and quantum
correlations

After obtaining the entanglement measures for a sep-
arable initial state, we plot them in Fig. 4 as a function
of time for symmetric and asymmetric couplings between
QDs and MBSs (normal fermion) in the MS (NFS) setup.
To inspect the nonlocal nature of MBSs, we consider
ω = 0 and also ω ̸= 0 in the two cases and for the two
systems.
In the case of symmetric couplings (λ = 1), the im-

mediate observation is that almost all the quantities os-
cillate with time, with different patterns at ω = 0 and
ω ̸= 0, which is different to what we observed in the previ-
ous section for initial maximally entangled QDs. For the
MS case in Fig. 4(a), the quantities Rp, Ed, and D oscil-
late, while C = 0, implying that the completely nonlocal
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FIG. 4. Time evolution of concurrence, discord, return probability, and entanglement dynamics, denoted by C, D, Rp, and Ed,
with a separable initial state for MS and NFS. (a, b) at λ = 1 and ω = 0; (c, d) at λ = 1 and ω ̸= 0; (e, f) at λ ̸= 1 and ω = 0;
and (g, h) at λ ̸= 1 and ω ̸= 0.

zero-energy MBSs cannot generate entanglement in this
case. For the entanglement dynamics and return prob-
ability, we obtain Ed = sin2 t and Rp = cos2 t, which,
at t = (π/2) ℏ/λ1, become Ed = 0.5 and Rp = 0, as
depicted by black and green curves in Fig. 4(a). By ob-
taining c1(t) = 1, we conclude that at those points in
time, the state |000⟩ is present. In relation to the discord
D in Fig. 4(a), it exhibits homogeneous oscillations as a
function of time, with period equal to T = (π/4) ℏ/λ1,
acquiring vanishing values at points where C vanishes, a
phenomenon we have seen to occur only for MS in Figs. 2
and Fig. 3 of the previous section. The times at which
the discord completes a period (π/4) are special because
the eigenvalues of the marginal entropies are {0, 1} at
θ = π/4 and ϕ = π/4, which then gives vanishing condi-
tional entropy when obtaining the discord in Eq. 13, see
also Eq. (A7) and Eq. (A8) in Appendix A1. Moreover,
the composite entropy and the single QD entropy are the
same and equal to unity, thus the total algebraic sum goes
to zero, see details in Eq. (A8) in AppendixA 1. When
analyzing the time t = (π/2) ℏ/λ1, we have c1(t) = 1 in
Eq. (28) which gives a pure state description, where all
entropies go to zero. For a finite overlap (λ = 1, ω = 0.7),
plotted in Fig. 4(c), an extra frequency in oscillation is
introduced because of ω. The entanglement is gener-
ated between QDs with fast and slow frequencies. In this
case, C and D reach unity simultaneously, implying that
maximum quantum correlation can be created by MBSs
at finite energy splitting [62]. We conclude that, while
quantum correlations can be generated with zero-energy
MBSs but they remain small, entanglement generation is
possible only with a finite energy splitting of MBSs.

For asymmetric couplings at λ = 0.7, the situa-
tion is slightly different but with some similarities, see
Fig. 4(e,g) for ω = 0 and ω ̸= 0 in the MS setup. First
of all, Rp, Ed, and D oscillate with time, see Fig. 4(e,g).
As for the symmetric case, C = 0 throughout the evo-
lution at ω = 0 [Fig. 4(e)], meaning that entanglement
can not be generated. This is because the eigenenergies
in Eqs. (4) are given by ∆ = |λ − 1|, which simplifies
the coefficients in Eq. (28) as c1(4)(t) = [cos (λ− 1)t ∓
cos (λ+ 1)t]/2, c2(3)(t) = ±i[sin (λ+ 1)t∓sin (λ− 1)t]/2.

This gives |c1(t)||c4(t)| = |c2(t)||c3(t)| = | sin2 (λ− 1)t −
sin2 (λ+ 1)t|. Therefore, the concurrence C, as defined
in Eq. (26), goes to zero throughout the evolution, see
Fig. 4(e). However, at ω ̸= 0, C takes finite values and
develops an oscillatory profile, see Fig. 4(g). In relation to
the discord, it develops oscillations with different period-
icities, acquiring a beating profile that oscillates faster for
finite frequencies, as seen in Fig. 4(e,g). We note that the
complex behaviour of D stems from the fact that it is de-
termined by different entropies, see Appendix A1. When
it comes to the entanglement dynamics in asymmetric
couplings (λ ̸= 1) with ω = 0, we find that Ed = sin2 t/2
which is independent of λ and has a constant period of
π as seen Fig. 4(e). In contrast, in the same regime, we
obtain the return probability to be Rp = cos2 λt cos2 t,
which clearly depends on two periods, π/λ and π. There-
fore, the system takes a long time to return to the ini-
tial state, beyond the scope of Fig. 4(e). For clarifica-
tion, we note that the first maxima of Rp happens at
t = (10π) ℏ/λ1. Moving into the asymmetric couplings
(λ ̸= 1) and finite ω ̸= 0, as shown in Fig. 4(g), the quan-
tities Rp, Ed, C, and D exhibit an oscillatory dynamics
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FIG. 5. Time evolution of discord at λ = 0.7 and ω = 0.001λ
for a MS (a,b) and a NFS (c). Panel (a) shows the long-time
evolution, while (b,c) shows the short-time behaviour. The
short times for the MS in (b) are indicated by the green box
in (a). We note that, for these parameters, the long-time
evolution of discord for the NFS has the same behaviour as
the short-time counterpart in (c).

without showing any special entanglement characteris-
tics, unlike their counterparts for a maximally entangled
initial state discussed in Section III.

In relation to the entanglement measures for the NFS
system, shown in Fig. 4(b,d,f,h), they exhibit a beaviour
that is roughly similar either at finite or zero energies
and at symmetric or asymmetric couplings. Here, the
concurrence we obtain to be equal to C = ||c̄′2(t)||c̄′3(t)||,
which goes to zero when either of the coefficients ap-
proaches zero. The time at which C = 0 is calculated as
t = (nπ/

√
1 + λ2 + ω2) ℏ/λ1, where n is an integer. At

these points in time, the NFS acquires the state |110⟩,
which is a zero concurrence state (C = 0). This can
be verified from the results in Fig. 4(b,d,f,h), where zero
concurrence occurs between t = 2 ℏ/λ1 and t = 3 ℏ/λ1,
depending on the particular value of λ and ω during the
evolution.

B. Generating maximally entangled QDs induced
by MBSs

We have seen in the previous subsection that the time-
evolution in the MS setup is sensitive to variations of ω.
Of particular interest in this part is the behaviour of the
quantum correlations at ω ∼ 0, because this regime has
well localized MBSs in the MS. Here we exploit the sen-
sitivity of discord D at ω ∼ 0 to generate a maximally
entangled state between QDs. The time evolution of D
at ω = 0.001 and asymmetric coupling λ = 0.7 is pre-
sented in Fig. 5(a,b) for the MS setup for long and short
times, with Fig. 5(b) taken within the green box Fig. 5(a).
We contrast this behavior with the time evolution for the
NFS at short times. The first observation is that D ex-
hibits rapid oscillations with an initial small amplitude
of 0.1 at short times [Fig. 5(b)]. As time progresses, D
increases and eventually reaches unity in the long-term
evolution, see Fig. 5(a). Having D = 1 means that a
maximally entangled stated of QDs is created, achieved
only at a small energy splitting of MBSs. In contrast
to the MS, the discord for the NFS system in Fig. 5(c)

develops homogeneous oscillations at short times whose
period and amplitudes do not change over time. We have
verified that this behaviour in the NFS also remains in
the long time dynamics, making it very different to the
MS.

V. CONCLUSIONS

In conclusion, we have investigated the entanglement
properties of Majorana bound states emerging in a topo-
logical superconductor that is coupled to two quantum
dots. To contrast the impact of Majorana bound states,
we have compared this Majorana system with an equiv-
alent where the quantum dots are coupled via a nor-
mal fermion. In order to characterize entanglement in
both systems, we have employed the concurrence and dis-
cord, quantum correlations that we also complemented
by studying the entanglement dynamics and return prob-
ability. We found that zero-energy Majorana bound
states can transform initially maximally entangled quan-
tum dots into a classical state, while maximally entan-
gled states are notably achieved at finite Majorana en-
ergies, thus highlighting the impact of Majorana nonlo-
cality. Remarkably, we have shown that the maximal
entanglement between quantum dots at the beginning of
the evolution can be completely shift to a state between
Majorana bound states and one of the quantum dots.

Furthermore, we found entanglement and quantum
correlations can be generated from an initially separa-
ble state in the Majorana system, with discord reliably
quantifying quantum correlations for zero-energy Majo-
rana bound states. We also showed that entanglement
generation in the Majorana system is very sensitive to the
nonlocality of the Majorana bound states, which, upon
an appropriate control, can even induce maximally entan-
gled states in the long time dynamics. In all the stud-
ied cases, we found that the Majorana system exhibits
distinct entanglement features than the normal fermion
system, which occurs because spatial nonlocality is in-
trinsic to Majorana bound states but absent in regular
fermions. Our findings can therefore serve as an alter-
native way to characterize Majorana bound states and
exploit their potential for quantum information.
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Appendix A: Calculation of quantum discord

In this Appendix, we outline the procedure for com-
puting quantum discord [44] as defined in the main text
for both MS and NFS. Here, for the comparative study of
concurrence, we focus on the quantum discord between
the two QDs, which can be calculated using the two-qubit
reduced density matrix ρd defined in Eq. (10) for both
systems. We provide the procedure to compute discord
for MS first, followed by that for NFS in the subsequent
subsection.

1. Majorana system

For initially maximally entangled QDs in the MS, the
matrix ρd in Eq. (10) is computed by tracing over the
nonlocal fermion from the state described in Eq. (18).
On the other hand, for the separable initial state of the
MS written in Eq. (27), the same can be calculated from
the state formulated by Eq. (28). In both scenarios, the
resulting ρd matrices represent the reduced density ma-
trix of the two QDs. Therefore, the basis states and the
form of matrices remain unchanged. Subsequently, for a
better representation, the first QD is denoted as subsys-
tem A and the second QD as subsystem B. Therefore, ρd
for the two QDs will be denoted as ρAB and will have the
same X-state representation as written in Eq. (10). For
the discord calculation, we set the measurement basis of
B as {|0̃⟩, |1̃⟩}, parametrized by θ and ϕ, which can be
transformed from the computational basis {|0⟩, |1⟩} of B
as

|0̃⟩ = cos θ/2|0⟩+ eiϕ sin θ/2|1⟩ ,
|1̃⟩ = sin θ/2|0⟩ − eiϕ cos θ/2|1⟩ ,

(A1)

where the parameters θ ∈ [0, π] and ϕ ∈ [0, 2π]. In

the new basis states {|k̃⟩} ={|0̃⟩, |1̃⟩}, we compute the
marginal conditional density matrices ρA|Bk̃

to obtain the

conditional entropy in Eq. (13) as

ρA|Bk̃
=

1

pk̃
TrB |k̃⟩⟨k̃|ρAB , pk̃ = TrAB |k̃⟩⟨k̃|ρAB ,

(A2)
where the expressions for the probabilities pk̃ are ob-
tained using the element of ρAB , borrowed from Eq. (10)
as

p0̃ = (u+ w2) cos
2(θ/2) + (v + w1) sin

2(θ/2),

p1̃ = (u+ w2) sin
2(θ/2) + (v + w1) cos

2(θ/2) .
(A3)

Therefore, the eigenvalues of ρA|Bk̃
in terms of the above

probabilities can be calculated as

λ± =
1

2p0̃
(p0̃ ±

√
b2
0̃
+ 4|z|2), for ρA|B0̃

,

λ′± =
1

2p1̃
(p1̃ ±

√
b2
1̃
+ 4|z|2), for ρA|B1̃

,

(A4)

where, z = 1
2 sin θ(e

iϕx+ e−iϕy) and

b0̃ = (u− w2) cos
2(θ/2) + (w1 − v) sin2(θ/2),

b1̃ = (u− w2) sin
2(θ/2) + (w1 − v) cos2(θ/2) .

(A5)

Using all the expressions from Eq. (A3-A5), the con-
ditional entropy Cθ,ϕ(ρA|Bk̃

) can be written by the
weighted sum of marginal conditional entropies as

Cθ,ϕ(ρA|B) = p0̃S(ρA|B0̃
) + p1̃S(ρA|B1̃

) , (A6)

where the marginal entropies are computed using the
eigenvalues written in Eq. (A4) as follows

S(ρA|B0̃
) = −λ+ log2 λ+ − λ− log2 λ− ,

S(ρA|B1̃
) = −λ′+ log2 λ

′
+ − λ′− log2 λ

′
− .

(A7)

Now, we can compute the quantum discord of the two
QDs as defined in Eq. (14) as

DAB = min
(θ,ϕ)

Cθ,ϕ(ρA|B)− S(ρAB) + S(ρB), (A8)

where the conditional entropy Cθ,ϕ(ρA|B) is given by
Eq. (A6) and can be minimized computationally over
the angles θ and ϕ. The composite entropy S(ρAB) is
calculated using the eigenvalues of the ρAB borrowed
from Eq. (10), which are (u + v ±

√
(u− v)2 + 4|y|2)/2

and (w1 + w2 ±
√
(w1 − w2)2 + 4|x|2)/2. The last term,

S(ρB), represents the entropy of the second QD. Here,
the matrix ρB is obtained from ρAB by tracing over A.
The entropy S(ρB) is then calculated using the eigenval-
ues u+w2 and v+w1 of ρB . Therefore, Eq. (A8) can be
used to calculate the discord in Eq. (14) for the MS with
different initial states written in Eq. (18) and Eq. (28) by
first computing ρds as described in Eq. (10) and following
the steps to Eq. (A8) of this section. These calculations
have been utilized in Sec. III and Sec. IV.

2. Normal fermion system

The computation of discord for NFS follows the same
steps as for MS. However, for NFS, the reduced den-
sity matrix ρd for the two QDs is obtained by tracing
over the normal fermion, as described in Eq. (8), from
the state given in Eq. (24) for the maximally entangled
initial state. Alternatively, for the separable initial state,
ρd can be calculated from the state in Eq. (29). Then,
similar to the MS in previous subsection, we use ρAB for
the reduced density matrices of the two QDs and follow
the steps from equations (A1) to (A8) to compute all the
relevant quantities. The minimization of the conditional
entropy in Eq. (A8) is carried out numerically. Therefore,
we directly refer to Eq. (A8) for computing the discord
between the two QDs in NFS. The difference in discord
from MS to NFS lies in the initial states used: Eq. (24)
and Eq. (29) for the maximally entangled and separable
initial states of NFS, respectively. We utilize these cal-
culations in Sections III and IV for NFS.
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