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Abstract

We consider the Renormalization Group (RG) fixed-point theory associated with a fermionic
ψ4
d model in d = 1, 2, 3 with fractional kinetic term, whose scaling dimension is fixed so that

the quartic interaction is weakly relevant in the RG sense. The model is defined in terms
of a Grassmann functional integral with interaction V ∗, solving a fixed-point RG equation in
the presence of external fields, and a fixed ultraviolet cutoff. We define and construct the
field and density scale-invariant response functions, and prove that the critical exponent of the
former is the naive one, while that of the latter is anomalous and analytic. We construct the
corresponding (almost-)scaling operators, whose two point correlations are scale-invariant up to
a remainder term, which decays like a stretched exponential at distances larger than the inverse
of the ultraviolet cutoff. Our proof is based on constructive RG methods and, specifically, on
a convergent tree expansion for the generating function of correlations, which generalizes the
approach developed by three of the authors in a previous publication [1].
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1 Introduction

Since the seminal works of Kadanoff, Wilson, Fisher and others in the 1970s, renormalization group
(RG) fixed points and renormalization group flows connecting them are among central objects of
study of theoretical physics, with many experimental applications. Only a small part of conjectures
and intuitions accumulated about RG fixed points in theoretical physics have been put on rigorous
mathematical footing. Pioneering results in this area were obtained by Gawedzki and Kupiainen,
who in [2] showed non-perturbative stability of the Gaussian fixed point of a scalar field in four
dimensions (d = 4), while in [3] they could follow, non-perturbatively, renormalization group flow
of the Gross-Neveu two-dimensional model from the Gaussian fixed point of the Dirac field at short
distances to some intermediate distance scale where the four-fermion coupling is still small. Later on
[4] they constructed a non-perturbative interacting fixed point in a fractional Gross-Neveu model,
which has the fermion propagator /k/k2 replaced by /k/|k|2−ǫ. This ǫ serves as a small parameter
which is somewhat similar to the Wilson-Fisher deviation from the integer number of dimensions.
Fractional Gross-Neveu model instead lives in the integer number of dimension, but has long-ranged
interactions. Analogous fractional model can be considered also for a scalar bosonic field, where
they should describe critical points of the long range Ising model [5, 6, 7]. Fixed points in fractional
bosonic models were also rigorously constructed [8, 9, 10].

The present paper is the second one in the series started by our recent work [1]. In [1], three of
us considered a fermionic model closely related to the fractional Gross-Neveu model of Gawedzki
and Kupiainen. In our fractional symplectic fermion model, the fields are spinless fermions ψa in
d dimensions (d = 1, 2, 3) with propagator Ωab/|k|d/2+ǫ where Ω is a symplectic N × N matrix,
and N is assumed even. The model is symmetric with respect to the symplectic group Sp(N)
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and the bare potential includes the invariant mass and the quartic coupling terms. In this model,
Ref. [1] demonstrated the existence of an interacting fixed point for any ǫ sufficiently small, which
could be positive or negative, or in fact complex. One of the main results of Ref. [1] is that the
fixed point potential depends analytically on ǫ in a small disk |ǫ| < ǫ0. This interesting analyticity
property should be a general feature of fixed points of fermionic models, but it was overlooked in
prior literature. For bosonic models no such property holds, as they are well defined only for a
positive quartic coupling. For fermionic models there is no such contradiction, since the quartic
interaction may have any sign for fermions.

As discussed in [1, Section 8], the fractional symplectic fermion model of [1] is an excellent
theoretical laboratory to study various aspects of the RG. In longer term perspective, one would
also like to test the predictions of Conformal Field Theory (CFT) for the fixed point theory of the
RG map, and possibly prove them starting from a microscopic model. We refer here, in particular,
to conformal invariance of the correlation functions of suitable local operators Oi and the validity
of the Operator Product Expansion (OPE), which are among the basic CFT axioms, see e.g. [11].

The focus of [1] was on the construction of the fixed point potential, which is not directly
observable. In this second paper of the series we continue the study of the same model, making
contact with physically interesting quantities such as critical exponents and correlation functions.
Our goals will be twofold. On the one hand, we will show that the exponents in our model are
analytic in a small disk |ǫ| < ǫ0. This should be contrasted with the critical exponents of the
fractional φ4d theory [8, 9, 10], whose expansion in ǫ is expected to be asymptotic and conjectured
to be Borel summable; note, however, that their regularity properties have not been investigated
yet: current results are limited to the lowest order computation of a few non-trivial, anomalous,
exponents [10].1

On the other hand, we will make progress on clarifying the rigorous meaning of the so called
scaling operators, formally defined as densities of eigenstates of the renormalization group transfor-
mation linearized around the fixed point. These operators are sometimes also called eigenoperators,
see e.g. [21], Eq. (3.10). Scaling operators are used in the theoretical physics literature since the
1970s, but to our knowledge it is the first time they appear in a rigorous mathematical study of a
non-integrable interacting field theory. In the special context of Liouville field theory, a full proba-
bilistic construction of scale-invariant correlation functions has been achieved in a remarkable series
of papers [22, 23, 24]. However, integrability of Liouville theory plays a key role in the construction
of its correlation functions, and it is important to introduce more robust methods for a microscopic
computation of scaling operators. Scaling operators are so called because they are believed to have
a well-defined scaling dimension and exactly scale-invariant correlation functions. This is important
for connecting the RG framework to another framework for understanding the critical state, the one
based on the CFT axioms (or bootstrap axioms) in d dimensions. An outline of CFT/bootstrap ax-
ioms can be found e.g. in [11] (in physics language) or in [25, 26] (in a more mathematical language).

1Other previous results on critical exponents of interacting field theories in the mathematical physics litera-
ture include the following. In the context of models with marginally irrelevant interactions, like φ44 theories, the
large-distance asymptotic behavior of correlation functions is characterized by logarithmic corrections with specific,
fractional, exponents, computed in [12, 13, 14]; similar logarithmic corrections with fractional exponents are expected
to characterize the short-distance asymptotic behavior of fermionic models with marginally relevant interactions, like
the Gross-Neveu model in d = 2: its exponents can be computed via a generalization of [3, 15, 16], even though
they have not been explicitly worked out. In the context of 2D models with ‘marginally marginal’ interactions, i.e.,
marginal interactions with asymptotically vanishing beta function [17, 18], the exponents displayed by the large-
distance behavior of correlation functions are analytic in the interaction strength in a small disk in the complex
plane; universality for these exponents have been proved, as well, in the sense that extended scaling relations are
verified [19, 20].
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The very first assumption of CFT is that there is a basis of local operators of the theory given by
operators of well-defined scaling dimension, i.e. whose correlation functions are exact power laws.
For the CFT and RG frameworks to be consistent, basis operators of CFT should be the same
as the scaling operators of RG. In this paper, we focus on the fixed point (FP) theory defined in
terms of a FP potential in the presence of external source fields and a reference Gaussian part with
fixed ultraviolet cutoff. While it is standard to consider the generating function in the presence of
linearly-coupled external fields, a novelty of our approach is to find a FP potential which remains
exactly invariant after an RG step (and not just at the linear level), after an appropriate rescaling
of the external source fields. As usual, correlation functions of our FP theory are obtained by first
differentiating with respect to the external source fields and then by setting them to zero. In this
setting, we have not been able to find exact scaling operators operators, and we actually believe
that they do not exist, due to the presence of a short-distance cutoff. However, we save the day by
identifying almost-scaling operators, whose correlation functions are scale-invariant up to remainder
terms decreasing as a stretched exponential at large distances – that is our second main result. This
is to be contrasted with the behavior of correlation functions of generic (non-scaling) local operators
which are expected to decay like power laws at large distances, up to remainder terms decaying also
like power laws, albeit with a larger power than the leading term. It appears plausible that generic
local operators should be expressible as (infinite) linear combinations of almost-scaling operators,
each of which contributes to the correlation function with a power law behavior with a different
critical exponents. Such an expansion in operators with larger and larger scaling dimension is stan-
dard in physics considerations of critical phenomena, see e.g. [21, Eq. (3.11)] or [27, Eq. (3.7)]. We
expect that our techniques will allow us to rigorously justify such expansion, but this remains to
be done.

We stress that in our paper we choose to work with a fixed ultraviolet cutoff. This is essential
to observe power law sub-leading corrections and, therefore, to be able to distinguish non-scaling
from almost-scaling operators. Of course, for a critical theory, as the one we are looking at here,
there is always an easy way to send the ultraviolet cutoff to infinity, by rescaling distances while
simultaneously rescaling the fields appropriately, and taking the limit of the correlation functions we
compute. When doing this, any sub-leading correction, being it power law or stretched exponential,
would point-wise tend to zero. So we don’t do this in our work.

Outline. The paper is structured as follows: In Section 2 we define the model and state our
main results, summarized in Theorems 2.3 and 2.4. In Section 3 we describe in detail the RG map
and derive the corresponding FP equation in the presence of the external source fields. In Section
4 we solve the FP equation for the potential with external source fields via a tree expansion, and
prove its absolute convergence in a weighted L1 norm. In Section 5 we prove the convergence of
the tree expansion in a mixed L1/L∞ norm, required for the control of the correlation functions at
fixed positions, and we conclude the proof of Theorem 2.3. In Section 6 we adapt the discussion
of the previous section to the estimate of the remainder terms in the correlation functions of the
almost-scaling operators and conclude the proof of Theorem 2.4. The lowest order computation of
the anomalous critical exponent and of the two point function are collected in two appendices.

Many aspects of the proof are generalizations of the methods introduced and discussed in detail
in [1]: therefore, we will often refer the reader to specific sections of our previous paper and
emphasize the analogies and novelties of the present work compared to [1].
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2 The model and the main results

2.1 Generating function of the scale-invariant response functions

Let us recall that in [1] we constructed the non-trivial FP potential H = H∗ for a d-dimensional
Grassmann theory with partition function

∫
dµ≤0(ψ)e

H(ψ), where ψa is an N -component (with
N ≥ 4 even and different from 8) Grassmann field in V ⊂ Rd with d = 1, 2, 3 and V a cube whose
side is eventually sent to ∞, and dµ≤0 (denoted dµP in [1]) is a reference Gaussian integration
characterized by the following two-point function, or propagator2:

G
(≤0)
ab (x− y) =

∫

dµ≤0(ψ)ψa(x)ψb(y) = Ωab

∫
ddk

(2π)d
χ(k)

|k|d/2+ǫ e
ik·(x−y)

≡ ΩabP≤0(x− y).

(2.1)

Here Ω is the standard N ×N symplectic matrix in block-diagonal form (see [1, Eq.(1.3)]), and the
cutoff function χ is radial, monotone decreasing in the radial direction, and such that

χ(k) =

{

1, (|k| ≤ 1/2)

0, (|k| ≥ 1).
(2.2)

As in [1], we assume that χ belongs to the Gevrey class Gs, s > 1 [1, App. A]. The FP potential
constructed in [1] reads:

H∗(ψ) = ν∗
∫

ddxψ2(x) + λ∗
∫

ddxψ4(x) +H∗
IRR(ψ), (2.3)

where ν∗, λ∗ are non-zero real-analytic functions of ǫ, of order ǫ, for ǫ sufficiently small, ψ2(x) :=
∑N

a,b=1 Ωabψa(x)ψb(x), ψ
4(x) := (ψ2(x))2, and H∗

IRR is an infinite sum of irrelevant terms, whose
kernels are non-vanishing real-analytic functions of ǫ (see [1] for more precise claims).

In this paper, we consider the FP theory in the presence of external source fields and the
corresponding generating function for correlations, formally defined as

W ∗(φ, J) = log

∫
dµ≤0(ψ)e

V ∗(φ,J,ψ)

∫
dµ≤0(ψ)eH

∗(ψ)
. (2.4)

Here V ∗ is a solution of the FP equation V ∗ = RV ∗, with R the RG map, of the form

V ∗(φ, J, ψ) = H∗(ψ) + (φ, ψ) + (J, ψ2) +R∗(φ, J, ψ) + S∗(φ, J), (2.5)

where (φ, ψ) and (J, ψ2) are shorthand notations for
∑N

a=1

∫
ddxφa(x)ψa(x) and

∫
ddxJ(x)ψ2(x),

respectively, R∗(φ, J, ψ) is a sum of irrelevant terms depending explicitly both on (φ, J) and on

2In finite volume V the symbol
∫

ddk

(2π)d
should be understood a shorthand notation for the corresponding Riemann

sum of discrete allowed momenta. As discussed in [1, Appendix H], the RG map leading to the definition of H∗ can
be defined in finite volume and proved to converge strongly (as an operator acting on the Banach space of interactions
defined in [1, Section 4]) to a well-defined infinite volume counterpart. An analogous discussion can be repeated in
the generalized setting considered in this paper, where external fields and correlation functions are considered. In the
following we will always write all the relevant equations directly in the infinite volume setting and leave the details
of the proof of convergence of the finite volume theory to its thermodynamic limit to the reader.
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ψ, i.e., R∗(φ, J, 0) = R∗(0, 0, ψ) = 0, and S∗(φ, J) is an external potential, depending only upon
the external fields (φ, J), such that S∗(0, 0) = 0. The precise definition of the RG map and of the
irrelevant part of V ∗ will be given shortly, see Definition 2.2 below. Note also that, a priori, the
right side of (2.4) may be plagued by infrared divergences. Therefore, (2.4) should be interpreted
as:

W ∗(φ, J) := lim
h→−∞

W ∗
[h,0](φ, J)

W ∗
[h,0](φ, J) := log

∫
dµ[h,0](ψ)e

V ∗(φ,J,ψ)

∫
dµ[h,0](ψ)eH

∗(ψ)
,

(2.6)

where dµ[h,0] is the Grassmann Gaussian integration with propagator3

G
[h,0]
ab (x− y) = Ωab

∫
ddk

(2π)d
χ(k)− χ(γ−hk)

|k|d/2+ǫ eik·(x−y)

≡ ΩabP[h,0](x− y),

and γ > 1 is an arbitrarily chosen rescaling parameter, which is fixed once and for all.
By differentiating W ∗ with respect to (w.r.t.) the external source fields, we define the field-field

and density-density response functions:

G∗
ab(x) :=

δ2W ∗(φ, 0)

δφa(x)δφb(0)

∣
∣
∣
φ=0

, F∗(x) :=
δ2W ∗(0, J)

δJ(x)δJ(0)

∣
∣
∣
J=0

, (2.7)

which are the central objects of interest of this paper. These response functions are expected4 to
have the same large distance asymptotic behavior, up to a finite multiplicative renormalization, as
the two-point functions

〈ψa(x)ψb(0)〉H∗ , 〈ψ2(x);ψ2(0)〉H∗ , (2.8)

respectively, where 〈· · · 〉H∗ := limh→−∞

∫
dµ[h,0](ψ)e

H∗(ψ)···
∫
dµ[h,0](ψ)eH

∗(ψ) (in the second expression, the semicolon

indicates truncated, or connected, expectation, i.e., 〈A;B〉H∗ := 〈AB〉H∗ − 〈A〉H∗〈B〉H∗ ); in par-
ticular, they are expected to define the same critical exponents. However, contrary to the two-point
functions in (2.8), the response functions G∗(x) and F∗(x) are scale-invariant, see Theorem 2.3
below. This may look surprising, at first sight, due to the presence of a fixed ultraviolet cutoff in
our theory; but it turns out that the very definition of fixed point potential V ∗ fixes the irrelevant
terms R∗ and the external potential S∗ in a special way, so that the resulting response functions
are, in fact, scale invariant. Even in the non-interacting theory corresponding to the Gaussian fixed
point, the mechanism fixing these additional terms is not completely trivial: it is in fact instructive,
as a preliminary exercise, to compute V ∗ and G∗,F∗ in the non-interacting case, see Section 2.2.1.

3More generally, for any pair of integers h1 < h2, we let G[h1,h2]
ab

(x) := Ωab
∫

ddk

(2π)d
χ(γ−h2k)−χ(γ−h1k)

|k|d/2+ǫ
eik·x ≡

ΩabP[h1,h2](x). We also denote G(≤h)
ab

:= limh1→−∞G
[h1,h]
ab

(x) ≡ ΩabP≤h(x) and G(≥h)
ab

:= limh2→+∞G
[h,h2]
ab

(x) ≡

ΩabP≥h(x). If h2 = h1 + 1 ≡ h, we denote the single-scale propagator by g(h)
ab

(x) := G
[h−1,h]
ab

(x).
4In this paper, we won’t discuss how to compute the two-point functions and how to prove that they have the

same asymptotic behavior as the response functions: this follows from a stability analysis of the RG flow in the
vicinity of the fixed point potential, which is deferred to a third paper in this series. In such a third paper, we will
also prove the independence of the fixed point potential from the scale parameter γ entering the definition of the RG
map, see next section, and, most importantly, the universality of the critical exponents with respect to the choice of
the ultraviolet cutoff function χ in (2.2).
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2.2 The RG map

In order to clarify the notion of FP potential V ∗ in (2.6), we need, first of all, to specify the action of
the RG map R. Before doing this formally, let us remind the reader the logic behind the definition
of the R, which maps a potential V to a new potential V ′ as follows (this discussion parallels the
one in Section 2.1 of [1]): decomposing

G(≤0)(x) = G(≤−1)(x) + g(0)(x), (2.9)

see footnote 3 for the definitions of G(≤−1) and g(0), we write (‘addition principle for Gaussian
integrals’):

1

N≤0

∫

dµ≤0(ψ)e
V (φ,J,ψ)F (ψ) =

1

N≤0

∫

dµ≤−1(ψγ)

∫

dµ0(ψ
′)eV (φ,J,ψγ+ψ

′)F (ψγ + ψ′), (2.10)

where N≤0 =
∫
dµ≤0(ψ)e

V (0,0,ψ) is a normalization constant, and dµ≤−1 (resp. µ0) is the Grass-
mann Gaussian integration with propagatorG(≤−1) (resp. g(0)). If F (ψ) is a ‘large scale observable’,

i.e., if it does not depend on the Fourier modes ψ̂(k) with k in the support of ĝ(0)(k), then

1

N≤0

∫

dµ≤0(ψ)e
V (φ,J,ψ)F (ψ) =

1

N≤0

∫

dµ≤−1(ψγ)F (ψγ)

∫

dµ0(ψ
′)eV (φ,J,ψγ+ψ

′)

=
N0

N≤0

∫

dµ≤−1(ψγ)e
Veff(φ,J,ψγ)F (ψγ),

(2.11)

where N0 :=
∫
dµ0(ψ)e

V (0,0,ψ) and Veff(φ, J, ψγ) = log(N−1
0

∫
dµ0(ψ

′)eV (φ,J,ψγ+ψ
′)). Thanks to the

scaling property G(≤−1)(x) = γ−2[ψ]G(≤0)(x/γ), with [ψ] = d
4 − ǫ

2 (see [1, eqs.(2.14),(2.15)]), the

random field ψγ has the same distribution as γ−[ψ]ψ(·/γ) ≡ Dψ, with D the dilatation operator, ψ
a random field with distribution dµ≤0, so that

(2.11) =
1

N ′
≤0

∫

dµ≤0(ψ)e
Veff(φ,J,Dψ)F (Dψ),

where N ′
≤0 :=

∫
dµ≤0(ψ)e

Veff(0,0,Dψ) ≡ N≤0/N0. Now, if V has the same structure as (2.5), i.e.,

V (φ, J, ψ) = H∗(ψ) + (φ, ψ) + (J, ψ2) +R(φ, J, ψ) + S(φ, J), (2.12)

with R and S two potentials in an O(ǫ) neighborhood of the non-interacting fixed point discussed
in Section 2.2.1 below (with R a sum of irrelevant terms, in the sense discussed in Section 2.3 below,
and S an external potential, depending only upon the external fields φ, J), then it turns out, see
Section 3, that

Veff(φ, J,Dψ) = H∗(ψ) + Z̃1(φ,Dψ) + Z̃2(J, (Dψ)
2) + R̃(φ, J,Dψ) + S̃(φ, J), (2.13)

with Z̃1 = 1 + O(ǫ), Z̃2 = 1 + O(ǫ) two constants produced by the integration of the fluctua-
tion field ψ′, and R̃, S̃ two new potentials that are, again, O(ǫ)-close to the non-interacting fixed
point, with R̃ a sum of irrelevant terms. In view of (2.13), it is natural to rescale the exter-
nal fields in a way similar to ψ, in such a way to recast the terms involving the external fields
in a form as close as possible to the one in which they originally appeared in V : therefore, we
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let φ ≡ Dφ′ and J ≡ DJ ′, with D the dilatation operator, acting on the external fields as:
Dφ(x) = γ−[φ]φ(x/γ) and DJ(x) = γ−[J]J(x/γ), with the scaling dimensions [φ], [J ] to be fixed
appropriately, in a way explained shortly. In terms of these definitions: (φ,Dψ) = (Dφ′, Dψ) =
∑N

a=1 γ
−[φ]−[ψ]

∫
ddxφ′a(x/γ)ψa(x/γ) = γd−[φ]−[ψ](φ′, ψ), and similarly for (J, (Dψ)2). Therefore,

Veff(φ, J,Dψ) = Veff(Dφ
′, DJ ′, Dψ)

= H∗(ψ) + Z̃1γ
d−[φ]−[ψ](φ′, ψ) + Z̃2γ

d−[J]−2[ψ](J ′, ψ2) + R̃(Dφ′, DJ ′, Dψ) + S̃(Dφ′, DJ ′)

≡ V ′(φ′, J ′, ψ).

(2.14)

By definition, V ′ is the image of V under the RG map, i.e., V ′ = RV ; more precisely, V ′ is
equivalent, in the sense of [1, Section 5.2.1], to RV : the missing ingredient, in the previous informal
discussion, is the action of the trimming map T , which is an operator, equivalent to the identity,
which isolates the relevant terms from the irrelevant ones, see Section 3.2 below.

Note that the RG map depends, among other things, upon the choice of the scaling dimensions
[φ] and [J ]. In order to fix these dimensions, we use the requirement that, at the fixed point,
Z1γ

d−[φ]−[ψ] = Z2γ
d−[J]−2[ψ] = 1, with Z1 = Z̃∗

1 and Z2 = Z̃∗
2 the constants as in (2.13)-(2.14)

associated with the fixed point potential V ∗. In this way, the fixed point equation (FPE) defines
an unambiguous criterium for assigning a scaling dimension to the external fields, which has a
simple relation with the critical exponents of the corresponding response functions (cf. (2.16) with
(2.41)); once that [φ] and [J ] are fixed, the FPE becomes an equation for R∗,S∗, of the form:
R̃∗(Dφ′, DJ ′, Dψ) = R∗(φ′, J ′, ψ), S̃∗(Dφ′, DJ ′) = S∗(φ′, J ′). The uniqueness of the solution for
the FPE for [φ], [J ],R∗,S∗, proved below, see Theorem 2.3, and the fact that the critical exponent
of the two-point correlations (2.8) are the same as those of the response functions G∗,F∗ associated
with V ∗, proved in the next paper of this series, confirms the physical significance of the scaling
dimensions [φ] and [J ], and of the fixed point potential V ∗.

Given these premises, let us define the RG map R a bit more formally as follows:

R := D−(h−1)TShD
h ≡ DTS0

(independence from h ∈ Z is a consequence of the definitions of Sh, T,D below), where:

• Sh is the integration on scale h ≤ 0, i.e.,

ShV (φ, J, ψ) = log

∫
dµh(ψ

′)eV (φ,J,ψ′+ψ)

∫
dµh(ψ′)eV (0,0,ψ′)

, (2.15)

where dµh is the Grassmann Gaussian integration with propagator g
(h)
ab (x), see definition in

footnote 3;

• T is the trimming map, defined in detail in Section 3.2 below, which is equivalent to the

identity: when acting on a potential V it produces an equivalent potential V ′ ∼ V , in the
sense of [1, Sect.5.2.1], of the form V ′ = TV = LV + IV ; here LV is a sum of finitely many
local relevant and marginal terms (belonging to a finite dimensional subspace of the Banach
space of potentials), and IV is an equivalent rewriting of TV − LV as an infinite linear
combination of non-local, irrelevant, monomials in φ, J, ψ, ∂ψ;
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• D is the dilatation, acting on V (φ, J, ψ) as DV (φ, J, ψ) := V (Dφ,DJ,Dψ), with Dψ(x) =
γ−[ψ]ψ(x/γ) (recall: [ψ] = d/4 − ǫ/2, see [1, eqs.(2.14),(2.15)]), while Dφ(x) = γ−[φ]φ(x/γ),
DJ(x) = γ−[J]J(x/γ), where [φ] = d− [ψ] +O(ǫ) and [J ] = d− 2[ψ] +O(ǫ) are two analytic
functions of ǫ, for ǫ sufficiently small, to be determined in such a way that V ∗, of the form
described in Definition 2.2 below, is a solution of the FP equation V ∗ = RV ∗. A simple
argument, spelled out in Section 2.8 below5 shows that 2(d − [φ]) and 2(d − [J ]) are the
critical exponents of the response functions G∗ and F∗, respectively: therefore, denoting by
2∆1 and 2∆2 these critical exponents, we rewrite the action of the dilatation operator on the
external fields in terms of ∆1 := d− [φ], ∆2 := d− [J ]:

Dφ(x) = γ−d+∆1φ(x/γ), DJ(x) = γ−d+∆2J(x/γ); (2.16)

we will see that ∆1 = [ψ] and ∆2 = 2[ψ] + η2(ǫ), with η2(ǫ) = 2ǫN−2
N−8 +O(ǫ2).

2.2.1 The fixed point potential in the non-interacting case

Before introducing the notion of relevant and irrelevant operators, and giving a more formal defini-
tion of fixed point potential V ∗, it is instructive to discuss the ‘Gaussian’ case corresponding, in the
absence of external fields, to the trivial fixed point H∗(ψ) = 0. Even in this case, the fixed point
potential in the presence of the external fields, to be denoted by V ∗

0 , is not trivial, and its structure
is crucial to guarantee that the response functions G∗ and F∗ are scale-invariant, notwithstanding
the presence of an ultraviolet cutoff. For H∗(ψ) = 0, we let ∆1 = [ψ] and ∆2 = 2[ψ] in (2.16), so
that the action of the dilatation operator reduces to:

Dψ(x) = γ−
d
4+

ǫ
2ψ(x/γ), Dφ(x) = γ−

3
4d−

ǫ
2φ(x/γ), DJ(x) = γ−

d
2−ǫJ(x/γ). (2.17)

The non-interacting fixed point potential V ∗
0 we consider is the one obtained as the image of the

‘naive’ potential V0(φ, J, ψ) := (φ, ψ) + (J, ψ2) under the iterated action of the RG map DS0, in
the limit as the number of iterations goes to infinity:

V ∗
0 (φ, J, ψ) = lim

n→∞
(DS0)

nV0(φ, J, ψ). (2.18)

The action of S0 on a potential V returns (see [1, Section 5.1]):

S0V (φ, J, ψ) =
∑

s≥1

1

s!
〈V (φ, J, ψ + ·); · · · ;V (φ, J, ψ + ·)
︸ ︷︷ ︸

s times

〉(0)0 ,

where 〈A1; · · · ;As〉(0)0 denotes connected expectation of order s with respect to (w.r.t.) the Gaussian
integration dµ0 with propagator g(0) (the lower label ‘0’ indicates that the expectation is computed
w.r.t. a Gaussian, non-interacting, measure, while the upper label ‘(0)’ refers to the scale of the
propagator g(0)). Using the fact that the naive potential V0(φ, J, ψ) is invariant under the action of
D, one finds that (2.18) can be re-expressed as

V ∗
0 (φ, J, ψ) = S≥1V0(φ, J, ψ), (2.19)

5See in particular (2.52). Note that the discussion in Section 2.8 is written in terms of ∆1 = d−[φ] and ∆2 = d−[J ]
rather than in terms of [φ], [J ], but this is just a matter of notation.
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where

S≥1V (φ, J, ψ) =
∑

s≥1

1

s!
〈V (φ, J, ψ + ·); · · · ;V (φ, J, ψ + ·)
︸ ︷︷ ︸

s times

〉(≥1)
0 , (2.20)

and 〈A1; · · · ;As〉(≥1)
0 denotes connected expectation of order s w.r.t. the Gaussian integration

dµ≥1 with propagator G(≥1), see footnote 3. As well known (see also [1, Appendix D.2]), connected
expectations w.r.t. a Gaussian Grassmann measure can be expressed in terms of connected Feynman
diagrams associated with the corresponding propagator. Using this fact, (2.20) implies that the
fixed point potential in (2.18) is V ∗

0 (φ, J, ψ) = (φ, ψ) + (J, ψ2) + R∗
0(φ, J, ψ) + S∗

0 (φ, J), where, if
the two terms (φ, ψ) and (J, ψ2) in V0 are graphically represented as in Figure 1, then R∗

0 and S∗
0

φ ψ J
ψ

ψ

Figure 1: The graphical representations of the two vertices (φ, ψ) and (J, ψ2), respectively.

are graphically represented as in Figure 2, with the solid lines representing the propagator G(≥1).
In formulae, recalling the definition of P≥1 in footnote 3:

R∗
0(φ, J, ψ) =

∑

n≥1
y0 y1

≥ 1

y2

≥ 1

yn
+
∑

n≥2
y1 y2

≥ 1

yn
,

S∗
0 (φ, J) =

∑

n≥0
y0 y1

≥ 1

yn yn+1

≥ 1
+
∑

n≥1

y0
y1

y2

yn

y3

≥ 1≥ 1

≥ 1

≥ 1

Figure 2: The graphical representations of R∗

0 and S∗

0 , respectively.
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R∗
0(φ, J, ψ) =

∑

m≥1

(−2)m
N∑

a=1

∫

ddy0 · · · ddymφa(y0)P≥1(y0 − y1)J(y1)P≥1(y1 − y2) · · · J(ym)ψa(ym)

+
∑

m≥2

(−2)m−1
N∑

a,b=1

Ωab

∫

ddy1 · · · ddymψa(y1)J(y1)P≥1(y1 − y2) · · · J(ym)ψb(ym)

S∗
0 (φ, J) =

∑

m≥0

(−2)m−1
N∑

a,b=1

Ωab

∫

ddy0 · · · ddym+1φa(y0)P≥1(y0 − y1) · · · J(ym)P≥1(ym − ym+1)φb(ym+1)

+
∑

m≥1

(−2)m−1N

m

∫

ddy1 · · · ddymJ(y1)P≥1(y1 − y2) · · · J(ym)P≥1(ym − y1)

(2.21)

Therefore, the non-interacting fixed point generating function is:

W ∗
0 (φ, J) = S∗

0 (φ, J) + log

∫

dµ≤0(ψ)e
(φ,ψ)+(J,ψ2)+R∗

0(φ,J,ψ), (2.22)

from which a straightforward computation shows that

G∗
0;ab(x) :=

δ2W ∗
0 (φ, 0)

δφa(x)δφb(0)

∣
∣
∣
φ=0

= Ωab
[
P≤0(x) + P≥1(x)

]
,

F∗
0 (x) :=

δ2W ∗
0 (0, J)

δJ(x)δJ(0)

∣
∣
∣
J=0

= −2N
[
P 2
≤0(x) + 2P≤0(x)P≥1(x) + P 2

≥1(x)
]
,

(2.23)

which are scale invariant, as anticipated above.

2.3 Scaling dimension, relevant and irrelevant operators

Let us consider a monomial in φ, J, ψ of the form6

M(φ, J, ψ) =

=

∫∫∫

dx dy dz φa1(x1) · · ·φan(xn)J(y1) · · · J(ym)∂p1µ1
ψb1(z1) · · · ∂plµlψbn(zl)

[
Hn,m,l,p(x,y, z)

]

a,µ,b

(2.24)

with x = (x1, . . . , xn), etc., pi ∈ {0, 1}, µi ∈ {0, 1, . . . , d}7, n + l even, Hn,m,l,p translationally
invariant and of finite L1 norm, i.e.,

‖Hn,m,l,p‖ := max
a,µ,b

∫∫∫ ∗

dx dy dz
∣
∣
[
Hn,m,l,p(x,y, z)

]

a,µ,b

∣
∣ < +∞ (2.25)

6For later reference, and in order to make contact with the notation used in [1, Section 4.1], given the n-ples
a,x, the m-ple y and the l-ples p,µ,z, we shall also denote

[

Hn,m,l,p(x,y, z)
]

a,µ,b
by H(a,x,y,B,z), with

B = ((p1, µ1, b1), . . . , (pl, µl, bl)). Moreover, we let Φ(a,x) := φa1(x1) · · ·φan (xn), J(y) := J(y1) · · ·J(ym) and
Ψ(B,z) := ∂p1µ1

ψb1 (z1) · · · ∂
pl
µl
ψbn (zl). Without loss of generality, we can assume, and will do so from now on,

that H(a,x,y,B,z) is: anti-symmetric under simultaneous permutations of the elements of a,x, symmetric under
permutations of the elements of y; anti-symmetric under simultaneous permutations of the elements of B,z.

7If pi = 1, then µi ∈ {1, . . . , d}. If pi = 0, the index µi needs not to be specified, but, conventionally, in that case
we set µi = 0. If p = 0 we shall often drop the label µ.
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(here the ∗ on the integral indicates that we are not integrating over one of the elements of (x,y, z),
say x1). The action of D on M(φ, J, ψ) is defined as DM(φ, J, ψ) := M(Dφ,DJ,Dψ). After a
change of variables, this can be rewritten as:

DM(φ, J, ψ) =

=

∫∫∫

dx dy dz φa1(x1) · · ·φan(xn)J(y1) · · · J(ym)∂p1µ1
ψb1(z1) · · · ∂plµlψbn(zl)

[
DHn,m,l,p(x,y, z)

]

a,µ,b

(2.26)

where
DHn,m,l,p(x,y, z) := γδsc(n,m,l,p)Hn,m,l,p(γx, γy, γz), (2.27)

with
δsc(n,m, l,p) := d(n+m+ l)− n(d−∆1)−m(d−∆2)− l[ψ]− ‖p‖1, (2.28)

defines the action of the dilatation operator D on the kernels. Note also that the L1 norm of
Hn,m,l,p rescales as follows under the action of D:

‖DHn,m,l,p‖ = γDsc(n,m,l,p)‖Hn,m,l,p‖, (2.29)

where

Dsc(n,m, l,p) := δsc(n,m, l,p)− d(n+m+ l − 1)

= d− n(d−∆1)−m(d−∆2)− l[ψ]− ‖p‖1
(2.30)

is the scaling dimension of Hn,m,l,p. Depending on whether Dsc(n,m, l,p) is positive, vanishing or
negative, we say that the corresponding monomial is relevant, marginal or irrelevant. Note that,
anticipating the fact that ∆1 = [ψ] and ∆2 = 2[ψ]+O(ǫ), the only relevant or marginal terms8 with
l > 0 are those with (n,m, l,p) = (0, 0, 2,0), (0, 0, 4,0), (1, 0, 1,0), (0, 1, 2,0), and (0, 0, 2,p) with
‖p‖1 = 1, for which we have Dsc(0, 0, 2,0) = d/2 + ǫ, Dsc(0, 0, 4,0) = 2ǫ, Dsc(1, 0, 1,0) = ∆1 − [ψ],
Dsc(0, 1, 2,0) = ∆2 − 2[ψ], and Dsc(0, 0, 2, (1, 0)) = Dsc(0, 0, 2, (0, 1)) = d/2 + ǫ− 1.

2.4 Trimmed sequences

A potential H(φ, J, ψ) is an infinite sum of monomials, of the form

H(φ, J, ψ) =
∑

(n,m,l,p)∈L

∑

a,µ,b

∫∫∫

dx dy dzΦ(a,x)J(y)Ψ(B, z)[Hn,m,l,p(x,y, z)]a,µ,b (2.31)

where

L := {(n,m, l,p) : p = (p1, . . . , pl) with pi ∈ {0, 1}, n,m, l, |p| ≥ 0, n+ l even, n+m+ l ≥ 1},
(2.32)

8To be precise, the relevance or irrelevance of the term with (n,m, l,p) = (0, 1, 2, 0) depends upon the sign of
η2 = ∆2 − 2[ψ]. In any case, even if irrelevant, this term is barely so, with a scaling dimension of order O(ǫ). For
this reason, it is convenient to treat it differently from the irrelevant terms with scaling dimensions well separated
from 0, uniformly in ǫ. Moreover, the terms with (0, 0, 2,p) with ‖p‖1 = 1 are relevant only if d = 2, 3: in d = 1
they are irrelevant, with scaling dimension equal to −1/2 + ǫ; however, the treatment of these terms in d = 1 does
not present any significant simplification, as compared to the cases d = 2, 3. For this reason, and for uniformity of
notation, we shall treat them exactly in the same way for d = 1 and for d = 2, 3, notwithstanding this difference:
in particular, the notion of of trimmed sequence and of ‘trimming’ given below, which defines the way in which we
‘localize’ and ‘interpolate’ the relevant terms, is the same in d = 1, 2, 3.
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and, given (n,m, l,p) ∈ L, the sums over a, µ and b run over the sets {1, . . . , N}n, {0, 1}l and
{1, . . . , N}l, respectively; moreover, we used the notations of footnote 6, with B = ((p1, µ1, b1), . . . ,
(pl, µl, bl)). The (formal) infinite sum in (2.31) should be thought of as a way of representing the
collection of kernels Hn,m,l,p. Therefore, in the following, we shall equivalently write a potential H
either as in (2.31) or as

H = {Hℓ}ℓ∈L. (2.33)

We shall say that a sequence {Hℓ}ℓ∈L, with translationally invariant kernels Hℓ of finite L1 norm,
is a trimmed sequence if the relevant or marginal kernels with ℓ = (0, 0, 2,0), (0, 0, 4,0), (1, 0, 1,0),
(0, 1, 2,0), and (0, 0, 2,p) with ‖p‖1 = 1 have the following local structure:

[
H0,0,2,0(z)

]

b
= c1δ(z1 − z2)Ωb1b2 ,

[
H0,0,2,p(z)

]

µ,b
= 0, ∀p : ‖p‖1 = 1,

[
H0,0,4,0(z)

]

b
= c2δ(z1 − z2)δ(z1 − z3)δ(z1 − z4)qb1b2b3b4 ,

[
H1,0,1,0(x1, z1)

]

a1,b1
= c3δ(x1 − z1)δa1,b1 ,

[
H0,1,2,0(y1, z)

]

b
= c4δ(y1 − z1)δ(z1 − z2)Ωb1b2 ,

(2.34)

where c1, c2, c3, c4 are constants, and qabce= ΩabΩce − ΩacΩbe +ΩaeΩbc is the totally anti-symmetric
tensor, as in [1, Eq.(4.4)].

As discussed in Section 3, the RG transformationR is a map from the space of trimmed sequences
of kernels to itself.

Remark 2.1. The non-interacting fixed point potential V ∗
0 (φ, J, ψ) = (φ, ψ)+(J, ψ2)+R∗

0(φ, J, ψ)+
S∗
0 (φ, J), constructed in Section 2.2.1, can be written as V ∗

0 = {V ∗
0;ℓ}ℓ∈L, where the only non-zero

kernels in the sequence are the following:

[
V ∗
0;(1,m,1,0)(x1,y, z1)

]

a1,b1

∣
∣
∣
ǫ=0

= (−2)mδa1,b1δ(ym − z1)

m−1∏

i=0

P≥1(yi − yi+1), m ≥ 0

[
V ∗
0;(0,m,2,0)(y, z)

]

b1,b2

∣
∣
∣
ǫ=0

= (−2)m−1Ωb1,b2δ(z1 − y1) δ(ym − z2)

m−1∏

i=1

P≥1(yi − yi+1), m ≥ 1

[
V ∗
0;(2,m,0,∅)(x,y)

]

a1,a2

∣
∣
∣
ǫ=0

= (−2)m−1Ωa1a2

m∏

i=0

P≥1(yi − yi+1), m ≥ 0

V ∗
0;(0,m,0,∅)(y)

∣
∣
∣
ǫ=0

= (−2)m−1N

m

m∏

i=1

P≥1(yi − yi+1), m ≥ 1

(2.35)

where: P≥1 was defined in footnote 3 above; in the first two lines we dropped the µ labels; in the
first line, y0 should be interpreted as x1, and, for m = 0, the right side should be interpreted as
that of the third line of (2.34) with c3 = 1; for m = 1, the right side of the second line should be
interpreted as that of the fourth line of (2.34) with c4 = 1; in the third line, y0 and ym+1 should
be interpreted as x1 and x2, respectively; in the fourth line, ym+1 should be interpreted as y1.

In particular, V ∗
0 is associated with a trimmed sequence, such that c1 = c2 = 0 and c3 = c4 = 1.
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2.5 The fixed point potential

We are now in good position to define more precisely the fixed point potential V ∗(φ, J, ψ) that we
construct in this paper.

Definition 2.2. V ∗ = {V ∗
ℓ }ℓ∈L is the solution of the fixed point equation V ∗ = RV ∗ in the space

of trimmed sequences, such that: (1) V ∗
0,0,l,p = H∗

l,p, with H∗
l,p the kernels of the FP potential

constructed in [1]; (2) for ℓ = (1, 0, 1,0), (0, 1, 2,0), V ∗
ℓ is as in (2.34) with c3 = c4 = 1, i.e., the

local terms (φ, ψ) and (J, ψ2) in V ∗ have pre-factor equal to 1; (3) the scaling exponents ∆1,∆2

entering the definition of D and, therefore, of R, are analytic in ǫ for ǫ sufficiently small, and such
that ∆1 − [ψ] = O(ǫ), ∆2 − 2[ψ] = O(ǫ); (4) the kernels V ∗

ℓ with ℓ ∈ L \ {(1, 0, 1,0), (0, 1, 2,0)}
are analytic in ǫ for ǫ sufficiently small and, at ǫ = 0, satisfy V ∗

ℓ

∣
∣
∣
ǫ=0

= V ∗
0;ℓ, with V ∗

0;ℓ as in

(2.34) for ℓ∈ {(1,m, 1,0)}m≥1 ∪ {(0,m, 2,0)}m≥2 ∪ {(2,m, 0, ∅)}m≥0 ∪ {(0,m, 0, ∅)}m≥1, and equal
to zero otherwise.

Note that the existence and uniqueness of the FP potential V ∗ specified in Definition 2.2 is part
of the results proved in this paper. As anticipated above, we will write

V ∗(φ, J, ψ) = H∗(ψ) + (φ, ψ) + (J, ψ2) +R∗(φ, J, ψ) + S∗(φ, J), (2.36)

where, letting9

Lext,0 := {(n,m, 0, ∅) ∈ L}, Lext,f := {(n,m, l,p) ∈ L : n+m > 0, l > 0}, (2.37)

and L′
ext,f := Lext,f \ {(1, 0, 1,0), (0, 1, 2,0)}, we let: R∗ = {V ∗

ℓ }ℓ∈L′

ext,f
and S∗ = {V ∗

ℓ }ℓ∈Lext,0 .

2.6 Almost-scaling operators

The response functions are not correlation functions of any local operators built out the field ψ.
We can however identify two quasi-local operators O(1) and O(2), whose two point functions will
end up being the same as G∗ and F∗, up to corrections that decay faster than any power at large
distances. Because of these correction terms, we will call these operators almost-scaling operators.
We do not expect that scaling operators with exactly scale invariant two point functions exist in
our theory, due to the presence of the fixed ultraviolet cutoff χ(k).

In order to identify O(1) and O(2), let us expand V ∗(φ, J, ψ) as

V ∗(φ, J, ψ) = H∗(ψ) + (φ,O(1)) + (J,O(2)) +Q∗(φ, J, ψ) + S∗(φ, J), (2.38)

where Q∗ is the part of R∗ that is at least quadratic in (φ, J), and S∗ is the same as in (2.36). In

other words, O(1)
a (x) = δV ∗(φ,J,ψ)

δφa(x)

∣
∣
φ=J=0

, and similarly for O(2)(x). From the definition of response

functions, we find

G∗
ab(x) = 〈O(1)

a (x)O(1)
b (0)〉H∗ +

[
E1(x)

]

ab
,

F∗(x) = 〈O(2)(x);O(2)(0)〉H∗ + E2(x),
(2.39)

9The rationale behind the labels ext, 0, and f in (2.37) is the following: ‘ext’ stands for ‘external field’, it refers
to the fact that n+m > 0, i.e., there is at least one ‘external field’ φ or J field; ‘f ’ stands for ‘fluctuation field’, it
refers to the fact that l > 0, i.e., there is at least one ‘fluctuation field’ ψ; similarly, the label ‘0’ in the first definition
indicates that l = 0, i.e., there is no fluctuation field.
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where the correction terms E1, E2 are given by

[
E1(x)

]

ab
:=

δ2S∗(φ, 0)

δφa(0)δφb(x)

∣
∣
∣
φ=0

+

〈
δ2Q∗(φ, 0, ψ)

δφa(0)δφb(x)

∣
∣
∣
φ=0

〉

H∗

,

E2(x) :=
δ2S∗(0, J)

δJ(0)δJ(x)

∣
∣
∣
J=0

+

〈
δ2Q∗(0, J, ψ)

δJ(0)δJ(x)

∣
∣
∣
J=0

〉

H∗

.

(2.40)

2.7 Main results

Theorem 2.3 (Analyticity of the anomalous critical exponent and discrete scale invariance). There

exists ǫ0 > 0 such that, for ǫ ∈ Bǫ0(0) := {ǫ ∈ C : |ǫ| < ǫ0}, there is a unique potential V ∗ as in

Definition 2.2, analytic in ǫ in Bǫ0(0). Moreover, the response functions G∗ and F∗ defined in (2.7)
are analytic in ǫ in the same domain, and behave under rescaling x→ ρx, with ρ = γk, k ∈ Z, as

G∗
ab(ρx) = ρ−2∆1G∗

ab(x), F∗(ρx) = ρ−2∆2F∗(x), (2.41)

with ∆1 = [ψ] and ∆2 = 2[ψ] + η2(ǫ), where η2(ǫ) is analytic in ǫ for |ǫ| < ǫ0, with

η2(ǫ) = 2ǫ
N − 2

N − 8
+O(ǫ2). (2.42)

We actually expect that G∗ and F∗ are exactly scale invariant, which means that Eq.(2.41)
should be true for any ρ > 0: this will be proved in the third paper of this series, see also the
recent paper [28] for a proof of full scale invariance with a different choice of the cutoff function. In
this paper, we limit ourselves to show, by an explicit lowest-order computation (see Appendix B),
that the dominant contributions in ǫ to G∗(x) and F∗(x) are exactly scale-invariant terms, namely
G∗(x) = G∗

0 (x) + G∗
h.o.(x), where, in the sense of distributions [29],

G∗
0;ab(x) = Ωab

∫
ddk

|k|d/2+ǫ e
ikx ≡ ΩabC0|x|−2∆1 (2.43)

and the higher order correction G∗
h.o. satisfies

∣
∣G∗

h.o.(x)
∣
∣ ≤ Cǫ|x|−2∆1 . Similarly, F∗(x) = F∗

0 (x) +
F∗

h.o.(x), where

F∗
0 (x) = −2N

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)x ≡ C′

0|x|−2∆2 , (2.44)

and
∣
∣F∗

h.o.(x)
∣
∣ ≤ C′ǫ|x|−2∆2 .

Theorem 2.4 (Almost-scaling operators). There exist Ci, ci > 0, i = 1, 2 such that E1(x) and

E2(x) are analytic in ǫ in the same domain Bǫ0(0) as in Theorem 2.3, and bounded as follows:

|
[
E1(x)

]

ab
| ≤ C1e

−c1|x|
σ

(min{1, |x|})−2∆1, |E2(x)| ≤ C2e
−c2|x|

σ

(min{1, |x|})−2∆2 , (2.45)

with σ = 1/s and s the order of the Gevrey class Gs which the UV cutoff function χ belongs to.

Putting together Eqs. (2.39) with Theorems 2.3 and 2.4, we conclude that the two point functions

〈O(1)
a O(1)

b 〉H∗ and 〈O(2);O(2)〉H∗ are discrete scale invariant up to stretched-exponentially small
corrections at large distances, i.e. that O(1) and O(2) are almost-scaling operators. As mentioned,
we cannot hope for anything better than that.
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Remark 2.5. In the non-interacting case discussed in Section 2.2.1, the stretched exponential de-
cay of the correction terms, denoted by E0,1, E0,2 (the ‘0’ label recalling the absence of interac-
tion), is immediate. In fact, rewriting the non-interacting fixed point potential V ∗

0 as in (2.38),

we see that O(1)
a (x) = ψa(x) and O(2)(x) = ψ2(x). Therefore, for H∗ = 0, the two-point

functions 〈O(1)
a (x)O(1)

b (0)〉H∗ and 〈O(2)(x);O(2)(0)〉H∗ reduce to 〈ψa(x)ψb(0)〉0 = ΩabP≤1(x) and
〈ψ2(x);ψ2(0)〉0 = −2N P 2

≤0(x), respectively. Therefore, from (2.23) and the non-interacting ana-
logue of (2.39), that is

G∗
0;ab(x) = 〈ψa(x)ψb(0)〉0 +

[
E0,1(x)

]

ab
,

F∗
0 (x) = 〈ψ2(x);ψ2(0)〉0 + E0,2(x),

(2.46)

we see that E0,1, E0,2 are, explicitly:

[
E0,1(x)

]

ab
= ΩabP≥1(x)

E0,2 = −2N
[
2P≤0(x)P≥1(x) + P 2

≥1(x)
]
,

(2.47)

which can be easily shown to satisfy the decay bounds in (2.45).

2.8 Structure of the proof

The proofs of the Theorem 2.3 and 2.4 are based on the following considerations. First of all, from
(2.6) we have:

W ∗(φ, J) = lim
h→−∞

(TSh+1 · · ·TS0V
∗)(φ, J, 0). (2.48)

Now, recalling that the RG map R = D−(h−1)TShD
h ≡ DTS0, for all h ≤ 0, we see that (2.48)

can be written as:

W ∗(φ, J) = lim
h→−∞

Dh(R|h|V ∗)(φ, J, 0) = lim
h→−∞

DhV ∗(φ, J, 0) (2.49)

where in the last equality we used that V ∗ is fixed point for the RG map, i.e. RV ∗ = V ∗. Denote
by V ∗

n,m,l,p the kernels of V ∗, in the sense of (2.24). Using the definitions (2.7), and recalling the
action (2.27) of D on the kernels, we find, letting x = (x, 0),

G∗(x) = 2 lim
h→−∞

DhV ∗
2,0,0,∅(x)

= 2 lim
h→−∞

γ2h∆1V ∗
2,0,0,∅(γ

hx),
(2.50)

and, letting y = (y, 0),

F∗(y) = 2 lim
h→−∞

DhV ∗
0,2,0,∅(y)

= 2 lim
h→−∞

γ2h∆2V ∗
0,2,0,∅(γ

hy).
(2.51)

After having defined, in Section 3, the fixed point equation for V ∗, in Section 4 we will show that
the kernels V ∗

n,m,l,p, and in particular V ∗
2,0,0,∅, V

∗
0,2,0,∅, can be written in terms of a tree expansion

that is absolutely convergent in a weighted L1 norm. As a consequence, these kernels, as well as the
scaling exponents ∆1,∆2, turn out to be analytic in ǫ for ǫ small enough. In particular ∆1 = [ψ]
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and ∆2 = 2[ψ] + η2(ǫ), with η2 as in (2.42) (the explicit computation of the first order contribution
is deferred to Appendix A).

In Section 5, we will prove the pointwise existence of the limits in (2.50) and (2.51), as well as
the analyticity of the limiting functions. These will require to control the absolute convergence of
the tree expansion for the kernels of the fixed point potential in a pointwise norm. The ideas here
generalize, and adapt to the present context, those used in [18, 30, 31, 32] to estimate the n-point
correlation functions. Once the pointwise existence of the limits in (2.50)-(2.51) is established, the
scale invariant property (2.41) is an immediate corollary: in fact, from (2.50) one finds, renaming
h+ k ≡ h′,

G∗(γkx) = 2 lim
h→−∞

γ2h∆1V ∗
2,0,0,∅(γ

h+kx)

= 2γ−2k∆1 lim
h′→−∞

γ2h
′∆1V ∗

2,0,0,∅(γ
h′

x) ≡ γ−2k∆1G∗(x),
(2.52)

provided the limit exists, and similarly for F∗, thus concluding the proof of Theorem 2.3.
Finally, in Section 6, we derive a tree expansion for the correction terms E1, E2, and show that

its convergence in a pointwise norm introduced in Section 5 implies Theorem 2.4.

3 Renormalization map and fixed point equation

In this section we describe more in detail the RG transformation introduced in Section 2.2. More-
over, we write down the fixed point equation for V ∗, including the equations for the scaling ex-
ponents ∆1,∆2. The discussion follows the analogous one in [1, Section 5], which we refer to for
additional details.

3.1 Integrating out

Consider a potential H(φ, J, ψ) = {Hℓ}ℓ∈L, whose sequence of kernels is trimmed, in the sense
of Section 2.4. Let us discuss the effect of integrating out the fluctuation field on scale 0 from
H(φ, J, ψ):

Heff(φ, J, ψ) = S0H(φ, J, ψ), (3.1)

with S0 the integrating-out map on scale 0 defined in (2.15). In analogy with [1, Eq.(5.3)], using
the notation introduced in footnote 6, the kernels of the effective interaction can be written as:

Heff(a,x,y,B, zB) = P
∑

s≥1

1

s!

∑

B1,...,Bs∑
iBi=B

∑

A1,...,As
Ai⊃Bi

∑

a1,...,as
x1,...,xs
y1,...,ys

(−)♯
∫

dzB̄C(zB̄)
s∏

i=1

H(ai,xi,yi,Ai, zAi)

(3.2)
where: P is the operator that anti-symmetrizes under simultaneous permutations of the elements
of a and x, symmetrizes over permutations of the elements of y, and anti-symmetrizes under
simultaneous permutations of the elements of B and zB (which generalizes the antisymmetrization
operator A of [1, Eq.(5.3)]); the sums over Bi and Ai must be interpreted as described after [1,
Eq.(5.3)]; the sum over a1, . . . ,as is over all ways to represent a as a concatenation a1 + · · ·+ as,
and similarly for the sums over x1, . . . ,xs and over y1, . . . ,ys. Finally, letting, as in [1, Eq.(5.3)],

B̄i = Ai \ Bi and B̄ = B̄1 + · · · B̄s, we denote C(zB̄) := 〈Ψ′(B̄1, zB̄1
); · · · ; Ψ′(B̄n, zB̄n)〉

(0)
0 where

Ψ′(B̄i, zB̄i) is interpreted as in footnote 6, and 〈· · · 〉(0)0 denotes the expectation w.r.t. dµ0(ψ
′).
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We compactly rewrite (3.2) as

(Heff)ℓ =
∑

s≥1

∑

(ℓi)si=1

Sℓ1,...,ℓsℓ (Hℓ1 , . . . , Hℓs), (3.3)

where ℓ belongs to the label set L in (2.32), while ℓ1, . . . , ℓs belong to the subset of L ‘with at least
one fluctuation field label’, i.e., to

Lf = {(n,m, l,p) ∈ L : l > 0}, (3.4)

the label f standing for ‘fluctuation field’.

3.2 Trimming

Even if the input potential H = {Hℓ}ℓ∈L is trimmed, the output Heff will not in general be so.
However, we can act on Heff with a linear operator, equivalent to the identity in the sense of [1,
Section 5.2.1], called the trimming operator T , which returns an equivalent trimmed potential.
Denoting equivalence between potentials by the symbol ∼, the action of the trimming operator will
allow us to rewrite

Heff ∼ LHeff + IHeff, (3.5)

with LHeff the local, relevant, part of Heff, and IHeff the non-local, irrelevant, part of Heff. The
action of T on the kernels with n = m = 0 has already been described in [1, Sect.5.2 and App.C]
and won’t be repeated here. The action of T on the kernels with n + m > 0 is non-trivial iff
(n,m, l) equals (1, 0, 1) or (0, 1, 2); in the complementary case, we let (IHeff)n,m,l,p = (Heff)n,m,l,p
and (LHeff)n,m,l,p = 0.

Let us now consider the cases (n,m, l) = (1, 0, 1), (0, 1, 2). As in the case without source fields,
trimming involves localization and interpolation: localization extracts the local parts of (Heff)1,0,1,0
and (Heff)0,1,2,0 (cf. with [1, Eq.(5.12)]), as follows:

(LHeff)1,0,1,0 = T 1,0,1,0
1,0,1,0 (Heff)1,0,1,0, (LHeff)0,1,2,0 = T 0,1,2,0

0,1,2,0 (Heff )0,1,2,0, (3.6)

(the operators T 1,0,1,0
0,1,2,0 and T 0,1,2,0

0,1,2,0 are defined in the following subsections), and we let

(LHeff)1,0,1,p = (LHeff)0,1,2,p = 0 for p 6= 0.

On the other hand, letting P1 = {(0), (1)} and P2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, interpolation
rearranges the difference between {(Heff)1,0,1,p}p∈P1 (resp. {(Heff)0,1,2,p}p∈P2) and its local part
{(LHeff)1,0,1,p}p∈P1 (resp. {(LHeff)0,1,2,p}p∈P2) in such a way to equivalently rewrite it as {(IHeff)1,0,1,p}p∈P1

(resp. {(IHeff)0,1,2,p}p∈P2) with (IHeff)1,0,1,0 = (IHeff)0,1,2,0 = 0. More precisely, we let

(IHeff)1,0,1,p =

{

0 if p = 0

(Heff)1,0,1,p + T 1,0,1,0
1,0,1,p (Heff)1,0,1,0 if ‖p‖1 = 1,

(IHeff)0,1,2,p =







0 if p = 0

(Heff)0,1,2,p + T 0,1,2,0
0,1,2,p (Heff)0,1,2,0 if ‖p‖1 = 1

(Heff)0,1,2,p if ‖p‖1 = 2.

(3.7)

Identifying the kernels with the corresponding Grassmann monomials as in [1, Eq.(C.1)], the ma-
nipulations equivalent to the identity leading to the definitions of T 1,0,1,0

1,0,1,p , T 0,1,2,0
0,1,2,p are described in

the following subsections.
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3.2.1 Case (n,m, l) = (1, 0, 1)

We will use the following interpolation identity (in most cases, we drop and leave implicit the com-
ponent indices of the Grassmann fields; moreover, summation over repeated indices is understood),
which is the same as [1, Eq.(5.8)]:

ψ(y) = ψ(x) + (y − x)µ

∫ 1

0

ds ∂µψ(x+ s(y − x)). (3.8)

This is used to split a non-local but relevant term into a local relevant term plus an irrelevant one (for
te definition of relevant and irrelevant, see after (2.30)). Hence considering

∫
ddxddz φ(x)G(x, z)ψ(z)

with G translationally invariant, playing the role of (Heff)1,0,1,0, we get:
∫

ddx ddz φ(x)G(x, z)ψ(z) =

∫

ddxφ(x)Ĝ(0)ψ(x) (3.9)

+

∫

ddx ddz φ(x)G(x, z)(z − x)µ

∫ 1

0

ds ∂µψ(x + s(z − x))

≡
∫

ddxφ(x)Ĝ(0)ψ(x) +

∫

ddx ddz′ φ(x)Gµ(x, z′)∂µψ(z
′),

with Ĝ(0) :=
∫
ddz G(x, z) and

Gµ(x, z) =

∫ 1

0

ds

sd+1
G(x, x + (z − x)/s)(z − x)µ. (3.10)

In light of this,
(T 1,0,1,0

1,0,1,0G)(x, z) = Ĝ(0)δ(x− z) (3.11)

and, for p = (1),
[
(T 1,0,1,0

1,0,1,(1)G)(x, z)
]

µ
= Gµ(x, z) (3.12)

By the same considerations as in [1, Appendix C], we have that T 1,0,1,0
1,0,1,p satisfies the following norm

bounds:

‖T 1,0,1,0
1,0,1,pG‖ ≤ ‖G‖, ‖T 1,0,1,0

1,0,1,(1)G‖ ≤ max
a,b

∫

ddz |[G(0, z)]a,b| |z| (3.13)

and similarly for the weighted L1 norms to be used below.

3.2.2 Case (n,m, l) = (0, 1, 2)

Consider now
∫
ddy ddz1 d

dz2 J(y)ψ(z1)F (y, z)ψ(z2) with F translationally invariant, playing the
role of (Heff)(0,1,2,0). Proceeding analogously we find:

∫

ddy dz J(y)ψ(z1)F (y, z)ψ(z2) (3.14)

=

∫

ddy dz J(y)
[

ψ(y)F (y, z)ψ(y) + (z1 − y)µ

∫ 1

0

ds ∂µψ(y + s(z1 − y))F (y, z)ψ(y + s(z2 − y))

+(z2 − y)µ

∫ 1

0

dsψ(y + s(z1 − y))F (y, z)∂µψ(y + s(z2 − y))
]

≡
∑

p: ‖p‖1≤1

∫

ddy dz′ J(y)∂p1µ1
ψ(z′1)

[
Fp(y, z′)

]

µ
∂p2µ2

ψ(z′2),

19



with F 0(y, z) = δ(z1 − y)δ(z2 − y)
∫
d2dz′F (x, z′),

F (1,0)(y, z) = (z1 − y)µ

∫ 1

0

ds

s2d+1
F (y, y + (z1 − y)/s, y + (z2 − y)/s), (3.15)

and similarly for F (0,1). Then, identifying p with the pair (p1, p2):

(T 0,1,2,0
0,1,2,0F )(y, z) = δ(z1 − y)δ(z2 − y)

∫

d2dz′ F (0, z′),

(T 0,1,2,0
0,1,2,pF )(y, z) = Fp(y, z), if ‖p‖1 = 1.

(3.16)

In analogy with (3.13), we have: ‖T 0,1,2,0
0,1,2,0F‖ ≤ ‖F‖, while, if p = (1, 0),

‖T 0,1,2,0
0,1,2,(1,0)F‖ ≤ max

a,b

∫

dz |[F (0, z)]a,b| |z1|, (3.17)

and similarly for p = (0, 1).

3.3 Fixed point equation

We are now ready to write the definition of the renormalization map H → RH = DTS0H
component-wise. Recalling (3.1)-(3.3), the definition of the trimming map in the previous sub-
section, and the definition of the dilatation D in (2.27), for any ℓ ∈ L, we can write

(RH)ℓ =
∑

s≥1

∑

(ℓi)si=1

Rℓ1,...,ℓsℓ (Hℓ1 , . . . , Hℓs), (3.18)

where the sum runs over s-ples of labels in the set Lf defined in (3.4) and, letting L = {(0, 0, 2), (0, 0, 4),
(1, 0, 1), (0, 1, 2)},

Rℓ1,...,ℓsℓ = D







Sℓ1,...,ℓsℓ , if ℓ = (n,m, l,p) with (n,m, l) 6∈ L,

T n,m,l,0n,m,l,0S
ℓ1,...,ℓs
(n,m,l,0), if ℓ = (n,m, l,0) with (n,m, l) ∈ L,

∑

p′ T
n,m,l,p′

n,m,l,p Sℓ1,...,ℓs(n,m,l,p′), if ℓ = (n,m, l,p) with (n,m, l) ∈ L and p 6= 0,

(3.19)

and in the second and third lines the operator T n,m,l,p
′

n,m,l,p is defined as follows: it is the identity, if
p = p′ 6= 0; it is the one defined in subsections 3.2.1-3.2.2 above, if (n,m, l) = (1, 0, 1), (0, 1, 2) and
either p = p′ = 0 or p′ = 0, ‖p‖1 = 1; it is given by [1, eq.s (5.12),(5.13),(5.14)] if (n,m, l) = (0, 0, 2)
and either p = p′ = 0 or ‖p′‖1 < ‖p‖1 = 2, or if (n,m, l) = (0, 0, 4) and either p = p′ = 0 or
p′ = 0, ‖p‖1 = 1; it vanishes, otherwise.

In view of these definitions, and recalling the fact that we look for a fixed point potential with
pre-factor in front of the local terms (φ, ψ) and (J, ψ2) in V ∗ equal to 1 (see item (2) of Definition
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2.2), the fixed point equation (FPE) for the ‘local’ components ℓ ∈ {(n,m, l,0)}(n,m,l)∈L reads:

ν = γd/2+εν +
∑

s≥1

∗∑

(ℓi)si=1

Rℓ1,...,ℓs(0,0,2,0)(Hℓ1 , . . . , Hℓs)

λ = γ2ελ+
∑

s≥1

∗∑

(ℓi)si=1

Rℓ1,...,ℓs(0,0,4,0)(Hℓ1 , . . . , Hℓs)

1 = γ∆1−[ψ] +
∑

s≥1

∗∑

(ℓi)si=1

Rℓ1,...,ℓs(1,0,1,0)(Hℓ1 , . . . , Hℓs) ≡ γ∆1−[ψ](1 + ζ1)

1 = γ∆2−2[ψ] +
∑

s≥1

∗∑

(ℓi)si=1

Rℓ1,...,ℓs(0,1,2,0)(Hℓ1 , . . . , Hℓs) ≡ γ∆2−2[ψ](1 + ζ2)

(3.20)

where, again, the labels ℓi in the sums in the right hand sides are summed over Lf , and the
∗ indicates the constraint that the term with s = 1 and ℓ1 = ℓ should be excluded from the
corresponding sums. The FPE for the components (0, 0, 2,p) with ‖p‖1 = 1 is by construction
trivial, 0 = 0, while the FPE for all the other components reads:

Hℓ =
∑

s≥1

∑

(ℓi)si=1

Rℓ1,...,ℓsℓ (Hℓ1 , . . . , Hℓs). (3.21)

Note that the FPE for the components ℓ = (n,m, l,p) with n = m = 0 is the same as the one
studied and solved in [1], the solution being the sequence of kernels H∗

l,p constructed there. In
particular, the first two components of (3.20) are solved by the fixed point values λ∗, ν∗ of λ, ν
computed in [1], and proved there to be analytic in ǫ for ǫ sufficiently small. So, from now on, we
will set λ = λ∗ and ν = ν∗. Moreover, we will prove below that ζ1 and ζ2 are sums of convergent
series in λ, ν, for ǫ sufficiently small and this implies that they are themselves analytic in ǫ for ǫ
small. Letting Z1 := 1 + ζ1 and Z2 := 1 + ζ2, the FPE requires

∆1 = [ψ]− logγ Z1, ∆2 = 2[ψ]− logγ Z2 ≡ 2[ψ] + η2. (3.22)

We will see in Section 4.2.1 that ζ1 = 0, so that ∆1 = [ψ]. Moreover, in Section 4.2.2 and Appendix
A, we will show that

Z2 = 1− 2(N − 2)

N − 8
ǫ log γ +O(ǫ2), (3.23)

which gives η2 = 2ǫN−2
N−8 +O(ǫ2).

4 Solution to the FPE via the tree expansion

Let us now discuss how to determine the solution to the FPE introduced in the previous section,
satisfying the properties spelled out in Definition 2.2. We use an analogue of the tree expansion
discussed in [1, App.J], which provides an explicit analytic solution. Our construction automatically
proves the uniqueness of the solution within the class of analytic potentials with a prescribed form
at ǫ = 0. Uniqueness of the solution in the larger Banach space of potentials that are close enough
to the prescribed unperturbed potential in the appropriate weighted L1 norm, could be proved via
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a contraction argument similar to the one underlying the proof of [1, Key Lemma], but we will not
belabor the details of this proof here.

As already mentioned above, we fix λ = λ∗, ν = ν∗, the fixed point values of the quartic and
quadratic interactions computed in [1], once and for all. We also recall that our ansatz for the fixed
point potential V ∗ requires that the local terms (φ, ψ) and (J, ψ2) have pre-factor equal to 1, see
condition (2) in Definition 2.2, and that the components (0, 0, 2,p) with ‖p‖1 = 1 are zero, by the
requirement that {V ∗

ℓ }ℓ∈L is trimmed, see the second line of (2.34). We first describe how to solve
the FPE for the remaining components, i.e., those in

L′ := L \
(

{(n,m, l,0)}(n,m,l)∈L ∪ {(0, 0, 2,p)}‖p‖1=1

)

, (4.1)

and then we will discuss the local components ℓ = (1, 0, 1,0), (0, 1, 2,0).

4.1 The FPE for ℓ ∈ L′

The FPEs for the components ℓ ∈ L′ are those in (3.21). We proceed in a way similar to [1,
Appendix J]. For any ℓ ∈ L′, we isolate from the right side of the FPE the term with s = 1 and
ℓ1 = ℓ, i.e. the term DHℓ, move it to the left side, and multiply both sides by (1 − D)−1. The
resulting equation takes the form

Hℓ =
∑

s≥1

∗∑

(ℓi)si=1

(1−D)−1Rℓ1,...,ℓsℓ (Hℓ1 , . . . , Hℓs) (4.2)

where we recall that the second sum runs over s-ples of labels in Lf , see (3.4), and ∗ denotes

the constraint that, if s = 1, then ℓ1 6= ℓ, while Rℓ1,...,ℓsℓ is defined in (3.19). As shown below,
the (diagonal in ℓ) operator (1 − D) is invertible in L1 on all the components ℓ ∈ L′: this is
immediate for the components such that the scaling dimension at ǫ = 0 is different from zero,
Dsc(ℓ)

∣
∣
ǫ=0

6= 0, see (2.30), that is, for all the indices in L′ but (0, 2, 0, ∅). In order for (1 −D) to
be invertible on this component as well, we need extra information about ∆2, besides knowing that
∆2 = 2[ψ] + O(ǫ), as we are assuming (see condition (3) in Definition 2.2). Anticipating the fact
that ∆2 = 2[ψ] + 2ǫN−2

N−8 + O(ǫ2), the desired invertibility for ǫ 6= 0 follows, because this explicit

expression for ∆2 implies that Dsc(0, 2, 0, ∅) = 2ǫN+4
N−8 +O(ǫ

2), which is different from zero for ǫ 6= 0.
We look for a solution in the form of a sum over rooted trees,

V ∗
ℓ =

∑

τ

Hℓ[τ ], (4.3)

The value Hℓ[τ ] is fixed so that the following recursive equation is satisfied:

Hℓ[τ ] =

∗∑

(ℓi)
sv0
i=1

(1−D)−1R
ℓ1,...,ℓsv0
ℓ (Hℓ1 [τ1], ..., Hℓn [τsv0 ]). (4.4)

where τ1, . . . , τsv0 are the subtrees of τ rooted in the vertices v1, . . . , vsv0 that are ‘children’ of the
root vertex v0 of τ . The rooted trees (with root v0) involved in the sum (4.3) have the structure
exemplified in Fig.3.

The iterative application of (4.4) leads to a representation of the tree value Hℓ[τ ] in terms of

an iterated action of the operator (1 −D)−1R
ℓv1 ,...,ℓsv
ℓv

, one per vertex v, summed over the labels
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v0

v1

ν
v2

ν

λ

λ

v3

λ

Figure 3: An example of a tree rooted in v0, contributing to the sum in (4.3). Here sv0 = 3 and the 3 children of v0
are v1, v2, v3.

ℓv, ℓvi (here the labels ℓvi at exponent refer to the vertices v1, . . . , vsv , which are the children of v
on τ ; the label ℓv0 associated with the root v0 is the only one that is kept fixed, all the others are
summed over). The labels ℓv associated with vertices v 6= v0 that are not endpoints are summed
over L′

f := Lf∩L′, while, if v is an endpoint, then ℓv takes one of the values in {(n,m, l,0)}(n,m,l)∈L,
depending on the nature of the endpoint, as graphically described in Fig.4.

(0, 0, 2,0)
=

ν
,

(0, 0, 4,0)
=

λ

,

(1, 0, 1,0)
= ,

(0, 1, 2,0)
=

Figure 4: The four types of endpoints and the corresponding ℓ labels.

In the evaluation of the tree value Hℓ[τ ], each of these endpoints is associated with the kernel
of the corresponding ‘interaction vertex’, see Fig.5.

ψ ν ψ ψ λ ψ

ψ ψ

φ ψ J
ψ

ψ

Figure 5: The four ‘interaction vertices’, graphically representing the contributions associated with the four types of
endpoints depicted in Fig.4.

For example, for the tree τ represented in Fig.3, sv0 = 3 and the three subtrees τ1, τ2, τ3 ‘exiting’
from the root v0 are those represented in Fig.6 (note that τ2 is ‘trivial’, in that it consists of a single
vertex, which is both the root and the endpoint of τ2).

We now intend to use the formula for the tree values described above in order to derive norm
bounds on Hℓ[τ ] and to prove that the tree expansion for Hℓ is absolutely convergent in the ap-
propriate norms. We start by discussing bounds for the following weighted L1 norm of Hℓ[τ ],
generalizing the definition in (2.25). Recall that Hℓ[τ ](x,y, z) with ℓ = (n,m, l,p) must be under-
stood as a tensor-valued function of components

[
Hℓ[τ ](x,y, z)

]

a,µ,b
, as in (2.24). For notational

convenience, in some of the equations below, we will equivalently rewrite these components as
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v1

τ1

ν

λ

λ

v2

τ2
ν

v3

τ3
λ

Figure 6

Hℓ[τ ](a,x,y,B, z), with B = ((p1, µ1, b1), . . . , (pl, µl, bl)), as in footnote 6 (the label ℓ attached to
Hℓ[τ ](a,x,y,B, z) is actually redundant, but we will keep it for clarity); given such a B, we shall
write p(B) = p. In analogy with (2.25), we let

‖Hℓ[τ ]‖w := max
a,B :

p(B)=p

∫∫∫ ∗

dx dy dz|Hℓ[τ ](a,x,y,B, z)|w(x,y, z) (4.5)

where
w(x,y, z) := eC̄(St(x,y,z)/γ)σ , (4.6)

with: St(x,y, z) the Steiner diameter, or ‘tree distance’, of (x,y, z), see [1, footnote 19]; C̄ ≡ 1
2Cχ2

with Cχ2 the positive constant in (4.14) below; and σ = 1/s with s the Gevrey regularity of χ, see
the line after (2.2).

In order to recursively estimate the norm (4.5) of Hℓ[τ ] via (4.4), note that, from (3.2) and
(3.19), if ℓ = (n,m, l,p) ∈ L′ with (n,m, l) 6∈ L, we can write

Hℓ[τ ](a,x,y,B, zB)

=
D

1−D
P 1

sv0 !

∑

B1,...,Bsv0∑
Bi=B

∑

A1,...,Asv0
Ai⊃Bi

∑

a1,...,asv0
x1,...,xsv0
y1,...,ysv0

(−)♯
∫

dzB̄C(zB̄)
sv0∏

i=1

Hℓi [τi](ai,xi,yi,Ai, zAi),

(4.7)

where ℓi ≡ ℓvi , and we used that for these components the trimming map is the identity. If, instead,
ℓ = (n,m, l,p) ∈ L′ with (n,m, l) ∈ L and p 6= 0, then trimming acts non-trivially, and the FPE
reads:

Hn,m,l,p[τ ](a,x,y,B, zB) =
D

1−D

∑

p′

T n,m,l,p
′

n,m,l,p P 1

sv0 !

∑

B1,...,Bsv0∑
Bi=B′

∑

A1,...,Asv0
Ai⊃Bi

∑

a1,...,asv0
x1,...,xsv0
y1,...,ysv0

×

× (−)♯
∫

dzB̄C(zB̄)
sv0∏

i=1

Hℓi [τi](ai,xi,yi,Ai, zAi),

(4.8)

where, given B = ((p1, µ1, b1), . . . , (pl, µl, bl)) and an l-ple p′ such that T n,m,l,p
′

n,m,l,p 6= 0, the set
B′ appearing in the right side in the condition

∑
Bi = B′ is equal to: B if p′ = p; B0 :=

((0, 0, b1), . . . , (0, 0, bl)) if p′ = 0; B(1,0) = ((1, µ1, b1), (0, 0, b2)) if l = 2, p = (1, 1) and p′ = (1, 0);
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and B(0,1) = ((0, 0, b1), (1, µ2, b2)) if l = 2, p = (1, 1) and p′ = (0, 1) (these two last cases are the
only ones where p′ 6= 0,p).

Now, in order to bound the right sides of (4.7) and (4.8) we recall a few basic bounds from [1]
(or their analogues adapted to the present more general context). First of all, as in [1, (5.37)], for
ℓ ∈ L′,

‖D(Hℓ[τ ])‖w ≤ γDsc(ℓ)‖Hℓ[τ ]‖w(·/γ) ≤ γDsc(ℓ)‖Hℓ[τ ]‖w, (4.9)

with Dsc(ℓ) as in (2.30). Note that, assuming ∆1 and ∆2 to be ǫ-close to [ψ] and 2[ψ], respectively,
with ǫ small enough, then minℓ∈L′\{(0,2,0,0)} |Dsc(ℓ)| = min{1, d/2}+O(ǫ). Therefore, we also have
that, for ℓ ∈ L′ \ {(0, 2, 0, ∅)},

‖(1−D)−1(Hℓ[τ ])‖w ≤ dγ‖Hℓ[τ ]‖w, (4.10)

with dγ = maxℓ∈L′\{(0,2,0,∅)}

∣
∣1− γDsc(ℓ)

∣
∣
−1

, which is finite and bounded from above, uniformly in
ǫ. On the other hand, recalling that ∆2 = 2[ψ] + η2 with [ψ] = d/4− ǫ/2, as in (3.22),

‖(1−D)−1(H(0,2,0,0)[τ ])‖w ≤ αγ‖H(0,2,0,∅)[τ ]‖w, (4.11)

where αγ :=
∣
∣1− γ−2ǫ+2η2

∣
∣
−1

, which is finite and of order ǫ−1 iff ǫ 6= 0 and η2 6= ǫ. From the first

order computation of η2 in Appendix A, which implies η2 = 2ǫN−2
N−8 +O(ǫ2), see (2.42), we see that

this condition is always verified for ǫ 6= 0 small enough.
Concerning the action of the trimming operator, for any ℓ = (n,m, l,p) ∈ L′ and p′ 6= p such

that T n,m,l,p
′

n,m,l,p does not vanish, we have the analogue of [1, (5.43)]:

‖T n,m,l,p
′

n,m,l,p H(n,m,l,p′)‖w(·/γ) ≤ CRγ
‖p−p′‖1‖H(n,m,l,p′)‖w. (4.12)

For the estimate of Sℓ1,...,ℓsℓ , with ℓ ∈ L′, ℓ1, . . . , ℓs ∈ Lf , we proceed as follows. From [1, Eq.(5.39)],
we see that C(z) satisfies:

|C(z)| ≤ CsGH
∑

T

∏

(z,z′)∈T

M(z − z′) (4.13)

where CGH constant given by the Gram-Hadamard bound [1, Lemma D.2] and M as in [1,
Eq.(4.15)], i.e., such that:

|g(0)a,b(x)|, |∂νg
(0)
a,b(x)|, |∂µ,νg

(0)
a,b(x)| ≤M(x) ≡ Cχ1e−Cχ2 |x/γ|

σ

, (4.14)

where Cχ1 , Cχ2 are constants depending on χ but independent of γ and σ = 1/s ∈ (0, 1), with s
the Gevrey regularity of χ, see the line after (2.2).

Using these estimates, and proceeding as in [1, Sect. 5.6] and [1, App.E], we get, letting
ℓ = (n,m, l,p) and ℓi = (ni,mi, li,pi):

‖Sℓ1,...,ℓsv0ℓ (Hℓ1 [τ1], . . . , Hℓsv0
[τsv0 ])‖w ≤ C

sv0−1
γ C

∑sv0
i=1 li−l

0 N
ℓ1,...,ℓsv0
ℓ

sv0∏

i=1

‖Hℓi[τi]‖w, (4.15)

where N
ℓ1,...,ℓsv0
ℓ is the number of ways in which ℓ = (n,m, l,p) can be realized, given ℓ1, . . . , ℓsv0 ,

via the action of S
ℓ1,...,ℓsv0
ℓ on (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ]), which is such that

∑

p

N
ℓ1,...,ℓsv0
(n,m,l,p) ≤

(∑sv0
i=1 li
l

)

. (4.16)
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Moreover, Cγ = N2d2‖M‖w = Cost · γd and C0 a constant independent of γ, see [1, Remark

J.1]. Recall also that S
ℓ1,...,ℓsv0
ℓ is non-zero only if

∑sv0
i=1 li ≥ l + 2(sv0 − 1),

∑sv0
i=1 ni = n and

∑sv0
i=1mi = m.

Plugging eqs.(4.9)–(4.12) and (4.15) into (4.4), with R
ℓ1,...,ℓsv0
ℓ defined as in (3.19), we obtain:

‖Hℓ[τ ]‖w ≤
∗∑

(ℓi)
sv0
i=1

∥
∥
∥
∥

D

1−D
TS

ℓ1,...,ℓsv0
ℓ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])

∥
∥
∥
∥
w

(4.17)

≤ (αγ/dγ)
1(ℓ=(0,2,0,∅))

∗∑

(ℓi)
sv0
i=1

dγγ
Dsc(ℓ)CRγ

2C
sv0−1
γ C

∑sv0
i=1 li−l

0 N ℓ1,...,ℓsv0
ℓ

sv0∏

i=1

‖Hℓi [τi]‖w,

where N ℓ1,...,ℓsv0
ℓ denotes the number of ways in which ℓ = (n,m, l,p) can be realized, given

ℓ1, . . . , ℓsv0 , via the action of R
ℓ1,...,ℓsv0
ℓ on (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ]). Recalling the definition of

Rℓ1,...,ℓsℓ in (3.19), and in the particular the definition of the components T n,m,l,p
′

n,m,l,p of the trimming

operator given right below (3.19), as well as the bound on N
ℓ1,...,ℓsv0
ℓ stated right after (4.15), we

find:

∗∑

p

N ℓ1,...,ℓsv0
(n,m,l,p) ≤

(∑sv0
i=1 li
l

)

·
{

1 if (n,m, l) 6∈ L

4 if (n,m, l) ∈ L

≤ 4

(∑sv0
i=1 li
l

)

,

(4.18)

where
∑∗

p denotes the sum over the p’s such that (n,m, l,p) ∈ L′, and 4 is the maximum number

of different p’s for which, given (n,m, l) ∈ L and p′ ∈ {0, 1}l, the tuple (n,m, l,p) is in L′ and the

operator T n,m,l,p
′

n,m,l,p is non zero (such maximum is realized for (n,m, l) = (0, 0, 4) and p′ = 0; in this
case, the different p’s with the stated property are: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)).

By using iteratively the estimates above, and recalling that |λ|, |ν| ≤ Kǫ for some K > 0, we
find

‖Hℓ[τ ]‖w ≤ (αγ/dγ)
1(ℓ=(0,2,0,∅))

∑

{ℓv}

( ∏

v not e.p.

dγC
sv−1
γ γDsc(ℓv)CRγ

2C
∑sv
i=1 lvi−lv

0 N ℓv1 ,...,ℓvsv
ℓv

)

·
( ∏

v e.p.

(Kǫ)δnv+mv,0
)

(4.19)

where the sum over {ℓv} in the right hand side runs over L′
f = L′ ∩ Lf for each ℓv associated

with one the vertices of the tree other than the root v0 and the endpoints; moreover, we denoted
ℓv = (nv,mv, lv,pv), and vi is the i-th child of v. Let us note that, thanks to the definition of the
trimming map, Dsc(ℓv) ≤ − lv

12 < 0 for all ℓv ∈ L′
f . If we now first sum over the choices of pv, given
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(nv,mv, lv), for all the vertices v of τ other than the root v0 and the endpoints, using (4.18) we get:

‖Hℓ[τ ]‖w ≤ (αγ/dγ)
1(ℓ=(0,2,0,∅))γDsc(ℓ)+l/12

∑

{lv}

( ∏

v not e.p.

K ′Csv−1
γ γ−lv/12C

∑sv
i=1 lvi−lv

0

(∑s
i=1 lvi
lv

))

·
( ∏

v e.p.

(Kǫ)δnv+mv,0
)

(4.20)

where: ℓ ≡ ℓv0 = (n,m, l,p); the sum over {lv} runs over the positive integers, lv ≥ 1, for all the
vertices v of τ other than the root v0 and the endpoints; and K ′ = 4dγCRγ

2. Now, letting ne.p.[τ ]
be the number of endpoints of τ , we have that:

1. the number of vertices of τ that are not endpoints is ≤ 2ne.p.[τ ] (see [1, eq.(J.10)]);

2.
∏

v not e.p.C
sv−1
γ = C

ne.p.[τ ]−1
γ ;

3.
∏

v not e.p.C
∑sv
i=1 lvi−lv

0 = C−l
0

∏

v e.p.C
lv
0 ≤ C

4ne.p.[τ ]−l
0 ;

4.
∑

{lv}

∏

v not e.p. γ
−lv/12

(∑s
i=1 lvi
lv

)
≤ (1− γ−1/12)−4ne.p.[τ ] (see [33, Appendix A.6.1]).

Therefore, for any γ > 1,

‖Hℓ[τ ]‖w ≤ (αγ/dγ)
1(ℓ=(0,2,0,∅))γDsc(ℓ)C−1

γ (γ
1
12 /C0)

l(Kǫ)−(n+m)

[(
C0

1− γ−
1
12

)4

(K ′)2CγKǫ

]ne.p.[τ ]

.

(4.21)
In view of (4.21), recalling that the number of the trees with k endpoints is less than 4k, see e.g.
[33, Lemma A.1], the sum over trees in the right hand side of (4.3) converges absolutely for any
γ > 1 and ǫ small enough in the weighted L1 norm (4.5).

Remark 4.1. Note that (4.21) is increasing in C0, so that, if desired, for any prescribed ρ ≥ 1, we

can make the factor γDsc(n,m,l,p) (γ
1
12 /C0)

l in the right and side of (4.21) smaller than Cn,mρ
−l for

some Cn,m > 0, possibly at the cost of increasing C0, thus getting:

‖Hn,m,l,p[τ ]‖w ≤ (αγ/dγ)
1(ℓ=(0,2,0,∅))Cn,mρ

−l(Cρǫ)ne.p.[τ ](Kǫ)−n−m, (4.22)

for any ρ ≥ 1 and some ρ-independent constants Cn,m, C,K > 0.

4.2 The FPE for the local terms. Analyticity of the scaling exponents.

Consider now the components of the FPE associated with the local parts of the effective potential,
(3.20). We focus on the last two components of the equation, the first two having been discussed
and solved in [1]. Using the definition of D and the second line of (3.19), we see that in those

components we can replace γ[ψ]−∆1Rℓ1,...,ℓs(1,0,1,0)(Hℓ1 , . . . , Hℓs) by T 1,0,1,0
1,0,1,0S

ℓ1,...,ℓs
(1,0,1,0)(Hℓ1 , . . . , Hℓs), and

similarly for the component with ℓ = (0, 1, 2,0), thus getting that, at the fixed point

ζ1 =
∑

s≥1

∗∑

(ℓi)si=1

T 1,0,1,0
1,0,1,0S

ℓ1,...,ℓs
ℓ (V ∗

ℓ1 , . . . , V
∗
ℓs),

ζ2 =
∑

s≥1

∗∑

(ℓi)si=1

T 0,1,2,0
0,1,2,0S

ℓ1,...,ℓs
ℓ (V ∗

ℓ1 , . . . , V
∗
ℓs).

(4.23)
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To get, out of this, a representation of ζ1, ζ2 in terms of a convergent tree expansion, we insert the
rewriting (4.3) in the right sides of (4.23), so that

ζ1 =
∑

τ

H̃1,0,1,0[τ ], ζ2 =
∑

τ

H̃0,1,2,0[τ ], (4.24)

where the tree values H̃ℓ[τ ] with ℓ = (1, 0, 1,0), (0, 1, 2,0) are defined essentially in the same way
as in the previous subsection, with the only difference that the root vertex v0 is associated with

the action of an operator T ℓℓS
ℓ1,...,ℓsv0
ℓ rather than (1 − D)−1R

ℓ1,...,ℓsv0
ℓ . In other words, for ℓ =

(1, 0, 1,0), (0, 1, 2,0), we have H̃ℓ[τ ] =
∑

(ℓi)
sv0
i=1

T ℓℓS
ℓ1,...,ℓsv0
ℓ (Hℓ1 [τ1], . . . , Hℓn [τsv0 ]) where, recalling

that ℓ1, . . . , ℓsv0 ∈ L′
f , the values Hℓi [τi] for i ∈ {1, . . . , sv0} have been constructed and bounded in

the previous subsection. On the other hand, recalling that the weighted L1 norm of T ℓℓ is bounded

by 1, we find that for ℓ = (1, 0, 1,0), (0, 1, 2,0) the norms ‖H̃ℓ[τ ]‖w are bounded in a way analogous
to (4.21), namely:

‖H̃ℓ[τ ]‖w ≤ C′
γ(Kǫ)

−1(K ′′ǫ)ne.p.[τ ], (4.25)

where we can choose C′
γ = C−1

γ (γ
1
12 /C0)

2 and K ′′ =
(

C0

1−γ−
1
12

)4
(K ′)2CγK. Absolute summability

over τ follows by the same considerations after (4.21). In conclusion, both ζ1 and ζ2 are expressed
in terms of absolutely convergent tree expansions. Recalling that, for ǫ0, δ0 > 0 small enough:

• λ = λ∗(ǫ) and ν = ν∗(ǫ) are analytic functions of ǫ of order ǫ, for |ǫ| < ǫ0;

• the single-scale propagator g(0) depends analytically upon ǫ for |ǫ| < ǫ0; therefore, the con-
nected expectation C(z) in (3.2) (see [1, Appendix D] for the explicit representation of C(z)
in terms of g(0)), which enters the definition of the ‘integrating out’ map S0 and, as a conse-
quence, of the tree values themselves, is analytic in ǫ in the same domain, as well;

• the dilatation operator D in (2.27), which enters the definition of the tree values, is analytic
in the scaling exponents ∆1 and ∆2, for |∆1 − [ψ]| < δ0 and |∆2 − 2[ψ]| < δ0;

all the tree values Hℓ[τ ] are analytic in (ǫ,∆1,∆2) in the domain

D0 := {(ǫ,∆1,∆2) ∈ C
3 : |ǫ| < ǫ0, |∆1 − [ψ]| < δ0, |∆2 − 2[ψ]| < δ0}.

Therefore, by absolute convergence of the tree expansion, uniform in D0, analyticity of the sums
in the right sides of (4.23) follows in the same domain, by Weierstrass’ theorem on the uniform
convergence of sequences of analytic functions. We shall then write:

ζ1 = F1(ǫ,∆1,∆2), ζ2 = F2(ǫ,∆1,∆2), (4.26)

with F1, F2 analytic in D0.

4.2.1 The scaling exponent ∆1

From the previous considerations and inspection of perturbation theory, it follows that ζ1 = 0. In
fact, in view of the convergence of the tree expansion

∑

τ H̃1,0,1,0[τ ] ≡ F1(ǫ,∆1,∆2), in order to
prove that ζ1 = 0 it is enough to prove that any tree contributing to F1 has vanishing value. Note
that the trees contributing to F1 have one ‘white square’ endpoint (i.e., the first in the second line
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of Fig.4, corresponding to the third interaction vertex in Fig.5) and k ≥ 1 additional endpoints of
type ν or λ (i.e., those in the first line of Fig.4, corresponding to the first two interaction vertices
in Fig.5). It is straightforward to check that, for any such τ , by applying the definition of tree
value,

[
H̃1,0,1,0[τ ](x1, z1)

]

a1,b1
is local, i.e., it is equal to δx1,z1Fa1,b1(τ) for some Fa,b(τ) that is a

(in general infinite, absolutely convergent) linear combination of terms of the following form:

∑

b2

∫

g
(h)
a,b2

(x1 − z2)fb2,b(z2)dz2, (4.27)

for appropriate functions fb′,b (with the correct Sp(N) invariance properties, such that (4.27) is in
fact proportional to δa,b and independent of a). For example, it is instructive to check that the
sum of the values of the trees with one white square endpoint and one additional endpoint, either
of type ν or λ, is

∑

b2

∫ [

2νg
(0)
a,b2

(x1 − z2)Ωb2,b + 4λ
∑

b3,b4

qb2b3b4b
∑

h≥0

γ(d+∆1−5[ψ])hg
(h)
ab2

(x1 − z2)g
(0)
b3b4

(0)
]

dz2, (4.28)

with qabcd the totally antisymmetric tensor defined after (2.34). Now, the key remark is that (the

summand over b2 in) (4.27) is proportional to ĝ
(h)
a,b2

(0), which is zero, because the support of the

Fourier transform of g(h) does not contain the origin. Therefore, as anticipated above, all the
contributions to F1 vanishing, thus implying that ζ1 = 0 and, therefore, recalling (3.22), ∆1 = [ψ].

Remark 4.2. The considerations above, leading to the conclusion that the scaling exponent of the
external field φ, coupled linearly to the fluctuation field ψ, has scaling dimension [φ] = d − [ψ],
is a general fact, valid for any infrared, critical, even, interacting theory, treatable perturbatively
close to a Gaussian fixed point: it implies that, in general, the critical exponent describing the
asymptotic, large distance, polynomial decay of the interacting two point function 〈ψ(x)ψ(y)〉 is
the same as the one associated with the Gaussian part of the infrared RG fixed point. This is true,
in particular, in theories where the fluctuation field ψ has an infrared anomalous scaling dimension
(i.e., [ψ] differs from the naive scaling dimension associated with the bare propagator), as it is
the case, for example, for models in the ‘Luttinger liquid’ universality class, in their fermionic
formulation (i.e., models admitting a large distance effective description in terms of 2D spinless
fermions with quartic interaction), see [33].

4.2.2 The scaling exponent ∆2

Contrary to the case of ζ1, the right hand side of the equation for ζ2 does not vanish. Recalling
that ∆2 is related to ζ2 via (3.22), we rewrite the second equation of (4.26) as

ζ2 = f2(ǫ, ζ2), (4.29)

where f2(ǫ, ζ2) := F2(ǫ, [ψ], 2[ψ]− logγ(1+ζ2)) is analytic in (ǫ, ζ2) in a small complex neighborhood

of the origin. An explicit computation shows that f2(ǫ, ζ2) = −2ǫN−2
N−8 log γ + O(ǫ2, ǫζ2), see Ap-

pendix A. Therefore, applying the analytic implicit function theorem, see e.g. [34, Section 5.11], it
follows that (4.29) admits a unique analytic solution ζ2(ǫ) in a neighborhood of the origin, satisfying
ζ2(ǫ) = −2ǫN−2

N−8 log γ +O(ǫ2).

This concludes the proof of the part of the statement of Theorem 2.3 concerning the analyticity
of V ∗ and of the scaling exponents, as well as the facts that ∆1 = [ψ] and ∆2 = 2[ψ] + η2, with η2
as in (2.42).
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5 Pointwise bounds on the response functions

In this section, we prove the following result on the pointwise convergence of the limits in (2.50)-
(2.51). Recall that the scaling exponents satisfy ∆1 = [ψ] and ∆2 = 2[ψ] + η2, with η2 as in (2.42),
as proved in the previous section. We make use of the same notations and conventions on trees, tree
values, components of the renormalization map, etc., as in the previous two sections. Moreover,
whenever possible, we will keep the flavor indices implicit (e.g., in the first line of (5.1) below we
drop the a, b indices labelling G∗, which should be then thought of as an N × N anti-symmetric
matrix).

Proposition 5.1. There exists ǫ0 > 0 such that the limits in (2.50)-(2.51) exist and are analytic

in |ǫ| < ǫ0, and, letting x = (x, 0) and y = (y, 0), they can be explicitly written as

G∗(x) = 2
∑

τ

∑

h∈Z

γ2h∆1

∗∑

(ℓi)
sv0
i=1

S
ℓ1,··· ,ℓsv0
2,0,0,∅ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
hx),

F∗(y) = 2
∑

τ

∑

h∈Z

γ2h∆2

∗∑

(ℓi)
sv0
i=1

S
ℓ1,··· ,ℓsv0
0,2,0,∅ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
hy),

(5.1)

with the understanding that the sums in the right hand sides are absolutely summable in h and τ .
Moreover, for any α > 0 small enough, there exists Cα > 0 such that

∣
∣2γ2h∆1V ∗

2,0,0,∅(γ
hx)− G∗(x)

∣
∣ ≤ Cα

|x|2∆1

(

min{1, γh|x|}
)2[ψ]−α

,

∣
∣2γ2h∆2V ∗

0,2,0,∅(γ
hy)−F∗(y)

∣
∣ ≤ Cα

|y|2∆2

(

min{1, γh|y|}
)2[ψ]−α

.

(5.2)

As proved in (2.52), Proposition 5.1 implies the scale invariance property (2.41). Therefore, in
view of the fact that the other statements of Theorem 2.3 have already been proved above, see the
comment at the end of Section 4, Proposition 5.1 implies Theorem 2.3.

Proof of Proposition 5.1. Using the tree representation (4.3), we write:

γ2h∆1V ∗
2,0,0,∅(γ

hx) = γ2h∆1

∑

τ

H2,0,0,∅[τ ](γ
hx),

γ2h∆2V ∗
0,2,0,∅(γ

hy) = γ2h∆2

∑

τ

H0,2,0,∅[τ ](γ
hy),

(5.3)

with Hℓ[τ ] recursively defined as in (4.4). We emphasize that the trees τ contributing to the sum in
the first line of (5.3) have two ‘white square’ endpoints, and those contributing to the second line
have two ‘white rombus’ endpoints, see Fig.4. Using (3.19), the identity (1 −D)−1D =

∑

k≥1D
k

withD as in (2.27), the definition of δsc in (2.28) (from which δsc(2, 0, 0, ∅) = 2∆1 and δsc(0, 2, 0, ∅) =
2∆2), and the fact that for ℓ = (2, 0, 0, ∅), (0, 2, 0, ∅) the trimming map is the identity, we get (after
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renaming h+ k ≡ h′):

γ2h∆1H2,0,0,∅[τ ](γ
hx) =

∑

h′>h

γ2h
′∆1

∗∑

(ℓi)
sv0
i=1

S
ℓ1,...,ℓsv0
2,0,0,∅ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
h′

x),

γ2h∆2H0,2,0,∅[τ ](γ
hy) =

∑

h′>h

γ2h
′∆2

∗∑

(ℓi)
sv0
i=1

S
ℓ1,...,ℓsv0
0,2,0,∅ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
h′

y).

(5.4)

If we multiply by 2 both sides, sum over τ and take h→ −∞, we obtain the representations (5.1),
provided that the sums in the right hand sides are absolutely summable in τ and h.

The right hand sides of (5.4) can be bounded via the following lemma that, for later purposes,
is formulated in greater generality than required for the moment. In order to state the lemma, we
define a mixed L1/L∞ norm: using the same notations as in the definition of the weighted L1 norm
(4.5), we let, for ℓ = (n,m, l,p) ∈ L,

|||Hℓ[τ ](x,y)||| := max
a,B :
p(B)

∫

dzB|Hℓ[τ ](a,x,y,B, zB)| (5.5)

with the understanding that, if ℓ = (n,m, 0, ∅), then
∣
∣
∣
∣
∣
∣Hn,m,0,∅[τ ](x,y)]

∣
∣
∣
∣
∣
∣ should be interpreted as

being equal to maxa |Hn,m,0,∅[τ ](a,x,y)|.
Lemma 5.2. Consider a tree τ contributing to one of the sums in the right sides of (5.3), denote

by τ1, . . . , τsv0 its subtrees rooted in v0, and by ne.p.[τ ] be the number of its endpoints. Let x = (x, 0)
and y = (y, 0). For any α > 0 sufficiently small, there exists C = C(α) > 0 such that, for any

k ∈ Z, any l ≥ 0 even and any p ∈ {0, 1}l,
∗∑

(ℓi)
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(x)
∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C(Cǫ)ne.p[τ ]−2γk(2∆1−l[ψ]−‖p‖1)e−
C̄
2 (γk−1|x|)σ

(
min{1, γk|x|}

)−α
,

(5.6)

with D the dilatation operator and C̄ the same constant as in (4.6), and

∗∑

(ℓi)
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1,...,ℓsv0
0,2,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(y)
∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C(Cǫ)ne.p[τ ]−2γk(2∆2−l[ψ]−‖p‖1)e−
C̄
2 (γk−1|y|)σ

(
min{1, γk|y|}

)−2∆2+2[ψ]−α
.

(5.7)

Assuming the validity of this lemma, the proof of Proposition 5.1 goes as follows. Let us focus,
e.g., on the component with ℓ = (2, 0, 0, ∅), the case ℓ = (0, 2, 0, ∅) being analogous. Plugging
(5.6) with k = h′, l = 0 and p = ∅ in the right hand side of the first line of (5.4), recalling

that Dh′

S
ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(x) is just a rewriting of γ2h
′∆1S

ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . .,

Hℓsv0
[τsv0 ])(γ

h′

x), we find:

γ2h∆1
∣
∣H2,0,0,∅[τ ](γ

hx)
∣
∣ ≤ C(Cǫ)ne.p[τ ]−2|x|−2∆1

·
∑

h′>h

e−
C̄
2 (γh

′
−1|x|)σ max{(γh′ |x|)2∆1 , (γh

′ |x|)2∆1−α}. (5.8)
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Now note that, for any β, κ > 0, letting hx := ⌊logγ |x|−1⌋, (γh′ |x|)βe−κ(γh
′

|x|)σ is bounded from

above by γβ(h
′−hx)e−κγ

σ(h′−hx−1)

, which is summable in h′ over Z. Therefore,

∑

h′>h

(γh
′ |x|)βe−κ(γh

′

|x|)σ ≤ Cβ,κ :=
∑

h∈Z

γβhe−κγ
σ(h−1)

, (5.9)

uniformly in h and |x|. For later purpose, let us also observe that

∑

h′≤h

(γh
′ |x|)βe−κ(γh

′

|x|)σ ≤
∑

h′≤h

γβ(h
′−hx)e−κγ

σ(h′−hx−1)

≤
{

Cβ,κ if h > hx

γβ(h−hx)/(1− γ−β) if h ≤ hx
≤ C′

β,κ(min{1, γh|x|})β ,
(5.10)

for a suitable C′
β,κ > 0. Using (5.9) in (5.8), we find that, for any α > 0 small enough,

γ2h∆1
∣
∣H(2,0,0,∅[τ ](γ

hx)
∣
∣ ≤ C′(Cǫ)ne.p[τ ]−2|x|−2∆1 , (5.11)

for some C′ > 0, uniformly in h. Since the right hand side of this inequality is summable over τ ,
the sum being bounded by (const.)|x|−2∆1 , this proves the absolute convergence of the sum in the
right hand side of the first line of (5.1) and, therefore, as already observed after (5.4), it implies
the very validity of the first line of (5.1).

Concerning the difference 2γ2h∆1V ∗
2,0,0,∅(γ

hx) − G∗(x), using (5.1), (5.3), (5.4) and (5.6) with

k = h′, l = 0 and p = ∅, we find:

∣
∣2γ2h∆1V ∗

2,0,0,∅(γ
hx)− G∗(x)

∣
∣

≤ 2
∑

τ

∑

h′≤h

γ2h
′∆1

∗∑

(ℓi)
sv0
i=1

∣
∣S
ℓ1,...,ℓsv0
2,0,0,∅ (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
h′

x)
∣
∣

≤ 2C|x|−2∆1

∑

τ

(Cǫ)ne.p[τ ]−2
∑

h′≤h

e−
C̄
2 (γh

′
−1|x|)σ max{(γh′ |x|)2∆1 , (γh

′ |x|)2∆1−α}.

(5.12)

Now, using (5.10), we find that the sum over h′ ≤ h in the last line is bounded from above by
(const.)(min{1, γh|x|})2∆1−α. Moreover, recalling that the number of trees with k endpoints is
smaller than 4k, see [33, Lemma A.1], and noting that the trees contributing to the sum in the last
line have at least two endpoints (because τ has at least two ‘white square’ endpoints), we see that
(Cαǫ)

ne.p[τ ]−2 is summable over τ , and the sum is bounded by a positive constant independent of
ǫ. In conclusion,

∣
∣2γ2h∆1V ∗

2,0,0,∅(γ
hx)− G∗(x)

∣
∣ ≤ C′|x|−2∆1(min{1, γh|x|})2∆1−α,

which is the desired estimate in the first line of (5.2), up to a redefinition of Cα.
The proof of the second line of (5.1) and of (5.2) is completely analogous and left to the

reader.

We are left with proving Lemma 5.2.
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Proof of Lemma 5.2. We focus on the proof of (5.6), the one of (5.7) being analogous (we will
make a few comments at the end on the minor differences between the two cases). We recall that
x = (x, 0).

In order to obtain a point-wise bound on the left hand side of (5.6), we intend to apply iteratively
the definition of tree value, similarly to what we did in Section 4. We recall that the trees τ
contributing to the sum in the first line of (5.3) have two ‘white square’ endpoints, which will
be denoted v∗1 and v∗2 . Note that the coordinates associated with these endpoints are fixed, i.e.,
not integrated out in the computation of the tree value: this implies that, for the purpose of
recursively deriving bounds on the values of the subtrees of τ , we must be careful in proceeding
slightly differently, depending on whether the subtree under consideration contains both v∗1 and v∗2 ,
or just one of them, or none.

We define v∗12 to be the rightmost vertex of τ that is an ancestor both of v∗1 and of v∗2 , and we
let nτ be the length of the path connecting the root vertex v0 with v∗12, see Fig.8 below (where
n ≡ nτ ).

Let us first discuss the case that nτ = 0, i.e., v∗1 and v∗2 belong to two different subtrees of τ
rooted in two distinct children vertices of v0 ≡ v∗12, called v1 and v2, respectively; the two subtrees
rooted in v1 and v2 will be denoted by τ1 and τ2, respectively, see Figure 7.

v0 ≡ v∗12

v1 v∗1

v2
v∗2

Figure 7: Proof of Lemma 5.2, the case with nτ = 0. The two subtrees rooted in v1 and v2 are denoted by τ1 and
τ2.

In this case, recalling the definition (5.5) and proceeding as in the proof of (4.15), we get:

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(x)
∣
∣
∣

∣
∣
∣

∣
∣
∣eC̄(γk−1|x|)σ

= γkδsc(2,0,l,p)γ−kld
∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(γ
kx)
∣
∣
∣

∣
∣
∣

∣
∣
∣eC̄(γk−1|x|)σ

≤ γk(2∆1−l[ψ]−‖p‖1)

sv0 !
C

∑sv0
i=1 li−l

0 N
(2,0,l,p)

ℓ1,...,ℓsv0

(∑

T

∏

(z,z′)∈T
(z,z′) 6=ℓ0

N2d2‖M‖w
)

·

· sup
x′

{N2d2M(x′)eC̄(|x′|/γ)σ}
sv0∏

i=1

‖Hℓi [τi]‖w ,

(5.13)

where C̄ is the same as in (4.6), δsc(2, 0, l,p) is given by (2.28), and γ−kld comes from the rescaling
of the z variable in |||·|||. The summation in the right hand side of (5.13) is over the anchored trees
described in [1, Appendix D.4] (see also (4.13)), ℓ0 is an element of T , chosen arbitrarily among
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those in the path from the group of points associated with τ1 and the one associated with τ2 (say,
the one closest to the group associated with τ1), and the factor supx′{M(x′)eC̄(|x′|/γ)σ} comes from
the factor M associated with ℓ0. Now, recalling that M(x) = Cχ1e

−Cχ2 |x/γ|
σ

and C̄ ≡ 1
2Cχ2 ,

bounding the sum over T as in [1, Appendix D.5], we find10

∗∑

(ℓi)
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(x)
∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ N2d2Cχ1γ
k(2∆1−l[ψ]−‖p‖1)e−C̄(γk−1|x|)σ

∗∑

(ℓi)
sv0
i=1

C
sv0−2
γ (4C0)

∑sv0
i=1 li−lN

ℓ1,...,ℓsv0
(2,0,l,p)

sv0∏

i=1

‖Hℓi [τi]‖w.

(5.14)

with Cγ = N2d2‖M‖w. Now, in the right side of (5.14) we bound N
ℓ1,...,ℓsv0
(2,0,l,p) from above by

(∑sv0
i=1 li
l

)
, see (4.16), and we bound ‖Hℓi[τi]‖w ≤ C(ρ′)−li(Cǫ)ne.p.[τi]−ni via (4.22); here ni is the

first component of ℓi = (ni,mi, li,pi) (by construction n1 = n2 = 1 and ni = 0 for i > 2) and C is a
ρ′-dependent constant; therefore, choosing ρ′ ≥ 1 sufficiently large, we can easily sum over (ℓi)

sv0
i=1,

thus obtaining (noting that sv0 ≤ ne.p.[τ ]):

∗∑

(ℓi)
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1,...,ℓsv0
2,0,l,p (Hℓ1 [τ1], . . . , Hℓsv0

[τsv0 ])(x)
∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C′(C′ǫ)ne.p.[τ ]−2(4C0)
−lγk(2∆1−l[ψ]−‖p‖1)e−C̄(γk−1|x|)σ ,

(5.15)

for some C′ > 0, which proves (5.6) for nτ = 0 (simply because 1 ≤ (min{1, γk|x|})−α for α > 0),
provided we choose C0 ≥ 1/4 (the freedom to choose C0 as large as desired follows, as already
observed after (5.13), from the monotonicity of the right hand side of (5.15) on the choice of C0:
recall, in fact, that C′ is proportional to C0).

Let us discuss next the case nτ ≥ 1, in which v∗1 and v∗2 both belong to a common subtree among
those rooted in the vertices immediately following v0 on τ , say to τ1. In this case, letting n ≡ nτ ,
we denote by v0, v1, . . ., vn ≡ v∗12 the vertices of τ in the path from v0 to v∗12, as shown in Fig. 8.
For later reference, we introduce (and partly recall) the following notations and definitions. For
any vertex v of τ , we denote by ℓv = (nv,mv, lv,pv) the components of the label associated with
v: if v = v0, then ℓv0 ≡ (2, 0, l,p); if v 6= v0 is not an endpoint, then ℓv is summed over L′

f , while,
if v is an endpoint, ℓv takes one of the values in {(n,m, l,0)}(n,m,l)∈L, depending on the nature
of the endpoint, see Fig.4. Moreover, for any vertex v of τ that is not an endpoint, we denote by

10The bound (5.14) is similar to (4.17) for the same value of ℓ = (2, 0, l,p) (for which the trimming operator T in
the first line of (4.17) acts as the identity and, therefore, N ℓ1,...,ℓs

ℓ
= Nℓ1,...,ℓs

ℓ
), the most relevant differences being

that: (1) the operator
∑

h≥1D
h = D

1−D
in the first line of (4.17) is replaced by the action of Dk in the left hand

side of (5.14); (2) in the left hand side of (5.14) we are not integrating over the coordinate x, contrary to the case of
(4.17). Correspondingly, the proof of (5.14) is similar to that (4.17), and the details are left to the reader. Let us just

mention that the two differences (1) and (2) mentioned above explain the presence of the decay factor e−C̄(γk−1|x|)σ

in (5.14), as well as that of the dimensional factor γk[Dsc(2,0,l,p)+d] = γk(2∆1−l[ψ]−‖p‖1) instead of dγγDsc(2,0,l,p)

(roughly speaking, the fact that in (5.14) we have ‘one integration less’, in combination with the presence of Dk,
comes with a dimensional factor γkd; on the other hand, the factor dγγDsc(2,0,l,p) in (4.17) is a norm bound on
D(1−D)−1).
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v0
v1

v2

vn ≡ v∗12

v∗1

v∗2

Figure 8: Proof of Lemma 5.2, the case with n = nτ ≥ 1.

vi(v) the i-th child of v and, if τv is a tree rooted in v, τi(v) is the subtree of τv rooted in vi(v).
Correspondingly, we let ℓi(v) ≡ ℓvi(v) and denote ℓi(v) = (ni(v),mi(v), li(v),pi(v)). Note that, for
v0, v1, . . . , vn in Figure 8, we have ℓvi = (2, 0, lvi ,pvi), where, for any 1 ≤ i ≤ n, lvi is summed over
the even, positive, integers.

We will iteratively use the following basic estimates:

1. For the vertices vj , j = 0, . . . , n− 1 in Fig.8, we use:

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
S
ℓ1(vj),...,ℓsvj (vj)

ℓvj
(Hℓ1(vj)[τ1(vj)], . . . , Hℓsvj (vj)

[τsvj (vj)])(x)

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

≤ 1

svj !
C

∑svj
i=1 li(vj)−lvj

0 N
ℓ1(vj),...,ℓsvj (vj)

ℓvj

(∑

T

∏

(z,z′)∈T

N2d2‖M‖1
)

·
(
svj∏

i=2

‖Hℓi(vj)[τi(vj)]‖w
)∣
∣
∣
∣
∣
∣Hℓ1(vj)[τ1(vj)](x)

∣
∣
∣
∣
∣
∣,

(5.16)

which is proved in the same way as (4.15) or (5.13). Bounding once again the sum over T as
in [1, Appendix D.5], we further obtain

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
S
ℓ1(vj),...,ℓsvj (vj)

ℓvj
(Hℓ1(vj)[τ1(vj)], . . . , Hℓsvj (vj)

[τsvj (vj)])(x)

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

≤ C
svj−1
γ (4C0)

∑svj
i=1 li(vj)−lvjN

ℓ1(vj),...,ℓsvj (vj)

ℓvj

(
svj∏

i=2

‖Hℓi(vj)[τi(vj)]‖w
)∣
∣
∣
∣
∣
∣Hℓ1(vj)[τ1(vj)](x)

∣
∣
∣
∣
∣
∣,

(5.17)

with Cγ = N2d2‖M‖w.

2. Using (4.4), with R
ℓ1,...,ℓsv0
ℓ = DS

ℓ1,...,ℓsv0
ℓ for any ℓ of the form ℓ = (2, 0, l,p), see (3.19), we

rewrite and bound each of the factors
∣
∣
∣
∣
∣
∣Hℓvi

[τvi ](x)
∣
∣
∣
∣
∣
∣ in the right hand side of (5.16) (note
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that, for j = 0, . . . , n− 1, ℓ1(vj) = ℓvi and τ1(vj) = τvi , with i = j + 1 = 1, . . . , n) as follows:
∣
∣
∣
∣
∣
∣Hℓvi

[τvi ](x)
∣
∣
∣
∣
∣
∣

≤
∑

kvi≥1

∗∑

(ℓj(vi))
svi
j=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkviS

ℓ1(vi),...,ℓsvi (vi)

ℓvi
(Hℓ1(vi)[τ1(vi)], . . . , Hℓsvi (vi)

[τsvi (vi)])(x)
∣
∣
∣

∣
∣
∣

∣
∣
∣

=
∑

kvi≥1

γkviδsc(2,0,lvi ,pvi )γ−kvidlvi ·

·
∗∑

(ℓj(vi))
svi
j=1

∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1(vi),...,ℓsvi (vi)

ℓvi
(Hℓ1(vi)[τ1(vi)], . . . , Hℓsvi (vi)

[τsvi (vi)])(γ
kvix)

∣
∣
∣

∣
∣
∣

∣
∣
∣,

(5.18)

where we used that D(1 − D)−1 =
∑

kvi≥1D
kvi together with (2.27), and γ−kvidlvi comes

from the rescaling of the z variables within the definition of the |||·||| norm.

Let us now explain how to apply these estimates for bounding the left hand side of (5.6): using
once again the definition of D in (2.27), the fact that δsc(2, 0, l,p)− ld = 2∆1− l[ψ]−‖p‖1, and the
bound (5.17) with j = 0 (note that ℓv0 = (2, 0, l,p) and that the labels ℓ1, . . . , ℓsv0 in (5.6) must be
identified with ℓ1(v0), . . . , ℓsv0 (v0) in (5.17)), we get

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ γk(2∆1−l[ψ]−‖p‖1)
∗∑

(ℓi(v0))
sv0
i=1

C
sv0−1
γ (4C0)

∑sv0
i=1 li(v0)−lv0N

ℓ1(v0),...,ℓsv0 (v0)

ℓv0

·
( sv0∏

i=2

‖Hℓi(v0)[τi(v0)]‖w
)∣
∣
∣
∣
∣
∣Hℓ1(v0)[τ1(v0)](γ

kx)
∣
∣
∣
∣
∣
∣.

(5.19)

In order to bound the last factor in the last line, we apply (5.18) with i = 1 and v1 ≡ v1(v0), thus
getting:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ γk(2∆1−l[ψ]−‖p‖1)
∗∑

(ℓi(v0))
sv0
i=1

C
sv0−1
γ (4C0)

∑sv0
i=1 li(v0)−lv0N

ℓ1(v0),...,ℓsv0 (v0)

ℓv0

·
( sv0∏

i=2

‖Hℓi(v0)[τi(v0)]‖w
) ∑

kv1≥1

γkv1(2∆1−lv1 [ψ]−‖pv1‖1)

·
∗∑

(ℓi(v1))
sv1
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1(v1),...,ℓsv1 (v1)

ℓv1
(Hℓ1(v1)[τ1(v1)], . . . , Hℓsv1 (v1)

[τsv1 (v1)])(γ
k+kv1x)

∣
∣
∣

∣
∣
∣

∣
∣
∣,

(5.20)

where we used once again that δsc(2, 0, lv1 ,pv1)− dlv1 = 2∆1 − lv1 [ψ]− ‖pv1‖1.
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In order to bound the last line of (5.20), we iteratively apply (5.17) and (5.18) n−1 more times,
write at each step δsc(2, 0, lvi ,pvi)− dlvi as 2∆1 − lvi [ψ]− ‖pvi‖1, thus finding:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ γk(2∆1−l[ψ]−‖p‖1)
∗∑

(ℓi(v0))
sv0
i=1

· · ·
∗∑

(ℓi(vn−1))
svn−1
i=1

∑

kv1 ,...,kvn≥1

( n∏

i=1

γkvi (2∆1−lvi [ψ]−‖pvi‖1)
)

·
( n−1∏

i=0

C
svi−1
γ (4C0)

∑svi
j=1 lj(vi)−lviN

ℓ1(vi),...,ℓsvi (vi)

ℓvi

svi∏

j=2

‖Hℓvj (vi)
[τvj (vi)]‖w

)

·
∗∑

(ℓi(vn))
svn
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1(vn),...,ℓsvn (vn)

ℓvn
(Hℓ1(vn)[τ1(vn)], . . . , Hℓsvn (vn)[τsvn (vn)])(γ

k+kv1+···+kvnx)
∣
∣
∣

∣
∣
∣

∣
∣
∣.

(5.21)

In order to bound the last line, recalling that v∗1 and v∗2 belong to two different subtrees of τvn , we
use the analogue of Eqs.(5.13)–(5.14), which is proved in the same way:

∗∑

(ℓi(vn))
svn
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1(vn),...,ℓsvn (vn)

ℓvn
(Hℓ1(vn)[τ1(vn)], . . . , Hℓsvn (vn)[τsvn (vn)])(γ

k+kv1+···+kvnx)
∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ N2d2Cχ1e
−C̄(γk+kv1+···+kvn−1|x|)σ

·
∗∑

(ℓi(vn))
svn
i=1

C
svn−2
γ (4C0)

∑svn
i=1 li(vn)−lvnN

ℓ1(vn),...,ℓsvn (vn)

ℓvn

svn∏

i=1

‖Hℓi(vn)[τi(vn)]‖w.

(5.22)

Plugging (5.22) in (5.21), and bounding each factor ‖Hℓv [τv]‖w as in (4.22) (with ρ replaced by ρ′),
we get:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C(C′ρ′ǫ)ne.p.[τ ]−2(4C0)
−l

∗∑

(ℓi(v0))
sv0
i=1

· · ·
∗∑

(ℓi(vn))
svn
i=1

∑

kv1 ,...,kvn≥1

e−C̄(γk+
∑n
i=1 kvi

−1|x|)σ

·N ℓ1(v0),...,ℓsv0 (v0)

ℓv0
γk(2∆1−l[ψ]−‖p‖1)

( n∏

i=1

N
ℓ1(vi),...,ℓsvi (vi)

ℓvi
γkvi (2∆1−lvi [ψ]−‖pvi‖1)

)

·
( n−1∏

i=0

svi∏

j=2

( ρ′

4C0

)−lj(vi)
)( svn∏

j=1

( ρ′

4C0

)−lj(vn)
)

(5.23)

for some C,C′ > 0. We are left with sums over ℓv1 = (lv1 ,pv1), . . ., ℓvn = (lvn ,pvn), and over

(ℓi(v0))
sv0
i=2, . . ., (ℓi(vn−1))

svn−1

i=2 , (ℓi(vn))
svn
i=1. We first sum over pv1 , . . . ,pvn and, using (4.16), we
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get:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C(C′ρ′ǫ)ne.p.[τ ]−2(4C0)
−lγk(2∆1−l[ψ]−‖p‖1)

∗∑

(ℓi(v0))
sv0
i=2

· · ·
∗∑

(ℓi(vn−1))
svn−1
i=2

∗∑

(ℓi(vn))
svn
i=1

·

·
(
n−1∏

i=0

( svi∏

j=2

( ρ′

4C0

)−lj(vi)
)
)
( svn∏

j=1

( ρ′

4C0

)−lj(vn)
) ∑

kv1 ,...,kvn≥1

e−C̄(γk+
∑n
i=1 kvi

−1|x|)σ ·

·
∑

lv1 ,...,lvn≥2

(∑sv0
j=1 lj(v0)

l

)( n∏

i=1

(∑svi
j=1 lj(vi)

lvi

)

γkvi (2∆1−lvi [ψ])
)

,

(5.24)

where, if svi0 = 1 for some i0 ∈ {0, . . . , n− 1}, then
∑∗

(ℓi(vi0 ))
svi0
i=2

(
∏svi0
j=2

(
ρ′

4C0

)−lj(vi0 )
)

should be

interpreted as being equal to 1. In the last line, we bound
(∑sv0

j=1 lj(v0)

l

)
from above by 2

∑sv0
j=1 lj(v0),

and, recalling that ∆1 = [ψ] and kvi ≥ 1, we rewrite and bound: γkvi (2∆1−lvi [ψ]) = γ−kvi (lvi−2)[ψ] ≤
γ−(lvi−2)[ψ], so that, proceeding as in [33, Appendix A.6.1], the sum over lv1 , . . . , lvn in the last line
can be bounded as follows:

2
∑sv0
j=2 lj(v0)

∑

lv1 ,...,lvn≥2

2lv1
( n∏

i=1

(∑svi
j=1 lj(vi)

lvi

)

γkvi (2∆1−lvi [ψ])
)

≤ γ2[ψ]n2
∑sv0
j=2 lj(v0)

∑

lv1 ,...,lvn≥0

2lv1
( n∏

i=1

(∑svi
j=1 lj(vi)

lvi

)

γ−lvi [ψ]
)

≤ γ2[ψ]n2
∑sv0
j=2 lj(v0)(1 + 2γ−[ψ])

∑sv1
j=2 lj(v1) · · ·

(
n−2∑

m=0

γ−m[ψ] + 2γ−(n−1)[ψ]
)∑svn−1

j=2 lj(vn−1)·

· (
n−1∑

m=0

γ−m[ψ] + 2γ−n[ψ])
∑svn
j=1 lj(vn)

≤ γ2[ψ]n
( 2

1− γ−[ψ]

)∑n−1
i=0

∑svi
j=2 lj(vi)+

∑svn
j=1 lj(vn),

(5.25)

where in the last step we bounded max{2,maxn≥1{
∑n−1
m=0 γ

−m[ψ] + 2γ−n[ψ])}} by 2/(1− γ−[ψ]).
Inserting this into (5.24) and noting that 1 ≤ n ≤ 2ne.p[τ ] (the upper bound on n following
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from [1, Eq.(J.10)]), so that the factor γ2[ψ]n can be re-absorbed in a re-definition of C,C′, we find:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),...,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C(C′ρ′ǫ)ne.p.[τ ]−2(4C0)
−lγk(2∆1−l[ψ]−‖p‖1)

∗∑

(ℓi(v0))
sv0
i=2

· · ·
∗∑

(ℓi(vn−1))
svn−1
i=2

∗∑

(ℓi(vn))
svn
i=1

·

·
(
n−1∏

i=0

( svi∏

j=2

(ρ′(1− γ−[ψ])

8C0

)−lj(vi)
)
)
( svn∏

j=1

(ρ′(1− γ−[ψ])

8C0

)−lj(vn)
) ∑

kv1 ,...,kvn≥1

e−C̄(γk+
∑n
i=1 kvi

−1|x|)σ .

(5.26)

up to a possible re-definition of C,C′. As above, if svi0 = 1 for some i0 ∈ {0, . . . , n − 1}, then
∑∗

(ℓi(vi0 ))
svi0
i=2

(
∏svi0
j=2

(ρ′(1−γ−[ψ])
8C0

)−lj(vi0 )
)

should be interpreted as being equal to 1. Choosing ρ′

larger than 8C0(1 − γ−[ψ])−1, the sums

∗∑

(ℓi(v0))
sv0
i=2

· · ·
∗∑

(ℓi(vn−1))
svn−1
i=2

∗∑

(ℓi(vn))
svn
i=1

( n−1∏

i=0

svi∏

j=2

(ρ′(1− γ−[ψ])

8C0

)−lj(vi)
)( svn∏

j=1

(ρ′(1− γ−[ψ])

8C0

)−lj(vn)
)

are absolutely summable and bounded from above by (const.)ne.p.[τ ], which can be also re-absorbed
into a re-definition of C,C′. In conclusion, for some C′′ > 0,

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣DkS

ℓ1(v0),··· ,ℓsv0 (v0)

2,0,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C′′(C′′ǫ)ne.p[τ ]−2(4C0)
−lγk(2∆1−l[ψ]−‖p‖1)

∑

kv1 ,...,kvn≥1

e−C̄(γk+
∑n
i=i kvi

−1|x|)σ

= C′′(C′′ǫ)ne.p[τ ]−2(4C0)
−lγk(2∆1−l[ψ]−‖p‖1)

∑

k̄≥n

(
k̄ − 1

n− 1

)

e−C̄(γk+k̄−1|x|)σ .

(5.27)

In order to bound the sum over k̄, we use that, for any α > 0,

(
k̄ − 1

n− 1

)

≤ (k̄ − 1)n−1

(n− 1)!
≤ (α log γ)1−nγ(k̄−1)α,

so that

∑

k̄≥n

(
k̄ − 1

n− 1

)

e−C̄(γk+k̄−1|x|)σ ≤ (α log γ)1−ne−
C̄
2 (γk+n−1|x|)σ

∑

k̄≥n

γ(k̄−1)αe−
C̄
2 (γk+k̄−1|x|)σ

≤ (α log γ)1−ne−
C̄
2 (γk+n−1|x|)σCα,C̄/2(min{1, γk|x|})−α,

(5.28)

39



where, in the last inequality, letting Cα,C̄/2 as in (5.9), we bounded
∑

k̄≥n γ
(k̄−1)αe−

C̄
2 (γk+k̄−1|x|)σ

from above by:

{∑

k̄≥n γ
(k̄−1)αe−

C̄
2 (γk̄−1)σ ≤ γ−αCα,C̄/2, if γk|x| ≥ 1,

(γk|x|)−α∑k̄≥n γ
(k+k̄−hx−1)αe−

C̄
2 (γk+k̄−hx−2)σ ≤ (γk|x|)−αCα,C̄/2, if γk|x| < 1,

(5.29)

where hx was defined before (5.9). Plugging (5.28) in (5.27), and noting that 1 ≤ n ≤ 2ne.p[τ ]
(the upper bound on n following from [1, Eq.(J.10)]), we finally obtain the desired bound, (5.6),
provided that C0 is chosen larger than 1/4 (once again, we have the freedom to choose C0 as large
as desired, due to the monotonicity of the right hand side of (5.27) on C0: recall, in fact, that C′′

is proportional to C0).
The proof of (5.7) is completely analogous, the only difference being that x must be replaced

by y and ∆1 by ∆2. Note that, by changing ∆1 in ∆2, we get an extra factor γ(2∆2−2[ψ])
∑n
i=1 kvi in

the analogues of the right hand side of (5.25) and of the following equations; in particular, it also
reflects into the analogue of (5.27), which reads:

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣

∣
∣
∣

∣
∣
∣S
ℓ1(v0),··· ,ℓsv0 (v0)

0,2,l,p (Hℓ1(v0)[τ1(v0)], . . . , Hℓsv0 (v0)
[τsv0 (v0)])(y)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ C′′(C′′ǫ)ne.p[τ ]−2(4C0)
−lγk(2∆2−l[ψ]−‖p‖1)

∑

k̄≥n

(
k̄ − 1

n− 1

)

γk̄(2∆2−2[ψ])e−C̄(γk+k̄−1|y|)σ .

(5.30)

Bounding the sum over k̄ as explained after (5.27) and choosing C0 larger than 1/4 implies the
desired estimate, (5.7).

6 Stretched exponential decay of the correction terms E1, E2
In this section we prove Theorem 2.4. We focus on the bound on E1, the bound on E2 being
completely analogous (and, therefore, left to the reader). From the definition of E1 in (2.40), letting
x = (x, 0), we have:

[
E1(x)

]

a,b
= 2
[
V ∗
2,0,0,∅(x)

]

a,b
+
[
E1(x)

]

a,b
, (6.1)

where
[
E1(x)

]

a,b
=
〈 δ2Q∗(φ,0,ψ)
δφb(0)δφa(x)

∣
∣
φ=0

〉

H∗
with Q∗(φ, J, ψ) defined in (2.38) and following line, i.e.,

Q∗ = {V ∗
ℓ }ℓ∈Lf(2,0) (6.2)

(here, letting L(2, 0) := {(n,m, l,p) ∈ L : (n,m) = (2, 0)}, we defined Lf (2, 0) := L(2, 0) \
{(2, 0, 0, ∅)}). The first term in the right hand side of (6.1) has already been analyzed in the
previous sections, and proved to be analytic in ǫ for ǫ small. Moreover, as we shall see shortly,
the tree representation (5.3) and the bounds derived in the preceding section on the tree values
H2,0,0,∅[τ ](x) readily imply the stretched exponential decay of V ∗

2,0,0,∅(x). Concerning the second
term, we will prove below that it can be computed via a convergent expansion in which the kernels
V ∗
2,0,l,p of Q∗ are ‘contracted’ with those of H∗. Not surprisingly, E1(x) can be expressed once again

in terms of a tree expansion, slightly different from the one of the preceding sections, in that it
includes only a subset of the trees contributing to the scale-invariant, fixed-point, potential studied
above. As we shall see, the trees contributing to E1 are characterized by a constraint on the ‘scale
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indices’ (called h, k1, k2, . . . in the following), implying the desired stretched exponential decay. In
order to simplify the analysis and to rely on the bounds derived in the preceding sections as much
as possible, we shall define the trees contributing to E1 in terms of ‘dressed endpoints’ (rather than
of the ‘bare endpoints’ in Figure 4): these are the big white and black endpoints of, e.g., Figure
9 below, representing the kernels V ∗

2,0,l,p and H∗
l,p, respectively. In order to estimate the values of

the trees contributing to E1, we shall use the bounds on V ∗
2,0,l,p and H∗

l,p derived above and in [1],
without re-expanding from scratch these kernel as sums over trees once again.

Let us consider the first term in the right hand side of (6.1). As mentioned above, we already
proved in the previous sections that it is analytic in ǫ for ǫ small. Moreover, using the first identity
in (5.3) and the bound (5.8) with h = 0, we have (dropping as usual the component labels):

∣
∣V ∗

2,0,0,∅(x)
∣
∣ ≤ Cα|x|−2∆1

∑

τ

(Cαǫ)
ne.p[τ ]−2

∑

k≥1

e−
C̄
2 (γk−1|x|)σ max{(γk|x|)2∆1 , (γk|x|)2∆1−α}

≤ C′
α|x|−2∆1e−

C̄
4 (|x|/γ)σ

∑

k≥1

e−
C̄
4 (γk−1|x|)σ max{(γk|x|)2∆1 , (γk|x|)2∆1−α},

(6.3)

where, in passing from the first to the second line, we performed the sum over τ of (Cαǫ)
ne.p[τ ]−2

(which is summable, and whose sum is bounded by an ǫ-independent constant), and we extracted
part of the exponential factor from the sum over k. Now, if |x| ≥ 1, the summand in the sum over

k can be bounded from above by e−
C̄
4 γ

σ(k−1)

γ2k∆1 |x|2∆1 , so that the right hand side of (6.3) can

be bounded from above by (const.)e−
C̄
4 (|x|/γ)σ , with (const.)= C′

α

∑

k≥1 e
− C̄

4 γ
σ(k−1)

γ2k∆1 . On the
other hand, if |x| ≤ 1, the sum over k in the right hand side of (6.3) can be bounded via (5.9), so

that the right hand side of (6.3) can be bounded from above by (const.)|x|−2∆1e−
C̄
4 (|x|/γ)σ . Putting

the two cases together, we find

∣
∣V ∗

2,0,0,∅(x)
∣
∣ ≤ Ce−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1. (6.4)

Note that the right hand side has the same form as that of the first inequality in (2.45). Therefore,
in order to complete the proof of Theorem 2.4, we need to prove a comparable bound on E1(x), as
well as its analyticity.

For this purpose, we derive a tree expansion for E1(x). We write (keeping, once again, the flavor
indices implicit):

E1(x) =
δ2Qeff(φ, 0)

δφ(0)δφ(x)

∣
∣
φ=0

, (6.5)

where, in analogy with (2.6) and (2.49),

Qeff(φ, J) = lim
h→−∞

log

∫
dµ[h,0](ψ)e

H∗(ψ)+Q∗(φ,J,ψ)

∫
dµ[h,0](ψ)eH

∗(ψ)

≡ lim
h→−∞

Dhv(h)(φ, J, 0),

(6.6)

with
v(h)(φ, J, ψ) := R|h|(H∗ +Q∗)(φ, J, ψ)−H∗(ψ), (6.7)
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and Q∗ as in (6.2). Denoting by v
(h)
ℓ with ℓ ∈ L the kernels of v(h) (which are by construction

non-vanishing only for indices ℓ = (n,m, l,p) such that n+m ≥ 2), we can then rewrite

E1(x) = 2 lim
h→−∞

Dhv
(h)
2,0,0,∅(x)

= 2 lim
h→−∞

γ2h∆1v
(h)
2,0,0,∅(γ

hx).
(6.8)

In view of the definition (6.7) of v(h), of the fact that its kernels v
(h)
ℓ are non-vanishing only for

indices ℓ = (n,m, l,p) such that n +m ≥ 2, and of the representation (3.18) of the action of the
RG map R in components, for any ℓ ∈ L(2, 0) = {(n,m, l,p) ∈ L : (n,m) = (2, 0)}, for any h < 0
we can write:

v
(h)
ℓ =

∑

s≥1

s
∑

ℓ1∈Lf(2,0)

∑

(ℓi)si=2

Rℓ1,...,ℓsℓ (v
(h+1)
ℓ1

, H∗
ℓ2 , . . . , H

∗
ℓs), (6.9)

where we recall that Lf(2, 0) := L(2, 0)\{(2, 0, 0, ∅)}, and the third sum in the right hand side runs
over the (s − 1)-ples of labels in L(0, 0) := {(n,m, l,p) ∈ L : (n,m) = (0, 0)} (note that for any
such label, of the form ℓ = (0, 0, l,p), V ∗

0,0,l,p ≡ H∗
l,p, with H∗ the FP potential constructed in [1],

see condition (1) in Definition 2.2; for this reason, with some abuse of notation, in (6.9) we wrote

H∗
ℓ in place of V ∗

ℓ ). From (3.19) we see that, for any ℓ ∈ L(2, 0), Rℓ1,...,ℓsℓ = DSℓ1,...,ℓsℓ , so that,
isolating from the right hand side of (6.9) the contribution with s = 1 and ℓ1 = ℓ, we can rewrite:

v
(h)
ℓ = Dv

(h+1)
ℓ +

∑

s≥1

s

∗∑

ℓ1∈Lf (2,0)

∑

(ℓi)si=2

DSℓ1,...,ℓsℓ (v
(h+1)
ℓ1

, H∗
ℓ2 , . . . , H

∗
ℓs), (6.10)

where the ∗ on the second sum in the right hand side indicates the constraint that, if s = 1, then

ℓ1 6= ℓ. Note also that, by definition, for h = −1, the kernel v
(0)
ℓ in the right hand side is v

(0)
ℓ ≡ V ∗

ℓ ,
for all ℓ ∈ Lf (2, 0), and zero otherwise. Therefore, for any ℓ ∈ L(2, 0),

v
(−1)
ℓ = DV ∗

ℓ 1ℓ∈Lf (2,0) +
∑

s≥1

s
∗∑

ℓ1∈Lf(2,0)

∑

(ℓi)si=2

DSℓ1,...,ℓsℓ (V ∗
ℓ1 , H

∗
ℓ2 , . . . , H

∗
ℓs). (6.11)

If we graphically represent any kernel V ∗
ℓ with ℓ ∈ L(2, 0) by a big white dot, the first term in the

right hand side, whenever it is there (i.e., for ℓ 6= (2, 0, 0, ∅)), can be represented as D , while the
second as a sum over trees τ of length 1 (the length being the maximal number of branches along
a path from the endpoints to the root) as in Fig.9. We correspondingly write:

v
(−1)
ℓ = DV ∗

ℓ 1ℓ∈Lf(2,0) +
∑

τ∈T1

vℓ[τ ], (6.12)

where T1 is the family of trees of length 1 described in Figure 9 and in its caption, and vℓ[τ ] is its

value: if τ has sv0 endpoints, then vℓ[τ ] = sv0
∑∗

ℓ1∈Lf (2,0)

∑

(ℓi)
sv0
i=2

DS
ℓ1,...,ℓsv0
ℓ (V ∗

ℓ1
, H∗

ℓ2
, . . . , H∗

ℓsv0
).

We can easily iterate this procedure, via (6.10), thus ending up with the following tree repre-

sentation for v
(h)
ℓ :

v
(h)
ℓ = D|h|V ∗

ℓ 1ℓ∈Lf(2,0) +

|h|
∑

L=1

∑

kL≥0,
k0,k1,...,kL−1≥1:
k0+···+kL=|h|

∑

τ∈TL

vℓ[τ,k], (6.13)
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v0

D v1

Figure 9: A tree in T1, representing one of the contributions vℓ[τ ] in the right hand side of (6.11), with the action of
the dilatation operator D associated with the root explicitly indicated. The elements of T1 consists of a root vertex
v0, followed by sv0 ≥ 1 children: the first (i.e., the topmost) one, denoted v1, is a big white dot, representing V ∗

ℓ1

(with ℓ1 an index to be summed over Lf (2, 0), such that ℓ1 6= ℓ), while the others are all big-black-dot endpoints,
representing H∗

ℓi
, i = 2, . . . , sv0 , where ℓi are indices to be summed over L(0, 0).

where L represents the length of the tree (i.e., the number of branches crossed by the straight path
from the root v0 to the big white end point, see Figure 10), TL is the family of trees of length L

described in Figure 10 and in its caption, k := (k0, k1, . . . , kL) and vℓ[τ,k]
11 is the value of the tree

τ , in the presence of the action of the dilatations Dk0 , Dk1 , . . ., DkL associated with the vertices
v0, v1, . . ., vL, as in Figure 10. Given τ ∈ TL with L > 1, letting τv1 ∈ TL−1 be the subtree of τ

v0

Dk0

v1

Dk1

v2

Dk2

DkL−1

vL−1

DkL

vL

Figure 10: A tree in TL with the action of the dilatations Dki associated with the vertices vi, i = 0, . . . ,L explicitly
indicated. For any L > 1, the elements of TL are recursively characterized by the conditions that the root v0 has
sv0 ≥ 1 children, and that the first (i.e., the topmost) one, denoted v1, is the root of a tree in TL−1, while the other
children are all big-black-dot endpoints. For L = 1, the set T1 was described in Fig.9. For any h such that |h| ≥ L,
the integers k0, . . . , kL satisfy: k0, . . . , kL−1 ≥ 1, kL ≥ 0, and k0 + · · · + kL = |h|; in particular, for L = 1 and

h ≤ −1, the vertices v0 and v1 are associated with two dilatations operators Dk0 and Dk1 with k0 ≥ 1, k1 ≥ 0 and
k0 + k1 = |h|: the case depicted in Fig.9 (where v0 is associated with D, and v1 with the identity) is a special case
corresponding to h = −1.

rooted in v1, vℓ[τ, (k0, . . . , kL)], for ℓ ∈ L(2, 0), is recursively defined as:

vℓ[τ, (k0, k1, . . . , kL)] = sv0

∗∑

ℓ1∈Lf (2,0)

∑

(ℓi)
sv0
i=2

Dk0S
ℓ1,...,ℓsv0
ℓ (vℓ1 [τv1 , (k1, . . . , kL)], H

∗
ℓ2 , . . . , H

∗
ℓsv0

),

(6.14)

11Note that for h = −1 there is only one possible choice of k = (k0, k1) compatible with the constraints k0 ≥ 1,
k1 ≥ 0, k0 + k1 = 1 indicated under the second sum in the right hand side of (6.13), that is (k0, k1) = (1, 0):
therefore, for h = −1, the value vℓ[τ ] in the right hand side of (6.12) is the same denoted by vℓ[τ, (1, 0)] in (6.13).
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where the sums over ℓ1 and over (ℓi)
sv0
i=1 must be interpreted as in (6.10), while, given τ ∈ T1,

vℓ[τ, (k0, k1)] = sv0

∗∑

ℓ1∈Lf(2,0)

∑

(ℓi)
sv0
i=2

Dk0S
ℓ1,...,ℓsv0
ℓ (Dk1V ∗

ℓ1 , H
∗
ℓ2 , . . . , H

∗
ℓsv0

). (6.15)

The validity of the tree representation (6.13) with the tree values defined above can be straightfor-
wardly proved by induction, and is left to the reader.

We now use this tree representation to compute and bound the right hand side of (6.8). We
have:

Dhv
(h)
2,0,0,∅(x) =

|h|
∑

L=1

∑

kL≥0,
k0,k1,...,kL−1≥1:
k0+···+kL=|h|

∑

τ∈TL

Dhv2,0,0,∅[τ,k](x). (6.16)

If τ ∈ T1, using (6.15), the definition of D in (2.27), and the analogue of (5.17), we get that, for
any k0 ≥ 1, k1 ≥ 0 such that k0 + k1 = |h|,
∣
∣Dhv2,0,0,∅[τ, (k0, k1)](x)

∣
∣

≤ sv0
∑

ℓ1∈Lf (2,0)

∑

(ℓi)
sv0
i=2

γ2∆1(h+k0)
∣
∣
∣S
ℓ1,...,ℓsv0
2,0,0,∅ (Dk1V ∗

ℓ1 , H
∗
ℓ2 , . . . , H

∗
ℓsv0

)(γh+k0x)
∣
∣
∣

≤ sv0
∑

ℓ1∈Lf (2,0)

∑

(ℓi)
sv0
i=2

γ2∆1(h+k0)C
sv0−1
γ (4C0)

∑sv0
i=1 liN

ℓ1,...,ℓsv0
(2,0,0,∅)

( sv0∏

i=2

‖H∗
ℓi‖w

)∣
∣
∣
∣
∣
∣Dk1V ∗

ℓ1(γ
h+k0x)

∣
∣
∣
∣
∣
∣.

(6.17)

Now, in the last line, for any i = 2, . . . , sv0 , we use that

‖H∗
ℓi‖w ≤

∑

τ

‖Hℓi[τ ]‖w ≤ C
∑

τ

(Cǫ)ne.p.[τ ] ≤ C′(C′ǫ)max{1,
li
2 −1}, (6.18)

where, in the second inequality, we used (4.22) with ρ = 1 and the fact that the trees contributing
to H∗

ℓi
, with ℓi = (0, 0, li,pi), necessarily have ne.p.[τ ] ≥ max{1, li2 − 1}. Concerning the factor

∣
∣
∣
∣
∣
∣Dk1V ∗

ℓ1
(γh+k0x)

∣
∣
∣
∣
∣
∣, we rewrite it and bound it as follows: we use once again the tree representation

(4.3) with Hℓ[τ ] as in (4.4). Noting that for ℓ = (2, 0, l,p) the trimming operator acts as the identity,
and rewriting D

1−D =
∑

k≥1D
k, with D as in (2.27), we find:

∣
∣
∣
∣
∣
∣Dk1V ∗

ℓ1(γ
h+k0x)

∣
∣
∣
∣
∣
∣ ≤

∑

k≥1

∑

τ

∗∑

(ℓ′i)
sv0
i=1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
Dk+k1S

ℓ′1,··· ,ℓ
′

sv0

ℓ1
(Hℓ′1

[τ1], . . . , Hℓ′sv0
[τsv0 ])(γ

h+k0x)

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

(6.19)

By Lemma 5.2, we thus obtain:

γ2∆1(h+k0)
∣
∣
∣
∣
∣
∣Dk1V ∗

ℓ1(γ
h+k0x)

∣
∣
∣
∣
∣
∣ ≤ C

∑

τ

(Cǫ)ne.p[τ ]−2
∑

k≥1

γ2∆1(h+k0+k+k1)γ−(k+k1)(l1[ψ]+‖p1‖1)

· e− C̄
2 (γk+k1+h+k0−1|x|)σ

(
min{1, γk+k1+h+k0 |x|}

)−α

≤ C′(C′ǫ)
l1
2 −1

∑

k≥1

γ2∆1kγ−(k+k1)(l1[ψ]+‖p1‖1)e−
C̄
2 (γk−1|x|)σ

(
min{1, γk|x|}

)−α
,

(6.20)
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where in the second inequality we performed the sum over τ (note that, for given l1 ≥ 2, ne.p.[τ ]−2 ≥
l1
2 − 1, so that

∑

τ (Cǫ)
ne.p[τ ]−2 ≤(const.)(C′ǫ)

l1
2 −1) and used the fact that k0 + k1 + h = 0. By the

same considerations discussed after (6.3), performing the sum over k ≥ 1 we get:

γ2∆1(h+k0)
∣
∣
∣
∣
∣
∣Dk1V ∗

ℓ1(γ
h+k0x)

∣
∣
∣
∣
∣
∣ ≤ C′(C′ǫ)

l1
2 −1γ−k1(l1[ψ]+‖p1‖1)e−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1.

(6.21)

Plugging (6.18) and (6.21) into (6.17), and using that N
ℓ1,...,ℓsv0
(2,0,0,∅) ≤ 2

∑sv0
i=1 li , gives:

∣
∣Dhv2,0,0,∅[τ, (k0, k1)](x)

∣
∣

≤ sv0(C
′′)sv0 e−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1

∑

ℓ1∈Lf (2,0)

(C′′ǫ)
l1
2 −1γ−k1(l1[ψ]+‖p1‖1)·

·
∑

(ℓi)
sv0
i=2

sv0∏

i=2

(C′′ǫ)max{1,
li
2 −1} ≤ C′′′(C′′′ǫ)sv0−1e−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1γ−2k1[ψ].

(6.22)

Remark 6.1. From (6.20), it is clear that the constraint k0 + k1 = |h| (or, in general, k0 + k1 +
· · ·+ kL = |h| for trees τ ∈ TL with L ≥ 1, to be discussed in the following) is essential in proving
the stretched exponential decay in (6.22). This constraint, first appearing in (6.13), has its origin

in the recursive equation (6.10), which is linear in {v(h
′)

ℓ }h
′≤0
ℓ∈Lf(2,0)

(with v
(0)
ℓ ≡ V ∗

ℓ ); in turn, such

linearity in {v(h
′)

ℓ }h′≤0
ℓ∈Lf(2,0)

originates from the fact that Q∗ is quadratic in φ. In order to compare

more closely the tree expansion for Dhv
(h)
2,0,0,∅ in (6.13) with the one for DhV ∗

2,0,0,∅ in the first line of

(5.3) we can, if desired, re-expand the kernels V ∗
ℓ′ and H∗

ℓ′′ associated with the big white and black
endpoints of the trees in TL in terms of the tree expansions discussed in Section 5 (for V ∗

ℓ′ ) and in

[1, Appendix J] (for H∗
ℓ′′): this would lead to a new tree expansion for Dhv

(h)
2,0,0,∅ (more complex,

but closer to the tree expansion of the previous section) in terms of trees with ‘bare endpoints’ as
those in Figure 4. Such trees would be exactly of the same form as those contributing to DhV ∗

2,0,0,∅,

such as those in Figure 8, with the additional constraint on the scale labels k0+ k1+ · · ·+ kL = |h|,
which was absent in the discussion in Section 5; in fact, the analogue of the combination h+k0+k1
in (6.20) and, more generally, of the combination h + k0 + k1 + · · · kL appearing in the bounds
below, is what in Section 5 was denoted k + kv1 + · · ·+ kvn , see (5.22) and following equations; in
those equations, the combination k +

∑n
i=1 kvi could take arbitrarily negative values, and this was

(rightly so) at the origin of the polynomial decay of the kernel of DhV ∗
2,0,0,∅ in the limit h→ −∞,

proved in the previous section.

We now proceed in a similar fashion, in order to bound the general term in the right hand side
of (6.16). We take 1 < L ≤ |h|, τ ∈ TL, k = (k0, k1, . . . , kL) with kL ≥ 0, k0, k1, . . . , kL−1 ≥ 1, and
h+ k0 + k1 + · · ·+ kL = 0. Using the same notation introduced before (5.16), thanks to (6.14), we
have:

Dhv2,0,0,∅[τ,k](x) = sv0

∗∑

(ℓi(v0))
sv0
i=1

Dh+k0S
ℓ1(v0),...,ℓsv0 (v0)

2,0,0,∅ (vℓv1 [τv1 ,kv1 ], H
∗
ℓ2(v0)

, . . . , H∗
ℓsv0 (v0)

)(x),

(6.23)
where

∑∗
(ℓi(v0))

sv0
i=1

≡ ∑∗
ℓ1(v0)∈Lf (2,0)

∑

(ℓi(v0))
sv0
i=2

, and kv1 := (k1, . . . , kL); moreover, we recall that
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ℓv1 ≡ ℓ1(v0). Using (the analogue of) (5.19) we get:

|Dhv2,0,0,∅[τ,k](x)| ≤

≤ sv0

∗∑

(ℓi(v0))
sv0
i=1

∣
∣
∣Dh+k0S

ℓ1(v0),...,ℓsv0 (v0)

2,0,0,∅ (vℓv1 [τv1 ,kv1 ], H
∗
ℓ2(v0)

, . . . , H∗
ℓsv0 (v0)

)(x)
∣
∣
∣

≤ γ2∆1(h+k0)
∗∑

(ℓi(v0))
sv0
i=1

sv0C
sv0−1
γ (4C0)

∑sv0
i=1 li(v0)N

ℓ1(v0),...,ℓsv0 (v0)

2,0,0,∅ ·

·
( sv0∏

i=2

‖H∗
ℓi(v0)

‖w
)∣
∣
∣
∣
∣
∣vℓv1 [τv1 ,kv1 ](γ

h+k0x)
∣
∣
∣
∣
∣
∣.

(6.24)

We now apply again the recursive definition of vℓv1 [τv1 ,kv1 ] and iterate the same procedure until
we reach vL−1, thus getting:

|Dhv2,0,0,∅[τ,k](x)| ≤ γ2∆1h
∗∑

(ℓi(v0))
sv0
i=1

· · ·
∗∑

(ℓi(vL−1))
sv

L−1
i=1

×

×
(L−1∏

j=0

svjC
svj−1
γ (4C0)

∑svj
i=1 li(vj)−lvjN

ℓ1(vj),...,ℓsvj (vj)

ℓvj
γkj(2∆1−lvj [ψ]−‖pvj‖1)·

·
(
svj∏

i=2

‖H∗
ℓi(vj)

‖w
))
∣
∣
∣

∣
∣
∣

∣
∣
∣DkLV ∗

ℓv
L

(γh+k0+···+kL−1x)
∣
∣
∣

∣
∣
∣

∣
∣
∣,

(6.25)

with ℓv0 = (nv0 ,mv0 , lv0 ,pv0) ≡ (2, 0, 0, ∅).
Remark 6.2. Every collection of labels {(ℓi(vj))

svj
i=1}j=0,...,L−1 contributing to the right hand side of

(6.27) satisfies the following constraints (recall that we write ℓi(vj) = (ni(vj),mi(vj), li(vj),pi(vj),
and l1(vj) ≡ lvj+1): for any j = 0, . . . ,L − 1, if vj is trivial, then lvj ≤ lvj+1 − 2 (with the

understanding that lv0 ≡ 0), while, if vj is non-trivial, then lvj ≤ lvj+1 +
∑svj
i=2 li(vj) − 2(svj − 1).

In the following, we use that the sums over {(ℓi(vj))
svj
i=1}j=0,...,L−1 are performed under these

constraints.

Now, recalling that h+ k0 + k1 + · · ·+ kL = 0 and using the analogue of (6.21), we have

γ2∆1(h+k0+···+kL−1)
∣
∣
∣

∣
∣
∣

∣
∣
∣DkLV ∗

ℓv
L

(γh+k0+···+kL−1x)
∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

≤ C′(C′ǫ)
lv

L

2 −1γ−kL(lv
L
[ψ]+‖pv

L
‖1)e−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1.

(6.26)
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Inserting (6.18) and (6.26) into (6.25), summing over pv1 , . . . ,pvL and using (4.16), implies:

|Dhv2,0,0,∅[τ,k](x)| ≤ Cne.p.[τ ]e−
C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1

∑

(ℓi(v0))
sv0
i=2

· · ·
∑

(ℓi(vL−1))
sv

L−1
i=2

×

×
(

L−1∏

j=0

(
svj∏

i=2

(4C0)
li(vj)(C′ǫ)max{1,

li(vj )

2 −1}
)
)
∑

lv
L

(C′ǫ)lvL/2−1(8C0)
lv

Lγ−kLlvL [ψ]·

·
∑

lv1 ,...,lvL−1

(
L−1∏

j=1

(∑svj
i=1 li(vj)

lvj

)

γ−kj lvj [ψ]
)

.

(6.27)

Now, in the last line, recalling that lvj ≥ 2 and kj ≥ 1, we can bound from above each factor

γ−kj lvj [ψ] by γ−2kj [ψ]γ−(lvj−2)[ψ]; next, by proceeding as in [33, Appendix A.6.1] and in (5.25), we
obtain:

∑

lv1 ,...,lvL−1

( L−1∏

j=1

(∑svj
i=1 li(vj)

lvj

)

γ−kj lvj [ψ]
)

≤

≤ γ2[ψ](L−1)γ−2[ψ](k1+···+kL−1)(1− γ−[ψ])−
∑

L−1
j=1

∑svj
i=2 li(vj)(1− γ−[ψ])−lvL .

(6.28)

Hence, plugging (6.28) in (6.27), using γ−kLlvL [ψ] ≤ γ−2kL[ψ] and
∑L−1

j=0 (svj − 1) = ne.p.[τ ]− 1, we
find

|Dhv2,0,0,∅[τ,k](x)| ≤ (C′′)ne.p.[τ ]e−
C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1γ2[ψ](L−1)γ−2[ψ](k1+···+kL)·

·
∑

(ℓi(v0))
sv0
i=2

· · ·
∑

(ℓi(vL−1))
sv

L−1
i=2

(
L−1∏

j=0

( svj∏

i=2

(C′′ǫ)max{1,
li(vj )

2 −1}
)
)
∑

lv
L

(C′′ǫ)lvL/2−1 (6.29)

for a suitable C′′ > 0. In order to get the desired bound on Dhv
(h)
2,0,0,∅(x), uniformly as h → −∞

(see (6.8)), in view of (6.16), we still need to sum the right hand side of (6.29) over L, k and τ
and show that the result of the sum is the same as the right hand side of (6.4) (up, possibly, to a
redefinition of the constants).

Now, for the sums over k, we simply use

∑

kL≥0
k0,...,kL−1≥1
k0+···+kL=|h|

γ−2[ψ](k1+···+kL−L+1) ≤ (1− γ−2[ψ])L, (6.30)

so that (letting
∑

k be a shorthand notation for
∑k0+···+kL=|h|
kL≥0, k0,...,kL−1≥1)

∑

k

|Dhv2,0,0,∅[τ,k](x)| ≤ Cne.p.[τ ]+Le−
C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1·

·
∑

(ℓi(v0))
sv0
i=2

· · ·
∑

(ℓi(vL−1))
sv

L−1
i=2

(
L−1∏

j=0

(
svj∏

i=2

(C′′ǫ)max{1,
li(vj)

2 −1}
)
)
∑

lv
L

(C′′ǫ)lvL/2−1
(6.31)
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up to a redefinition of C. If we now performed the sums in the second line using (ℓi(vj))
svj
i=2, lvL ,

by forgetting all the constraints on the indices (ℓi(vj))
svj
i=2, lvL but li(vj) ≥ 2 and lvL ≥ 2, we would

find that the second line of (6.31) would be bounded by C
∏L−1
j=0 (Cǫ)

svj−1 for some C > 0. By
re-plugging this back into (6.31), we would be led to a bound that is summable over τ ∈ TL (i.e.,
over svj ≥ 1 for j = 0, . . . ,L− 1), but not over L, and we would be in trouble. Therefore, we must
take better advantage of the constraints spelled out in Remark 6.2, by proceeding as follows.

Given L ≥ 1 and τ ∈ TL, we consider the corresponding set of vertices {v0, . . . , vp} as in Fig.
11, and rewrite it as the union of the set Vt(τ) of ‘trivial’ vertices (i.e., those with only one child,
svj = 1) and of the set Vnt(τ) of ‘non-trivial’ ones (i.e., those with svj ≥ 2). We let p = p(τ) be
the cardinality of Vnt(τ) and, if p ≥ 1, we denote Vnt(τ) ≡ {vj1 , . . . , vjp}, with j1 < · · · < jp. We
shall think the tuple (v0, v1, . . . , vL) as a concatenation of the tuples (v0, . . . , vj1), (vj1+1, . . . , vj2 ),
. . ., (vjp+1, . . . , vL). We let n1 = j1 + 1, n2 = j2 − j1, . . ., np+1 = L − jp be the lengths of these
tuples, and s1 = svj1 , . . . , sp = svjp the numbers of children of vj1 , . . . , vjp . Note that the choice of
the integers p ≥ 0, n1, . . . , np+1 ≥ 1 (with n1 ≥ 2 if p = 0) and s1, . . . , sp ≥ 2 specifies uniquely the
choice of L and τ ∈ TL. Therefore, we shall identify the double sum over L ≥ 1 and τ ∈ TL with
that over p ≥ 0, n1, . . . , np+1 ≥ 1 (with n1 ≥ 2 if p = 0) and s1, . . . , sp ≥ 2.

v0

Dk0

v1

Dk1

v2

Dk2

v3

Dk3

v4

Dk4

v5

Dk5

v6

Dk6

v7

Dk7

v8

Dk8

v9

Dk9

n1 n2 n3

Figure 11: A tree in TL with L = 9. Its non trivial vertices are v2 and v6, and s1 ≡ sv2 = 4, s2 ≡ sv6 = 3. The
10-ple (v0, . . . , v9) is thought of as a concatenation of three tuples of length n1 = 3, n2 = 4, n3 = 3, respectively,
namely of (v0, v1, v2), (v3, v4, v5, v6) and (v7, v8, v9).

Let us now use the constraints spelled out in Remark 6.2, which we recall here for the reader’s
convenience: for j = 0, . . . ,L − 1, if vj is trivial, then lvj ≤ lvj+1 − 2 (with lv0 ≡ 0), while, if vj is

non-trivial, then lvj ≤ lvj+1 +
∑svj

i=2 li(vj) − 2(svj − 1). Therefore, if p = 0, then lvL ≥ 2(n1 − 1);
while, if p ≥ 1:

2(n1 − 1) ≤ lvj1 ≤ lvj1+1 +

s1∑

i=2

li(vj1) + 2(s1 − 1)

lvj1+1 + 2(n2 − 1) ≤ lvj2 ≤ lvj2+1 +

s2∑

i=2

li(vj2) + 2(s2 − 1)

...

lvjp−1+1 + 2(np − 1) ≤ lvjp ≤ lvjp+1 +

sp∑

i=2

li(vjp) + 2(sp − 1)

lvjp+1 + 2(np+1 − 1) ≤ lvL ,

(6.32)
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which implies, in particular, that every collection of labels contributing to the right hand side of
(6.31) satisfies

s1∑

i=2

li(vj1)+ · · ·+
sp∑

i=2

li(vjp)+ lvL ≥ 2(n1−1)+ · · ·+2(np+1−1)+2(s1−1)+ · · ·+2(sp−1). (6.33)

Therefore, the right hand side of (6.31) can be bounded from above by

Cne.p.[τ ]+Le−
C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1(

√
ǫ)[n1+···+np+1−p−2]+ ·

·
∑

(ℓi(vj1 ))
s1
i=2

( s1∏

i=2

(C′′
√
ǫ)max{1,

li(vj1
)

2 −1}
)

· · ·
∑

(ℓi(vjp ))
sp
i=2

( sp∏

i=2

(C′′
√
ǫ)max{1,

li(vjp
)

2 −1}
)∑

lv
L

(C′′
√
ǫ)
lv

L

2 −1

(6.34)

where [·]+ := max{0, ·} indicates the positive part. If we now perform the sums in the second line
by forgetting all the constraints on the indices (ℓi(vjk))

sk
i=2, lvL , but li(vjk ) ≥ 2 and lvL ≥ 2, we

find that the second line of (6.34) is bounded by C
∏p
k=1(C

√
ǫ)sk−1 for some C > 0. In conclusion,

plugging this back into (6.31), and recalling that
∑p
k=1(sk−1) = ne.p.(τ)−1 and

∑p+1
k=1 nk = L+1,

we find, up to a re-definition of C:
∑

k

|Dhv2,0,0,∅[τ,k](x)| ≤

≤ Cn1+···+np+1(
√
ǫ)[n1+···+np+1−p−2]+(C

√
ǫ)

∑p
k=1(sk−1)e−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1,

(6.35)

with the understanding that, if p = 0, the factor (C
√
ǫ)

∑p
k=1

(sk−1) should be interpreted as being
equal to 1. Now, the right hand side of this equation is summable over p ≥ 0, n1, . . . , np+1 ≥ 1

(with n1 ≥ 2 if p = 0) and s1, . . . , sp ≥ 2, the sum being bounded from above by Ce−
C̄
4 (|x|/γ)σ

(min{1, |x|})−2∆1. In conclusion, in view of (6.16), we find

∣
∣Dhv

(h)
2,0,0,∅(x)

∣
∣ ≤ Ce−

C̄
4 (|x|/γ)σ(min{1, |x|})−2∆1, (6.36)

as desired. Analyticity ofDhv
(h)
2,0,0,∅(x), uniformly in h, is a consequence of the absolute summability

of its tree expansion, as well as of the uniform-in-h bounds that we just derived. A slight extension
of the discussion above would also allow us to prove the existence of the limit in the right hand side
of (6.8) and to derive explicit estimates on the speed of convergence to the limit. However, in order
not to overwhelm an already lengthy discussion, we prefer not to discuss explicitly this point, which
is left to the interested reader as a simple exercise. The bounds on E2(y) and E2(y) are completely
analogous to those discussed above; the minor changes (mostly notational) required for adapting
the previous estimates to these functions are left to the reader. The proof of Theorem 2.4 is thus
concluded.

A First order computation of ζ2

In this appendix, we calculate the first order contribution in ǫ to ζ2 = Z2 − 1, which implies (2.42)
for η2. We recall that ζ2 is expressed via a convergent tree expansion as in (4.24); isolating the first
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order from the higher order contributions implies:

ζ2 = H̃0,1,2,0[τ0] + H̃0,1,2,0[τ1] +O(ǫ2), (A.1)

where τ0 and τ1 are the two trees in Fig.A.2 (the analogous trees with an endpoint of type ν
replacing the endpoint of type λ give zero contribution).

v0

τ0 λ

+
v0 v1

τ1 λ

(A.2)

In order to compute H̃0,1,2,0[τ0] and H̃0,1,2,0[τ1], we recall that the kernel associated with the
endpoint of type λ has the form in the third line of (2.34), with c2 = λ

3 and (see [1, (5.30), (G.7)]):

λ = λ∗ =
−2ǫ log γ

I2
+O(ǫ2),

I2 = −4(N − 8)

[
Sd

(2π)d
log γ +O(ǫ(log γ)2)

] (A.3)

(here Sd is the area of the unit sphere in R
d). An application of the definition of tree value and a

straightforward computation shows that:

H̃0,1,2,0[τ0] = −4(N − 2)λ∗
∫

ddk

(2π)d
f0(k)

2

|k|d+2ǫ
,

H̃0,1,2,0[τ1] = −8(N − 2)λ∗
∫

ddk

(2π)d
γd+∆2−6[ψ]f0(k)f1(k)

|k|d+2ǫ
,

(A.4)

where fh(k) := χ(γ−hk) − χ(γ−h+1k). Now, plugging these expressions in (A.1), using (A.3) and
the fact that d+∆2 − 6[ψ] = 2ǫ+ η2 = O(ǫ), we find:

ζ2 = −2ǫ
N − 2

N − 8

(2π)d

Sd

∫
ddk

(2π)d
f2
0 (k) + 2f0(k)f1(k)

|k|d +O(ǫ2). (A.5)

A computation shows that
∫

ddk
(2π)d

f2
0 (k)+2f0(k)f1(k)

|k|d = Sd
(2π)d log γ, which gives ζ2 = −2ǫN−2

N−8 log γ +

O(ǫ2), as already announced.

B Proof of (2.43) and (2.44)

Using (2.50)-(2.51) and (5.3), we write:

G∗(x) = 2 lim
h→−∞

γ2h∆1

∑

τ

H2,0,0,∅[τ ](γ
hx),

F∗(y) = 2 lim
h→−∞

γ2h∆2

∑

τ

H0,2,0,∅[τ ](γ
hy),

(B.1)

From Proposition 5.1 and its proof we know that the limits in the right hand sides exist, and
that the contribution to G∗(x) (resp. F∗(y)) from a given tree τ is bounded from above by
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C′(Cǫ)ne.p.[τ ]−2|x|−2∆1 (resp. C′(Cǫ)ne.p.[τ ]−2|y|−2∆2), for some C,C′ > 0, see (5.11). Therefore,
using the fact that the number of trees with k endpoints is smaller than 4k, we find that the sum of
the contributions to G∗(x) (resp. F∗(y)) from the trees with 3 or more endpoints is bounded from
above by Cǫ|x|−2∆1 (resp. Cǫ|y|−2∆2). Therefore, in order to prove (2.43), it is sufficient to prove
that the contribution to G∗(x) from the tree(s) with 2 endpoints is equal to the right hand side of
(2.43) up, possibly, to an error term of the order ǫ|x|−2∆1 , and similarly for (2.44).

Dominant contribution to G∗(x). Direct inspection shows that there is only one tree with 2
endpoints contributing to G∗(x), which is the following:

v0

τ0

(B.2)

whose contribution to G∗(x) is
∑

h′>h 2
2h′∆1g(0)(γh

′

x), which implies (2.43).

Dominant contribution to F∗(y). Direct inspection shows that there are two trees with 2 end-
points contributing to F∗(y), which are the following:

v0

τ1

v0

τ2
, (B.3)

whose total contribution to F∗(y) is (denoting by ph(x) the scalar part of g(h)(x), i.e., g
(h)
ab (x) ≡

Ωabph(x)):

− 2N lim
h→−∞

∑

h′>h

γh
′(4[ψ]+2η2)p0(γ

h′

y)
[

p0(γ
h′

y) + 2
∑

k>0

γk(2[ψ]+2η2)p0(γ
h′+ky)

]

=

=− 2N
∑

h′∈Z

ph′(y)
[
γ2h

′η2ph′(y) + 2
∑

h′′>h′

γ2h
′′η2ph′′(y)

]

.
(B.4)

We let fh(k) := χh(k) − χh−1(k), with χh(k) := χ(γ−hk), and, after a relabelling of the scale
indices, we rewrite (B.4) as:

− 2N
∑

h′∈Z

γ2h
′η2

[

p2h′(y) + 2
∑

h<h′

ph(y)ph′(y)

]

= −2N
∑

h′∈Z

γ2h
′η2

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ e
i(k+p)·yfh′(p)

[

fh′(k) + 2
∑

h<h′

fh(k)

]

= −2N
∑

h′∈Z

γ2h
′η2

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ e
i(k+p)·y[χh′(p)χh′(k)− χh′−1(p)χh′−1(k)]

(B.5)

where we used:

fh′(k) + 2
∑

h<h′

fh(k) = χh′(k)− χh′−1(k) + 2χh′−1(k) = χh′(k) + χh′−1(k). (B.6)
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Now, noting that

(γ−h
′ |p|)−2η2 = 1 +

∫ 1

0

ds
d

ds
(γ−h

′ |p|)−2sη2 = 1− 2η2 log(γ
−h′ |p|)

∫ 1

0

ds(γ−h
′ |p|)−2sη2 , (B.7)

multiplying and dividing by |p|−2η2 in (B.5) we get:

(B.5) = −2N
∑

h′∈Z

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)·y [χh′(p)χh′(k)− χh′−1(p)χh′−1(k)]

+ 4η2N
∑

h′∈Z

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)·y log(γ−h

′ |p|)
∫ 1

o

ds (γ−h
′ |p|)−2sη2 ·

· [χh′(k)χh′(p)− χh′−1(k)χh′−1(p)].

(B.8)

We will prove below that the second addend in the right hand side can be bounded as:

4|η2|N
∣
∣
∣
∣
∣

∑

h′∈Z

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)·y log(γ−h

′ |p|)
∫ 1

o

ds (γ−h
′ |p|)−2sη2 ·

· [χh′(k)χh′(p)− χh′−1(k)χh′−1(p)]

∣
∣
∣
∣
∣
≤ Cǫ|y|−2∆2 ,

(B.9)

that is, this term can be included in the error term F∗
h.o.(y) defined and bounded in the lines

preceding and following (2.44). On the other hand, the first term in the right hand side of (B.8)
can be rewritten as follows: recall that the sum over h′ in Z should be interpreted as the limit as
h → −∞ of the sum over h′ > h; therefore, using the telescopic structure of the summand and,
more specifically, the fact that limh→−∞

∑

h′>h [χh′(p)χh′(k)− χh′−1(p)χh′−1(k)] = limh→−∞(1−
χh(k)χh(p)) = 1 (where the identities are in the sense of distributions), we see that the first term
in the right hand side of (B.8) is equal to

F∗
0 (y) = −2N

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)·y =

C′
0

|y|d−2ǫ+2η2
=

C′
0

|y|2∆2
, (B.10)

as desired.

We are left with proving (B.9). By adding and subtracting χh′−1(k)χh′(p) to the term in square
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brackets, we rewrite the second term in the right hand side of (B.8) as follows:

4η2N
∑

h′∈Z

∫
ddk

(2π)d|k|d/2+ǫ
∫

ddp

(2π)d|p|d/2+ǫ−2η2
ei(k+p)·y log(γ−h

′ |p|)·

·
∫ 1

0

ds (γ−h
′ |p|)−2sη2 [fh′(k)χh′(p) + χh′−1(k)fh′(p)]

= 4η2N
∑

h′∈Z

(
ddk

(2π)d|k|d/2+ǫ e
ik·yfh′(k)

)

·

·
(∫

ddp

(2π)d|p|d/2+ǫ−2η2
eip·y log(γ−h

′ |p|)
∫ 1

0

ds (γ−h
′ |p|)−2sη2χh′(p)

)

+ 4η2N
∑

h′∈Z

(
ddk

(2π)d|k|d/2+ǫ e
ik·yχh′−1(k)

)

·

·
(∫

ddp

(2π)d|p|d/2+ǫ−2η2
eip·y log(γ−h

′ |p|)
∫ 1

0

ds (γ−h
′ |p|)−2sη2fh′(p)

)

≡ 4η2N
∑

h′∈Z

∫ 1

0

ds
[

ph′(y)
∑

h≤h′

p̃h;s,h′(y) + P≤h′−1(y)p̃h′;s,h′(y)
]

(B.11)

where we recall that ph(y) denotes the scalar part of g(h)(y) (i.e., g
(h)
ab (y) ≡ Ωabph(y)) and, analo-

gously, P≤h(y) denotes the scalar part of G(≤h)(y), see footnote 3; moreover,

p̃h;s,h′(y) :=

∫
ddp

(2π)d|p|d/2+ǫ−2η2
eip·y log(γ−h

′ |p|)(γ−h′ |p|)−2sη2fh(p). (B.12)

Now, recall that, by (4.14) and the definition of ph,

|ph(y)| ≤ Cχ1γh(d/2−ǫ)e−Cχ2(γ
h−1|y|)σ , (B.13)

whose proof is given in [1, Appendix A.2]. In order to get a bound on ph;s,h′(y) we proceed as
follows: in the integral in the right hand side of (B.12), we rescale p→ γhp, thus getting:

p̃h;s,h′(y) = γh(d/2−ǫ+2η2)γ(h
′−h)2sη2

·
∫

ddp

(2π)d|p|d/2+ǫ+2(s−1)η2
eip·γ

hy [log |p| − (h′ − h) log γ] f0(p)
(B.14)

The integral in the second line can be bounded by proceeding exactly as in [1, Appendix A.2] (note,
in particular, that F (p) := log |p| admits an analytic continuation into the polydisk centered at
p 6= 0 of radius R = 1

2 maxi |pi| such that the maximum of
∣
∣F (z)

∣
∣ in the polydisk is bounded by

C(1 + |F (p)|): this allows us to proceed as in [1, (A.15)] and following lines); we thus get, for some
C1, C2 > 0:

|p̃h;s,h′(y)| ≤ C1(1 + h′ − h)γh(d/2−ǫ+2η2)γ(h
′−h)2sη2e−C2(γ

h−1|y|)σ . (B.15)
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We can now bound (B.11) via (B.13) and (B.15), thus getting, for someC > 0 and C̄ = min{Cχ2 , C2}:
∣
∣
∣4η2N

∑

h′∈Z

∫ 1

0

ds
[

ph′(y)
∑

h≤h′

p̃h;s,h′(y) + P≤h′−1(y)p̃h′;s,h′(y)
]∣
∣
∣

≤ CN |η2|
∑

h′∈Z

e−C̄(γh
′
−1|y|)σ

∑

h≤h′

(

γh
′(d/2−ǫ)γh(d/2−ǫ+2η2)(1 + h′ − h)

∫ 1

0

dsγ2s(h
′−h)η2

+ γh(d/2−ǫ)γh
′(d/2−ǫ+2η2)

)

≤ C′ǫ
∑

h′∈Z

γ2h
′∆2e−C̄(γh

′
−1|y|)σ ≤ C′′ǫ|y|−2∆2

(B.16)

where we used that η2 = O(ǫ). This conclude the proof of (2.44).
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