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Existence of weak solutions for a class of non-divergent

parabolic equations with variable exponent
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Abstract

A doubly degenerate parabolic equation in non-divergent form with variable

growth is investigated in this paper. In suitable spaces, we prove the existence

of weak solutions of the equation for cases 1 ≤ m < 2 and m ≥ 2 in different

ways. And we establish the non-expansion of support of the solution for the

problem.
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1. Introduction

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω, and set

ΩT := Ω × (0, T ), Γ := ∂Ω × (0, T ). The goal of this article is to study the

following diffusion problem:



















∂u

∂t
= umdiv

(

|Du|
p(x)−2

Du
)

in ΩT ,

u(x, t) = 0 on Γ, (1.1)

u(x, 0) = u0(x) in Ω,

where m ≥ 1, the variable exponent p : Ω → (1,∞) is log-Hölder continuous

functions, and D = (D1, D2, · · · , Dn), Di denotes the weak derivative with

respect to xi.
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The problem (1.1) is a doubly degenerate parabolic equation with vari-

able exponent in non-divergence form, which generalizes the evolutional p(x)-

Laplace. Due to the degeneracy or singularity at u = 0 and |Du| = 0, the

problem (1.1) does not have classical solution in general. In this paper, we only

consider the non-negative weak solutions of the equation.

If m < 1, we can transform the problem into a non-Newtonian polytropic

filtration equation as follow



















∂v

∂t
= div

(

|DΨ(v)|
p(x)−2

DΨ(v)
)

in ΩT ,

v(x, t) = 0 on Γ, (1.2)

v(x, 0) = Ψ−1(u0) in Ω,

where

v = Ψ−1(u) :=
u1−m

1−m
, u = Ψ(v) := ((1−m)v)

1
1−m . (1.3)

The existence of stong solutions of this kind of equations have been investigated

in [1, 2]. The blow-up and extinction of solutions have also been studied in some

articles (see [3, 4]). In particular, if m = 0, the problem becomes a parabolic

p(x)-Laplace equation.

If m ≥ 1, the transform (1.3) fails due to the equation has a lot of singu-

larities at the boundary and inside (v = +∞ when u = 0). But in this case,

the equation (1.1) is equivalent to the following double degenerate parabolic

equation in divergence type

∂u

∂t
= div

(

um|Du|
p(x)−2

Du
)

−mum−1|Du|p(x). (1.4)

For the case where m ≥ 1 and p(x) is a constant, there are some results

on the equation (1.1) in a series of papers. In the case of p(x) ≡ 2, Bertsch et

al. investigate the non-uniqueness of solutions and some properties of viscosity

solutions [5, 6, 7], and Friedman [8] et al. study the blow-up of solutions. Such

equations also appear in biological [9] or as models modelling the spread of

an epidemic [10]. In the case of p(x) ≡ p 6= 2, the problem has also been

investigated during the past decades [11, 12, 13].
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In our knowledge, when m ≥ 1 and the exponent p(x) is variable, there are

few results. In recent years, we established the existence of weak solutions only

for the case 1 ≤ m < 2 (see [14]). That was because we can prove Dun (where

un represents the weak solution of the auxiliary equation) converge to Du in

Lp(x)(ΩT ) when 1 ≤ m < 2, but failed when m ≥ 2. Therefore, the diffusion

equations in non-divergence form still need to be studied. Nowadays, we have

established the existence of weak solutions to the equation as we have found

that u
m−1
p(x)
n Dun converge to u

m−1
p(x) Du in Lp(x)(ΩT ) for the case of m ≥ 2. It is

worth mentioning that the uniqueness of the solution of the parabolic equation

in non-divergence form (1.1) does not hold for m ≥ 1 in general (for example

[6, 15, 16]).

The following existence theorem is the main results of this paper.

Theorem 1. Assume that m ≥ 1, 0 ≤ u0 ∈ L∞(Ω) ∩W
1,p(·)
0 (Ω), the problem

(1.1) admits a weak solution.

This paper is organized as follows. In Section 2, we introduce some mathe-

matical preliminaries. The Section 3 is devoted to the existence of weak solution

of the problem. In Subsection 3.1, we consider an auxiliary problem and list

some necessary results. In Subsection 3.2, we prove the existence of weak so-

lution. Finally in section 4, we investigate the non-expansion of support of the

solution of the problem.

2. Mathematical Preliminaries

Set Ωτ = Ω × (0, τ ] is a generic cylinder of an arbitrary finite height τ .

Throughout this paper, (·)+, (·)− represent the cut-off functions, where (s)+ :=

max{s, 0}, (s)− := min{s, 0}, s ∈ R. The following definitions of these function

spaces are based on [17, 18].

We define the modular

̺q(·)(f) :=

∫

Ω

|f(x)|q(x)dx.
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Then the variable exponent Lebesgue space is defined as follows:

Lq(·)(Ω) :=
{

u is measurable on Ω and satisfy ̺q(·)(λu) < ∞ for some λ > 0
}

,

which is a Banach space equipped with the Luxemburg norm

‖f‖q(·),Ω := ‖f‖Lq(·)(Ω) = inf
{

α > 0
∣

∣̺q(·)(f/α) ≤ 1
}

.

If q ∈ L∞(Ω), define q− = ess inf
x∈Ω

q(x), q+ = ess sup
x∈Ω

q(x), and we denote by

q′(x) the conjugate exponent of q(x) as follows:

q′(x) =
q(x)

q(x)− 1
.

In particular, for a bounded exponent, the following lemma holds (refer to [18,

Lemma 3.2.5]).

Lemma 1. Let q ∈ L∞(Ω). For any u ∈ Lq(·)(Ω) and ‖u‖q(·),Ω > 0, we have

min
{

̺q(·)(u)
1

q− , ̺q(·)(u)
1

q+

}

≤ ̺q(·)(u) ≤ max
{

̺q(·)(u)
1

q− , ̺q(·)(u)
1

q+

}

. (2.5)

The Sobolev space W 1,q(·)(Ω) is defined by

W 1,q(·)(Ω) :=
{

u ∈ Lq(·)(Ω)
∣

∣

∣|Du| ∈ Lq(·)(Ω)
}

,

which is a Banach space equipped with the norm

‖u‖W 1,q(·)(Ω) := ‖Du‖q(·),Ω + ‖u‖q(·),Ω.

The space W
1,q(·)
0 (Ω) is the closure of C∞

0 (Ω) (the set of smooth functions with

compact support in Ω) in the norm of W 1,q(·)(Ω).

Assume that every p is log-Hölder continuous and there exist constants p−,

p+ such that

1 < p− ≤ p(x) ≤ p+ < ∞. (2.6)

We introduce the Banach space

V(Ω) =
{

u(x)
∣

∣

∣u(x) ∈ L2 (Ω) , |Du(x)|
p(x)

∈ L1 (Ω)
}

(2.7)
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with

‖u‖V(Ω) = ‖u‖2,Ω + ‖Du‖p(·),Ω,

and the space V0(Ω) is the closure of C∞
0 (Ω).

By U (ΩT ) we denote the Banach space

U (ΩT ) =
{

u : (0, T ) → V (Ω)
∣

∣

∣u ∈ L2 (ΩT ) , |Du|
p(x)

∈ L1 (ΩT )
}

,

with

‖u‖U(ΩT ) = ‖u‖2,ΩT
+ ‖Du‖(·),ΩT

.

We denote U0 (ΩT ) as a subspace of U (ΩT ) in which the elements have zero

traces on Γ. U ′ (ΩT ) is the dual space (the space of bounded linear functionals)

of U (ΩT ) [19]. The norm in U ′ (ΩT ) is defined by

‖v‖U ′(ΩT ) = sup
{

〈v, ϕ〉
∣

∣

∣ϕ ∈ U (ΩT ) , ‖ϕ‖U(ΩT ) ≤ 1
}

.

Definition 1. A function u(x, t) is called a weak solution of problem (1.1) pro-

vided that

• u ∈ U (ΩT ) ∩ L∞ (ΩT ) ,
∂u

∂t
∈ U ′ (ΩT ) ∩ L2 (ΩT ) .

• For every ϕ ∈ C1
0 (ΩT ),

∫∫

ΩT

∂u

∂t
ϕdxdt+

∫∫

ΩT

|Du|
p(x)−2

Du ·D (umϕ)dxdt = 0. (2.8)

• The following equations hold in the sense of trace:

u(x, t) = 0 on Γ, (2.9)

u(x, 0) = u0(x) in Ω. (2.10)

We recall also the following inequalities which are classical in the theory of

p-Laplace equations. The proofs of the following lemmas are in the appendix.

Lemma 2. For all ξ, η ∈ Rn, the following inequalities hold:

(i) If 2 ≤ p < ∞,
(

|ξ|
p−2

ξ − |η|
p−2

η
)

· (ξ − η) ≥ 1
2p−1 |ξ − η|

p
;
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(ii) If 1 ≤ p < 2,
(

|ξ|
p−2

ξ − |η|
p−2

η
)

·(ξ − η) ≥ (p−1)(|ξ|
p
+ |η|

p
)

p−2
p |ξ − η|

2
.

A generalized Hölder’s inequality is stated in the following lemma.

Lemma 3. Assume that q(x) : Ω → [1,+∞) is a measurable function. For

every f ∈ Lq(·)(Ω) and g ∈ Lq′(·)(Ω) the following inequality holds:

∫

Ω

|fg|dx ≤ 2‖f‖q(·),Ω‖g‖q′(·),Ω. (2.11)

Lemma 4. Let p(x) is a measurable function such that 1 < p− ≤ p(x) ≤ p+ ≤

2. Suppose that Du,Dv ∈ Lp(·)(Ω) and ‖Du‖p(·),Ω + ‖Dv‖p(·),Ω 6= 0. Then

∫

Ω

(

|Du|
p(x)−2

Du− |Dv|
p(x)−2

Dv
)

· (Du−Dv) dx

> (p− − 1)













∫

Ω
|Du−Dv|p(x)dx

2

∥

∥

∥

∥

(|Du|p(·) + |Dv|p(·))
2−p(·)

2

∥

∥

∥

∥

2
2−p(·)

,Ω













λ

, (2.12)

where λ ∈ { 2
p−

, 2
p+ }.

Remark 1. If 2 ≤ p− ≤ p+ < ∞, using (i) of Lemma 2, one has

∫

Ω

(

|Du|
p(x)−2

Du− |Dv|
p(x)−2

Dv
)

· (Du−Dv) dx >
1

2p+−1

∫

Ω

|Du −Dv|p(x)dx.

3. The Existence of Weak Solution

3.1. The Regularized Problem and Auxiliary Results

In this subsection, we employ the regularization method and obtain some

auxiliary results to prove the existence of weak solution to the problem (1.1).

Now we consider the following regularized problem:



















∂u

∂t
= umdiv

(

|Du|p(x)−2Du
)

in ΩT ,

u(x, t) = ε on Γ, (3.13)

u(x, 0) = u0(x) + ε in Ω,

where u0 ∈ L∞(Ω) and u0 ≥ 0.
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Definition 2. A function u(x, t) is called a weak solution of regularized problem

(3.13) provided that

• u ∈ U (ΩT ) ∩ L∞ (ΩT ) ,
∂u

∂t
∈ U ′ (ΩT ) .

• For every ϕ ∈ C1
0 (ΩT ),

∫∫

ΩT

∂u

∂t
ϕdxdt +

∫∫

ΩT

|Du|
p(x)−2

Du ·D (umϕ)dxdt = 0. (3.14)

• The following equations hold in the sense of trace:

u(x, t) = ε on Γ, (3.15)

u(x, 0) = u0(x) + ε in Ω. (3.16)

The regularized problem (3.13) is still in non-divergent. Through nonlinear

transformation, we can transform it into a divergent diffusion equation and

obtain the following three propositions (The proof is in the appendix).

Proposition 1. Assume that m > 0 and p(x) is log-Hölder continuous which

satisfies (2.6), u0 ∈ L∞(Ω) and u0 ≥ 0, then the problem (3.13) admits a weak

solution.

Denote the solution of the regularized problem (3.13) as uε with the param-

eter ε.

Proposition 2. Let the conditions in Proposition 1 be fulfilled, and assume

0 < ε1 ≤ ε2, then we have uε1 ≤ uε2 .

Proposition 3. Let the conditions in Proposition 1 be fulfilled, and assume

0 ≤ u0 ∈ L∞(Ω) ∩W
1,q(·)
0 (Ω). Then

∫∫

ΩT

u−m
ε

(

∂uε

∂t

)2

dxdt ≤ C, (3.17)

ess sup
t∈(0,T )

∫

Ω

1

p(x)
|Duε(x, t)|

p(x)
dx ≤ C, (3.18)

0 < ε ≤ ess inf
(x,t)∈ΩT

uε ≤ ess sup
(x,t)∈ΩT

uε ≤ ess sup
x∈Ω

u0 + ε ≤ C, (3.19)

where C is a constant independent of ε and T .
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3.2. The Existence of the Weak Solution for the Problem (1.1)

In this subsection, we devote to prove the existence of weak solutions to

the equation. For 1 ≤ m < 2, we can get that there is a subsequence un of

{uε} converges to u in Lp(x)(ΩT ). Although this result cannot be obtained for

the case m ≥ 2, as an alternative, we obtain that um−1
n |Dun|

p(x) converges to

um−1|Du|p(x) in L1(ΩT ). That implies there is a subsequence which satisfies

u
m−1
p(x)
n Dun converges to u

m−1
p(x) Du in Lp(x)(ΩT ).

Proof of Theorem 1:

Based on the estimates of Proposition 3, we can extract from {uε}, a subse-

quence (labeled {un}) such that

un → u in Lr(ΩT ), r > 0 and a.e. in ΩT , (3.20)

∂un

∂t
⇀

∂u

∂t
in L2(ΩT ), (3.21)

Dun ⇀ Du in Lp(·)(ΩT ). (3.22)

Notice that

∫∫

ΩT

∂un

∂t
φdxdt+

∫∫

ΩT

|Dun|
p(x)−2Dun ·D (um

n φ)dxdt = 0, (3.23)

for any φ(x, t) ∈ C1
0 (ΩT ) . Since C

1
0 (ΩT ) is dense in Lp−

(0, T ;V0(Ω)), we choose

φ(x, t) = u−k
n (un − εn − u) , 1 ≤ k.

Then we have

∫∫

ΩT

∂un

∂t
u−k
n (un − εn − u)dxdt

+

∫∫

ΩT

|Dun|
p(x)−2Dun ·D

(

um−k
n (un − εn − u)

)

dxdt = 0. (3.24)

For the case 1 ≤ m < 2. We choose k = m, note that

∫∫

ΩT

∂un

∂t
u−m
n (un − εn − u)dxdt

=

∫∫

ΩT

εn
∂un

∂t
u−m
n dxdt+

∫∫

ΩT

∂un

∂t
u−m
n (un − u)dxdt

=:I + II.

8



Proposition 2 implies that uε converges to u monotonically. We have

|I| 6

(

∫∫

ΩT

u−m
n

(

∂un

∂t

)2

dxdt

)
1
2(∫∫

ΩT

um−2k
n ε2ndxdt

)
1
2

6 Cε
2−m

2
n

(∫∫

ΩT

εmn
um
n

dxdt

)
1
2

,

|II| 6

(

∫∫

ΩT

u−m
n

(

∂un

∂t

)2

dxdt

)
1
2(∫∫

ΩT

(

u
1−m

2
n −

u

u
m
2
n

)

dxdt

)
1
2

.

Using Lebesgue’s dominated convergence theorem, we get

∫∫

ΩT

∂un

∂t
u−m
n (un − εn − u)dxdt → 0, as εn → 0.

Therefore, by (3.24), we have

∫∫

ΩT

|Dun|
p(x)−2Dun ·D (un − u)dxdt → 0, when εn → 0.

With (3.22), we deduce

∫∫

ΩT

(

|Dun|
p(x)−2Dun − |Du|p(x)−2Du

)

·D (un − u)dxdt → 0. (3.25)

Note

Ω1
T := {(x, t) ∈ ΩT | 1 < p(x) < 2} ,

Ω2
T := ΩT \Ω

1
T .

For any fixed x, we have

(

|Dun|
p(x)−2

Dun − |Du|
p(x)−2

Du
)

· (Dun −Du) > 0.

Furthermore,

∫∫

Ω1
T

(

|Dun|
p(x)−2

Dun − |Du|
p(x)−2

Du
)

·D (un − u)dxdt → 0, (3.26)

∫∫

Ω2
T

(

|Dun|
p(x)−2

Dun − |Du|
p(x)−2

Du
)

·D (un − u)dxdt → 0. (3.27)

According to Lemma 4 and (3.26), it follows that

∫∫

Ω1
T

|D (un − u)|p(x)dxdt → 0.
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Similarly, by Remark 1 and (3.27), we have

∫∫

Ω2
T

|D (un − u)|
p(x)

dxdt → 0.

Therefore, we obtain

∫∫

ΩT

|D (un − u)|
p(x)

dxdt → 0.

which implies that

Dun → Du in Lp(·)(ΩT ). (3.28)

From (3.23), we observe that

∫∫

ΩT

∂un

∂t
φdxdt+

∫∫

ΩT

mum−1
n |Dun|

p(x)
φdxdt

+

∫∫

ΩT

um
n |Dun|

p(x)−2
Dun ·Dφdxdt = 0.

Combining with (3.20), (3.21), (3.28) and using Lebesgue’s dominated conver-

gence theorem, then we have

∫∫

ΩT

∂u

∂t
φdxdt+

∫∫

ΩT

mum−1|Du|
p(x)

φdxdt

+

∫∫

ΩT

um|Du|
p(x)−2

Du ·Dφdxdt = 0.

Considering the limiting process, we have (2.9) and (2.10) in the sense of trace.

For the case m ≥ 2. Choose k = 1 in (3.24), similar to the case 1 ≤ m < 2,

we get

∫∫

ΩT

∂un

∂t
u−1
n (un − εn − u)dxdt → 0, when εn → 0.

Thus,

∫∫

ΩT

|Dun|
p(x)−2Dun ·D

(

um−1
n (un − u)

)

dxdt → 0, when εn → 0.

Then

∫∫

ΩT

(m− 1)um−2
n (un − εn − u)|Dun|

p(x)dxdt+

∫∫

ΩT

um−1
n |Dun|

p(x)−2Dun ·D(un − u)dxdt → 0, when εn → 0. (3.29)
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Since un ∈ L∞(Ω), |Dun| ∈ Lp(·)(Ω) and (3.20), we have

um−1
n |Du|p(x)−2Du → um−1|Du|p(x)−2Du in Lp′(x)(ΩT ),

Dun ⇀ Du in Lp(x)(ΩT ).

Thus,

∫∫

ΩT

um−1
n |Du|p(x)−2Du ·D(un − u)dxdt → 0, when εn → 0. (3.30)

Combining with (3.29) and (3.30), we get

∫∫

ΩT

um−1
n

(

|Dun|
p(x)−2Dun − |Du|p(x)−2Du

)

·D(un − u)dxdt+

∫∫

ΩT

(m− 1)um−2
n (un − εn − u)|Dun|

p(x)dxdt → 0, when εn → 0.

Considering that

∫∫

ΩT

um−1
n

(

|Dun|
p(x)−2Dun − |Du|p(x)−2Du

)

·D(un − u)dxdt ≥ 0,

∫∫

ΩT

(m− 1)um−2
n (un − u)|Dun|

p(x)dxdt ≥ 0,

εn

∫∫

ΩT

(m− 1)um−2
n |Dun|

p(x)dxdt → 0, when εn → 0.

Therefore,

lim
εn→0+

∫∫

ΩT

um−1
n

(

|Dun|
p(x)−2Dun − |Du|p(x)−2Du

)

·D(un − u)dxdt = 0,

(3.31)

lim
εn→0+

∫∫

ΩT

(m− 1)um−2
n (un − u)|Dun|

p(x)dxdt = 0. (3.32)

According to Proposition 2 and (3.31), we have

lim
εn→0+

∫∫

ΩT

um−1
(

|Dun|
p(x)−2Dun − |Du|p(x)−2Du

)

·D(un − u)dxdt = 0.

Thus, by Lemma 4 and Remark 1, it follows that

u
m−1
p(x) Dun → u

m−1
p(x) Du in Lp(x)(ΩT ),

11



which implies that (for a subsequence of {un} if necessary, still labeled {un})

um−1|Dun|
p(x) → um−1|Du|p(x) in L1(ΩT ), (3.33)

u
m−1
p′(x) |Dun|

p(x)−2Dun → u
m−1
p′(x) |Du|p(x)−2Du in Lp′(·)(ΩT ). (3.34)

We claim that

um−1
n |Dun|

p(x) → um−1|Du|p(x) in L1(ΩT ), (3.35)

um
n |Dun|

p(x)−2Dun → um|Du|p(x)−2Du in L1(ΩT ). (3.36)

Since

∫∫

ΩT

∣

∣

∣um−1
n |Dun|

p(x) − um−1|Du|p(x)
∣

∣

∣dxdt

=

∫∫

ΩT

(um−1
n − um−1)|Dun|

p(x)dxdt+

∫∫

ΩT

∣

∣

∣um−1|Dun|
p(x) − um−1|Du|p(x)

∣

∣

∣dxdt

=:A1 +A2.

By (3.32) and the Lagrange’s mean value theorem, there exists u ≤ ξ ≤ un

satisfying

A1 =

∫∫

ΩT

(m− 1)(un − u)ξm−2|Dun|
p(x)dxdt

≤

∫∫

ΩT

(m− 1)(un − u)um−2
n |Dun|

p(x)dxdt → 0.

By (3.33), one has A2 → 0. Thus, we conclude (3.35).

On the other hand, since

∫∫

ΩT

∣

∣

∣um
n |Dun|

p(x)−2Dun − um|Du|p(x)−2Du
∣

∣

∣dxdt

≤

∫∫

ΩT

(um
n − um)|Dun|

p(x)−1dxdt+

∫∫

ΩT

um
∣

∣

∣
|Dun|

p(x)−2Dun − |Du|p(x)−2Du
∣

∣

∣
dxdt

=:B1 +B2.

By the generalized Hölder’s inequality, it follows that

B1 ≤2
∥

∥

∥|Dun|
p(x)−1

∥

∥

∥

Lp′(x)(Ω)
· ‖um

n − um‖Lp(x)(Ω)

≤C‖un − u‖Lp(x)(Ω) → 0.
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By (3.33) and the continue embedding of Lp′(·)(Ω) ⊂ L1(Ω), one has

u
m−1
p′(x)
n |Dun|

p(x)−2Dun → u
m−1
p′(x) |Du|p(x)−2Du in L1(ΩT ),

then

B2 =

∫∫

ΩT

u1+m−1
p(x) u

m−1
p′(x)

∣

∣

∣
|Dun|

p(x)−2Dun − |Du|p(x)−2Du
∣

∣

∣
dxdt

≤C

∫∫

ΩT

∣

∣

∣u
m−1
p′(x) |Dun|

p(x)−2Dun − u
m−1
p′(x) |Du|p(x)−2Du

∣

∣

∣dxdt → 0.

Therefore, we conclude (3.36).

Letting εn → 0, combining (3.21), (3.35) and (3.36), we arrive at

∫∫

ΩT

∂u

∂t
φdxdt+

∫∫

ΩT

mum−1|Du|
p(x)

φdxdt

+

∫∫

ΩT

um|Du|
p(x)−2

Du ·Dφdxdt = 0.

Considering the limiting process, we have (2.9) and (2.10) in the sense of trace.�

4. The Non-expansion of Support of the Solution

For the casem ≥ 1, the solution has a localization property of non-expansion

of the support. For a function f : Ω → R+ ∪ {0}, we denote by F the set

{x ∈ Ω|f(x) > 0} and define

supp f :=

{

x ∈ F

∣

∣

∣

∣

lim
r→0

µ (F ∩Br(x))

µ (Br(x))
> 0

}

,

where Br(x) denotes {z | |z − x| 6 r }.

Theorem 2. Let u be a weak solution of (1.1) with supp u0 $ Ω, u0 ≥ 0 and

m ≥ 1. Then suppu(t) ⊂ suppu0 a.e. in (0, T ].

Proof of Theorem 2. Let θ : Ω → R, which satisfies the conditions

supp θ ⊂ Ω\ supp u0, (4.37)

θ ∈ W 1,∞
0 (Ω) . (4.38)
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For example, we can take θ(x) = min

{

1

σ
dist (x, suppu0 ∪ ∂Ω) , 1

}

, σ 6 1.

Observe that (4.37) implies θ · u0 ≡ 0 on Ω. Taking φ := θ
u+ε

as a test function

in (2.8), we obtain

∫∫

Ωt

∂u

∂t

θ

u+ ε
dxdt+

∫∫

Ωt

|Du|
p(x)−2

Du ·D

(

um θ

u+ ε

)

dxdt = 0.

and we calculate

∫

Ω

ln (u(t) + ε) θdx−

∫

Ω

ln (u0 + ε) θdx

+

∫∫

Ωt

θ|Du|
p(x)

·
(m− 1)um + εmum−1

(u+ ε)
2 dxdt

=

∫∫

Ωt

um

u+ ε
|Du|

p(x)−2
Du ·Dθdxdt.

According to
∫

Ω

χ{supp θ} (ln (u(t) + ε)− ln (ε)) θdx 6 C,

for every δ sufficiently small, we have

∫

Ω

χ{u(x,t)>δ}∩{θ=1} (ln (u(t) + ε)− ln (ε))dx 6 C,

where C is independent of ε. We therefore conclude that

measure{(x, t) ∈ {θ = 1} × {t} |u(x, t) > δ } = 0, for a.e. t ∈ (0, T ),

which implies the claim. �

Remark 2. If 0 < m < 1, Theorem 2 no longer holds in general. For example,

p(x) ≡ 2, the problem (1.1) has a Barenblatt solution in the following form:

Bm(x, t) = (t+ t0)
−γ

((

1−
mγ

2N

|x|
2

(t+ t0)
1−mγ

)

+

)
1
m

,

where γ = N
mN+2−2m , N denotes the dimension of the spatial space. By calcu-

lation, one has

Bm
m∆Bm = −

γ

t+ t0
Bm(x, t) +

γ(1−mγ)

2N

|x|2

(t+ t0)
2B

1−m
m (x, t) =

∂Bm

∂t
.

We observe that supp u0 $ supp u(t) for t > 0.
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Appendix A. Proof of Lemmas

Proof of Lemma 2: If 2 ≤ p < ∞, by the rearrangement inequality, we

have

(

|ξ|
p−2

ξ − |η|
p−2

η
)

· (ξ − η)

=|ξ|
p
+ |η|

p
−
(

|ξ|
p−2

+ |η|
p−2
)

ξ · η

>

(

|ξ|p−2 + |η|p−2
)

·
|ξ|2 + |η|2

2
−
(

|ξ|p−2 + |η|p−2
)

ξ · η

=
1

2

(

|ξ|
p−2

+ |η|
p−2
)

|ξ − η|
2
. (A.1)

For the case 2 ≤ p < 3, one has

|ξ|
p−2

+ |η|
p−2

> (|ξ|+ |η|)
p−2

> |ξ − η|
p−2

. (A.2)

For the case 3 ≤ p, by the convexity of | · |p−2, one has

1

2
|ξ|

p−2
+

1

2
|η|

p−2
>

∣

∣

∣

∣

ξ − η

2

∣

∣

∣

∣

p−2

. (A.3)

As a consequence of (A.1), (A.2) and (A.3), we obtain (i).

If 1 ≤ p < 2. Assume that ∀ θ ∈ [0, 1], θξ + (1 − θ)η 6= 0. Using Cauchy’s

mean value theorem, we have

(

|ξ|
p−2

ξ − |η|
p−2

η
)

· (ξ − η) =

∫ 1

0

(ξ − η,A(s)(ξ − η))ds, (A.4)

where

A(s) = (aij(s))n×n
,

aij(s) = |x|
p−2

(

δij + (p− 2)
xixj

|x|2

)

,

x = (xi) = η + s(ξ − η) ∈ Rn,

and δij is Kronecker delta function.
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On the other hand, for any z ∈ Rn, it follows that

(z, A(s)z)

=|x|p−2

(

|z|2 + (p− 2)
|x · z|2

|x|2

)

>|x|
p−2

(

|z|2 + (p− 2)
(|x||z|)2

|x|2

)

=(p− 1)|x|
p−2

|z|2. (A.5)

Then, by the convexity of | · |p, we get

|x|
p
6 s|ξ|

p
+ (1− s)|η|

p
6 |ξ|

p
+ |η|

p
. (A.6)

Thus, by (A.4), (A.5) and (A.6), we obtain

(

|ξ|
p−2

ξ − |η|
p−2

η
)

· (ξ − η) ≥ (p− 1)(|ξ|
p
+ |η|

p
)

p−2
p |ξ − η|

2
. (A.7)

If 1 ≤ p < 2, ∃ θ ∈ [0, 1] such that θξ + (1 − θ)η = 0, we shall only prove

(kp−1 − 1)(k − 1) > (p− 1)(k − 1)2(kp + 1)
p−2
p , ∀k > 0. (A.8)

The inequality (A.8) is based on similar arguments with (A.7). Collecting all

these facts, we complete the proof of (ii). �

Proof of Lemma 3 : Let us denote ‖f‖q(·),Ω = λ, ‖g‖q′(·),Ω = µ and

assume that λµ 6= 0. By Young’s inequality, one has for a.e. x ∈ Ω,

|f(x)g(x)|

=λµ

∣

∣

∣

∣

f(x)

λ

∣

∣

∣

∣

∣

∣

∣

∣

g(x)

µ

∣

∣

∣

∣

6λµ

(

1

q(x)

∣

∣

∣

∣

f(x)

λ

∣

∣

∣

∣

q(x)

+
1

q′(x)

∣

∣

∣

∣

g(x)

µ

∣

∣

∣

∣

q′(x)
)

6λµ

(

∣

∣

∣

∣

f(x)

λ

∣

∣

∣

∣

q(x)

+

∣

∣

∣

∣

g(x)

µ

∣

∣

∣

∣

q′(x)
)

. (A.9)

On the other hand, by the definition of Luxemburg norm and monotone con-

vergence theorem, one has

̺q(·)(
f

λ
) 6 1, ̺q′(·)(

g

µ
) 6 1. (A.10)
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Integrating (A.9) over Ω and applying (A.10), we have

∫

Ω

|f(x)g(x)|dx

6λµ

(

̺q(·)(
f

λ
) + ̺q′(·)(

g

µ
)

)

62‖f‖q(·),Ω‖g‖q′(·),Ω.

In the case λµ = 0, the inequality is trivial. �

Proof of Lemma 4: According to (ii) of Lemma 2, we have

∫

Ω

(

|u|
p(x)−2

u− |v|
p(x)−2

v
)

· (u− v) dx

>(p− − 1)

∫

Ω

|u− v|
2
· (|u|p(x) + |v|p(x))

p(x)−2
p(x) dx. (A.11)

On the other hands, according to Lemma 3, we obtain

∫

Ω

|u− v|
p(x)

dx ·

(

2

∥

∥

∥

∥

(|u|p(·) + |v|p(·))
2−p(·)

2

∥

∥

∥

∥

2
2−p(·)

,Ω

)−1

6

∥

∥

∥

∥

|u − v|p(·)(|u|p(·) + |v|p(·))
p(·)−2

2

∥

∥

∥

∥

2
p(·)

,Ω

. (A.12)

Combining (A.11), (A.12) and Lemma 1, the conclusion follows. �

Appendix B. Weak Solution of Regularized Problem

In order to obtain the weak solution of regularized problem, we discuss the

conditions in three cases.

• For the case 0 < m < 1, let

v = Φ(u) =
u1−m

1−m
,

u = Ψ(v) = ((1−m)v)
1

1−m .

• For the case m > 1, let

v = Φ(u) =
u1−m

m− 1
,

u = Ψ(v) = ((m− 1)v)
1

1−m .
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• For the case m = 1, let

v = Φ(u) = lnu,

u = Ψ(v) = ev.

Then the problem (3.13) is translated into parabolic equations in divergence

form as follows:


















vt = div
(

|Ψ′(v)|
p(x)−1

|Dv|
p(x)−2

Dv
)

in ΩT ,

v(x, t) = Φ(ε) on Γ, (B.1)

v(x, 0) = Φ(u0 + ε) in Ω.

Definition 3. A function v(x, t) is called a weak solution of parabolic problem

(B.1) provided that

• v ∈ U (ΩT ) ∩ L∞ (ΩT ) , vt ∈ U ′ (ΩT ) .

• For every ϕ ∈ C1
0 (ΩT ),

∫∫

ΩT

vtϕdxdt +

∫∫

ΩT

|Ψ′(v)|
p(x)−1

|Dv|p(x)−2Dv ·Dϕdxdt = 0. (B.2)

• The following equations hold in the sense of trace:

v(x, t) = Φ(ε) on Γ,

v(x, 0) = Φ(u0 + ε) in Ω.

Denote

K = ess sup
x∈Ω

u0(x),

Aε,K = max {εm,min {|Ψ′(v)|, (K + ε)m}} .

Then we consider the regular equations as follows:



















vt = div
(

A
p(x)−1
ε,K |Dv|p(x)−2Dv

)

, in ΩT ,

v(x, t) = Φ(ε) on Γ, (B.3)

v(x, 0) = Φ(u0 + ε) in Ω.
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Definition 4. A function v(x, t) is called a weak solution of regularized problem

(B.3) provided that

• v ∈ U (ΩT ) ∩ L∞ (ΩT ) , vt ∈ U ′ (ΩT ) .

• For every ϕ ∈ C1
0 (ΩT ),

∫∫

ΩT

vtϕdxdt +

∫∫

ΩT

A
p(x)−1
ε,K |Dv|

p(x)−2
Dv ·Dϕdxdt = 0. (B.4)

• The following equations hold in the sense of trace:

v(x, t) = Φ(ε) on Γ,

v(x, 0) = Φ(u0 + ε) in Ω.

Remark 3. We consider the equation of w(x, t) = v(x, t)−Φ(ε), then w(x, t) =

0, (x, t) ∈ Γ. By virtue of [19, Theorem 4.1], there exists a weak solution w(x, t).

So the regular problem (B.3) admits a weak solution.

Proposition 4. For the case 0 < m ≤ 1, the weak solution of the regular

problem (B.3) satisfies

Φ (ε) 6 v(x, t) 6 Φ (K + ε) .

For the case m > 1, the weak solution of the regular problem (B.3) satisfies

0 < Φ (K + ε) 6 v(x, t) 6 Φ (ε) .

Proof : For the case 0 < m ≤ 1, multiplying the equation (B.3) by (v −M)+,

and integrating over Ωs, we have

1

2

∫∫

Ωs

∂

∂t
(v −M)2+ dxdt = −

∫∫

Ωs

A
p(x)−1
ε,K

∣

∣D(v −M)+
∣

∣

p(x)
dxdt 6 0,

where M > 0 is a constant which will be determined later.

Therefore,

∫

Ω

(v(x, s)−M)
2
+dx 6

∫

Ω

(v(x, 0)−M)
2
+dx.
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Due to v(x, 0) ≤ Φ(K + ε) and the arbitrariness of s, choosing M = Φ(K + ε),

we have v(x, t) 6 Φ (K + ε) a.e. in ΩT . Similarly multiplying the equation

(B.3) by (v −N)−, choosing N = Φ(ε), we have Φ (ε) 6 v(x, t).

In a similar way, we can get the conclusion for the case 1 < m < 2. �

Based on Proposition 4, we know that 0 < εm 6 |Ψ′(v)| 6 (K + ε)
m
. Thus,

the weak solution of (B.3) is the weak solution of (B.1). The following Corollary

follows.

Corollary 1. Assume that m > 0 and p(x) is log-Hölder continuous which

satisfies (2.6), u0 ∈ L∞(Ω) and u0 ≥ 0, the problem (B.1) admits a weak

solution.

Proof of Proposition 1: Since that pi(x) is log-Hölder continuous, and

C1
0 (ΩT ) is dense in U0 (ΩT ), (B.2) holds true also for all ϕ ∈ U0 (ΩT ).

For any φ ∈ C1
0 (ΩT ), taking ϕ = |Ψ′(v)|φ in (B.2), we have

∫∫

ΩT

Ψ(v)tφdxdt+

∫∫

ΩT

|DΨ(v)|
p(x)−2

DΨ(v) ·D (|Ψ′(v)|φ)dxdt = 0.

In fact of um = |Ψ′(v)|, (3.14) holds for u = Ψ(v).

Since

v(x, t) = Φ(ε) on Γ,

v(x, 0) = Φ(u0 + ε) in Ω,

we have (3.15), (3.16) in the sense of trace, then u = Ψ(v) is a weak solution of

(3.13). �

Proof of Proposition 2: Assume u1 and u2 are the solutions of the

equation which correspond to ε1 and ε2 respectively, and ε1 ≤ ε2. Choosing

u−m
1 H (u1 − u2) and u−m

2 H (u1 − u2) as the test function, where

H(t) =







1, t > 0,

0, t 6 0,
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then we have

∫∫

ΩT

(

u−m
1 u1t − u−m

2 u2t

)

H (u1 − u2) dxdt

+

∫∫

ΩT

δ (u1 − u2) ·

n
∑

i=1

(

|Du1|
p(x)−2

Diu1 − |Du2|
p(x)−2

Du2

)

·D (u1 − u2)dxdt = 0.

Now, for the case m 6= 1,

1

1−m

∫

{x∈Ω;u1>u2}

u1−m
1 (x, T )− u1−m

2 (x, T )dx

6
1

1−m

∫

{x∈Ω;u10>u20}

u1−m
1 (x, 0)− u1−m

2 (x, 0)dx = 0.

Likewise, for the case m = 1,

∫

{x∈Ω;u1>u2}

ln(u1 (x, T ))− ln(u2 (x, T ))dx

6

∫

{x∈Ω;u10>u20}

ln(u1 (x, 0))− ln(u2 (x, 0))dx = 0.

Therefore, u1 ≤ u2 a.e. in ΩT . �

Remark 4. In fact, we can complete the proof through a process of approxima-

tion; that is, we can choose Hǫ(t) instead of H(t), where

Hǫ(t) =

∫ t

0

hǫ(s)ds, hǫ(t) =
2

ǫ

(

1−
|s|

ǫ

)

+

,

and then let ǫ → 0.

Appendix C. Proof of Proposition 3

In order to obtain the weak solution of problem (1.1), some apriori estimates

are also necessary.

Assume that 0 ≤ u0 ∈ V(Ω) ∩ L∞(Ω) and pi(x) are log-Hölder continuous

functions which satisfy (2.6).

Due to u = Ψ(v) = Φ−1(v), choosing ε small enough, we know from Propo-

sition 4 that

0 < ε ≤ uε ≤ K + ε ≤ K + 1. (C.1)
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Multiplying the equation (3.13) by u−m
ε

∂uε

∂t
, and integrating over ΩT , we

have

∫∫

ΩT

u−m
ε

(

∂uε

∂t

)2

dxdt+

∫

Ω

1

p(x)
|Duε|

p(x)
dx =

∫

Ω

1

p(x)
|Du0|

p(x)
dx,

then

∫∫

ΩT

u−m
ε

(

∂uε

∂t

)2

dxdt 6 C, (C.2)

∫

Ω

1

p(x)
|Duε|

p(x)
dx 6 C, (C.3)

where C is a constant independent of ε.

According to (C.1) and (C.2), we have

∫∫

ΩT

(

∂uε

∂t

)α

dxdt ≤ (K + 1)m

(

∫∫

ΩT

u−m
ε

(

∂uε

∂t

)2

dxdt

)

≤ C, (C.4)

where C is a constant independent of ε.

Remark 5. Actually, the process above can be completed by apriori estimates

of the regular equations (B.3). Denote the solution of the regular problem (B.3)

as vε. Multiplying the equation (B.3) by
∂Ψ(vε)

∂t
, and integrating over ΩT , we

have

∫∫

ΩT

|Ψ′(vε)|(vεt )
2
dxdt+

∫∫

ΩT

|DΨ(vε)|
p(x)−2

DΨ(vε) ·
∂

∂t
(DΨ(vε))dxdt = 0.

Therefore,

∫∫

ΩT

|Ψ′(vε)|(vεt )
2
dxdt+

∫

Ω

1

p(x)
|DΨ(vε)|

p(x)
dx =

∫

Ω

1

p(x)
|Du0|

p(x)
dx.

Then (C.2)–(C.4) follows.
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