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Abstract

For an oriented graph D, the inversion of X ⊆ V (D) in D is the digraph obtained

from D by reversing the direction of all arcs with both ends in X. The inversion number

of D, denoted by inv(D), is the minimum number of inversions needed to transform D

into an acyclic digraph. In this paper, we first show that inv(
−→
C3 ⇒ D) = inv(D) + 1 for

any oriented graph D with even inversion number inv(D), where the dijoin
−→
C3 ⇒ D is

the oriented graph obtained from the disjoint union of
−→
C3 and D by adding all arcs from

−→
C3 to D. Thus we disprove the conjecture of Aubian el at. [2] and the conjecture of Alon

el at. [1]. We also study the blow-up graph which is an oriented graph obtained from a

tournament by replacing all vertices into oriented graphs. We construct a tournament T

with order n and inv(T ) = n
3 + 1 using blow-up graphs.

Keywords: inversion number; tournament; oriented graph; dijoin; blow-up graph.

1 Introduction

In this paper we only consider digraphs without loops, parallel edges and 2-cycles. In

the following content, we will use digraph and oriented graph interchangeably. We denote by

V (D) and A(D) the vertex set and the arc set of a digraph D, respectively. The subdigraph

of D induced by a subset X ⊆ V (D) is denoted by D 〈X〉. The inversion of X in D is the

digraph obtained from D by reversing all arcs in A(D 〈X〉), which we denote by Inv(D;X).

If (Xi)i∈I is a family of subsets of V (D), then Inv(D; (Xi)i∈I) is the digraph obtained from D

by inverting Xi one after another. Note that the ordering of the inversions doesn’t matter.

We say (Xi)i∈I is a decycling family if Inv(D; (Xi)i∈I) is acyclic. Furthermore, if |I| = k, we

say (Xi)i∈I is a k-decycling family. The inversion number of D is the minimum cardinality
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of a decycling family, which we denote by inv(D). For a positive integer n, denote inv(n) =

max{inv(D)|D oriented graph of order n}.

The inversion problem was first introduced by Belkhechine et al. ([4] [5]). They mainly

concerned about inv(n). Recently, Bang-Jensen et al. [3], Alon el at. [1] and Aubian el at. [2]

have obtained many results regarding all aspects of the problem.

It is natural to consider the inversion number under some graph operations. For digraphs

L and R, the dijoin L ⇒ R from L to R is the digraph composed by disjoint union of L and

R, with an edge uv for all u ∈ V (L) and v ∈ V (R). Bang-Jensen et al. [3] showed that, for two

strongly connected oriented graphs L and R such that inv(L), inv(R) ≥ 2, inv(L ⇒ R) ≥ 4.

They also gave the following conjecture.

Conjecture 1.1 (Bang-Jensen et al. [3]) For oriented graphs L and R, we have inv(L ⇒

R) = inv(L) + inv(R).

This is called “dijoin conjecture”, which is an important cornerstone of inversion number

problem. Conjecture 1.1 is trivial when one of inv(L) and inv(R) is zero. Bang-Jensen et al.

[3] showed it is true when inv(L) + inv(R) ≤ 3, and Alon el at. [1] showed it is true when

inv(L) = inv(R) = 2. However, Alon el at. [1] and Aubian el at. [2] independently found

Conjecture 1.1 is not correct in general.

Note that the dijoin operation is not a symmetric operation, which means L ⇒ R and

R ⇒ L are different in general. However, Conjecture 1.1 is symmetric in some sense, since the

graphs obtained by inverting the whole vertex set give the corresponding examples in the other

direction. Actually, we have inv(D) = inv(Inv(D;V (D))).

To disprove Conjecture 1.1, Aubian el at. [2] gave an explicit construction.

Theorem 1.2 (Aubian el at. [2]) For every odd integer k ≥ 3, there is a tournament Tk

with inv(Tk) = k such that inv(Tk ⇒ R) ≤ k + inv(R) − 1 for every oriented graph R with

inv(R) ≥ 1.

They also conjectured that the same statement also holds for every even integer k ≥ 4.

Conjecture 1.3 (Aubian el at. [2]) For any k ≥ 3, there is a tournament Tk with inv(Tk) =

k such that inv(Tk ⇒ R) < k + inv(R) for all R with inv(R) ≥ 1.

Independently and almost simutaneously, Alon el at. [1] exhibited a tournament R with 9

vertices such that inv(R) = inv(
−→
C3 ⇒ R) = 3, where

−→
C3 is the directed cycle on three vertices.

They also give the following conjecture, which is similar with Conjecture 1.3.

Conjecture 1.4 (Alon el at. [1]) For all l, r ∈ N with l ≥ 3 or r ≥ 3, there exists oriented

graphs L and R with inv(L) = l and inv(R) = r, but inv(L ⇒ R) < l + r.
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In this paper, we prove the following theorem and then disprove both Conjecture 1.3 and

Conjecture 1.4. It is quite surprising and tells us that Conjecture 1.1 is still correct in some

cases.

Theorem 1.5 Let k ≥ 2 be an even integer. For all oriented graphs L and R with inv(L) = 1

and inv(R) = k, we have inv(L ⇒ R) = inv(R ⇒ L) = inv(L) + inv(R) = 1 + k.

In conclusion, here are the current results for “dijoin conjecture”. For oriented graphs L

and R, if inv(L) = l and inv(R) = r, we have inv(L ⇒ R) = l + r for

(l, r) ∈ {(0, 0), (0, k), (k, 0), (1, 1), (1, 2k), (2k, 1), (2, 2)},

where k is a positive integer. Also, there are counterexamples with inv(L ⇒ R) < l + r when

either l or r is an odd number at least 3 and lr 6= 0. The remaining cases are still open, which

are the cases when l and r are both positive even numbers except for l = r = 2.

On the other hand, a natural generalization of dijoin operation is so-called k-join, which

is a graph obtained by dijoin k digraphs one after another. Additionally, here is a further

generalization.

Definition 1.6 (blow-up graph) Let H be a digraph with |V (H)| = n. Label the vertices in

H as v1, v2, . . . , vn. For pairwise vertex disjoint digraphs D1, . . . , Dn, define the blow-up graph

H [D1, D2, . . . , Dn] is the digraph whose vertex set and arc set are

V (H [D1, D2, · · · , Dn]) =
n
⋃

i=1

V (Di),

A(H [D1, D2, · · · , Dn]) =
⋃

vivj∈A(H)

{xy|x ∈ V (Di), y ∈ V (Dj)} ∪
n
⋃

k=1

A(Dk).

Moreover, if Di = D are all the same, we simply denote H [D1, D2, . . . , Dn] by H [D]n. If

V (H) = {x, y} and A(H) = {xy}, it gives dijoin H [D1, D2] = D1 ⇒ D2. Also, k-join comes

from H = TTk, which is a tournament with order k and arc set A(TTk) = {vivj |i < j}, then

we denote TTk[D1, D2, . . . , Dk] by [D1, D2, . . . , Dk] and denote TTk[D]k by [D]k.

To prove Theorem 1.5, we start with the case when L =
−→
C3.

Theorem 1.7 Let k ≥ 2 be an even integer and D be an oriented graph with inv(D) = k.

Then inv(
−→
C3 ⇒ D) = inv(

−→
C3) + inv(D) = 1 + k.

The main technique to prove Theorem 1.7 is to investigate the rank of some related matrices

over F2. From the same idea, we have some other interesting results. We provide an equivalent

condition when inv(
−→
C3 ⇒ D) = inv(D) = k, and prove the following theorems.

Theorem 1.8 Let D be oriented graph. Then inv(
−→
C3 ⇒ D) = inv(D ⇒

−→
C3).
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Theorem 1.9 inv([
−→
C3,

−→
C3, D]) = inv(

−→
C3 ⇒ D) + 1 for every oriented graph D.

We also have the following generalized result as a corollary. Let [m] = {1, 2, . . . , m}.

Corollary 1.10 Let k ≥ 2 and D1, D2, . . . , Dk be oriented graphs. Assume that there is j ∈ [k]

such that inv(Dj) ≥ 1 and inv(Di) = 1 for all i ∈ [k] \ {j}. Then

inv([D1, D2, . . . , Dk]) =

{

∑k

i=1 inv(Di)− 1 if inv(
−→
C3 ⇒ Dj) = inv(Dj),

∑k

i=1 inv(Di) otherwise.

Theorem 1.5 is actually a special case of this corollary.

Proof of Theorem 1.5. Since inv(R) = k is even, we have inv(
−→
C3 ⇒ R) = inv(R) + 1 by

Theorem 1.7. From Corollary 1.10, we are done. �

Theorem 1.8 seems very reasonable but it is non-trivial. In fact, we believe that the

direction of the dijoin operation does not affect the inversion number in general.

Conjecture 1.11 For every oriented graphs L and R, inv(L ⇒ R) = inv(R ⇒ L).

Basing on Theorems 1.9, we also give the following conjecture.

Conjecture 1.12 For tournaments T1, T2 with inv(T1) ≥ 2, we have inv(T1 ⇒ T2) > inv(T2).

There are lots of results about inv(n). Belkhechine et al. [5] first proved that n−1
2

− log n ≤

inv(n) ≤ n− 3 for all integer n ≥ 4.

Bang-Jensen et al. [3] found that the constant term in the upper bound can be improved

very slightly. Alon el at. [1] greatly improved the bounds of inv(n), showed that inv(n) =

(1 + o(1))n. As the proof of it relies on probabilistic methods, there is no explicit construction

for a digraph with large inversion number close to inv(n). The largest one found is [
−→
C3]n

3
whose

inversion number is n
3
.

Let Qn be the tournament obtained from the transitive tournament by reversing the arcs

of its unique directed hamiltonian path (v1, v2, . . . , vn). Belkhechine el at. [5] conjectured

that inv(Qn) = ⌊n−1
2
⌋. It means that Qn is possibly a specific example with much larger

inversion number. It is obvious that inv(Qn) ≤ ⌊n−1
2
⌋ since we can give a ⌊n−1

2
⌋-decycling

family Xi = {v2i, v2i+1} for 1 ≤ i ≤ ⌊n−1
2
⌋.

Our another main result of the paper is to give a construction with inversion number

slightly more than n
3
using blow-up graphs.

Theorem 1.13 Let T be a tournament of order n and inv(T ) = 1. Then inv(T [D1, . . . , Dn]) =

n+ 1 for every oriented graphs {Di}1≤i≤n with inv(Di) = 1. Moreover, inv(T [
−→
C3]k) = k + 1.
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We can prove that for oriented graphs Di with inv(Di) = 1 (1 ≤ i ≤ n), the inequality

n ≤ inv(T [D1, D2, . . . , Dn]) ≤ n+ inv(T )

holds. Then for inv(T ) ∈ {0, 1}, we have inv(T [D1, D2, . . . , Dn]) = n + inv(T ) by Theorem

1.13. If inv(T ) /∈ {0, 1}, we have the following result.

Theorem 1.14 Let k ≥ 3 be an odd integer. Then there exists a tournament Tk with inv(Tk) =

k such that

inv(Tk[D1, D2, . . . , Dn]) ≤ n+ k − 1

for every oriented graphs {Di}1≤i≤n with inv(Di) = 1. Here n = |V (Tk)| is the order of Tk.

We have the following conjecture for even case.

Conjecture 1.15 Let k ≥ 2 be an even integer, T be a tournament with inv(T ) = k and

|V (T )| = n. For oriented graphs D1, D2, . . . , Dn with inv(Di) = 1, we have

inv(T [D1, D2, · · · , Dn]) = n+ k.

We detail some of the notation and observations to be used in this paper. If xy ∈ A(D),

we say x dominates y, denoted by x → y. If every vertex of A ⊆ V (D) dominates every vertex

of B ⊆ V (D), then we say A dominates B, denoted by A → B.

Given a tournament T and the result tournament T ′ of T after inverting. We introduce a

sign ‘<’ to express the ordering of vertices in T ′, that is x < y if xy ∈ A(T ′). Then x < y < z

means xy, xz, yz ∈ A(T ′). Let A,B ⊆ V (T ). Denote A < B (resp. A ≤ y) if x < y for every

x ∈ A and y ∈ B (resp. x < y for every x ∈ A with x 6= y). Note that if the result tournament

T ′ is acyclic, then ‘<’ is transitive and gives a total order on V (T ′).

It is common to use vectors in F2 to investigate the inversion problem of graphs. For a

digraph D, a decycling family (Xi)1≤i≤k and a vertex v ∈ V (D), we define the characteristic

vector v ∈ F
k
2 of v in (Xi)1≤i≤k where the i-th element of v is 1 if and only if v ∈ Xi. For

u,v ∈ F
k
2, we write u · v to be the scalar product of u and v over F

k
2. We say a collection

{ui}i∈I is orthonormal if ui ·ui = 1 and ui ·uj = 0 for i 6= j. For uv ∈ A(D), it is obvious that

u · v = 0 if and only if uv ∈ A(Inv(D; (Xi)i∈I)).

When we study the inversion number, we mainly focus on tournaments because of the

following observations.

Observation 1.16 (Bang-Jensen et al. [3]) If D′ is a subdigraph of D, then inv(D′) ≤

inv(D). Actually, if (Xi)i∈I is a decycling family of D, then (Xi ∩ V (D′))i∈I is a decycling

family of D′.

Observation 1.17 (Bang-Jensen et al. [3]) If (Xi)i∈I is a decycling family of an oriented

graph D, then D can be extended to a tournament T such that inv(D) = inv(T ) and (Xi)i∈I is

still a decycling family of T .
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Observation 1.17 shows that we only need to consider tournaments rather than oriented

graphs in lots of questions, and it preserves the decycling family of the original graph.

After finishing the first version of this paper, we notice the independent work by Behague

et al. [6]. They are also working on the inversion number of dijoins and disprove a different

conjecture of Aubian et al. [2]. To our knowledge, their results do not imply any of our results

in this paper.

The rest of this paper is organized as follows. In Section 2 we give proofs of Theorems

1.7 to 1.9. In Section 3 we prove Theorem 1.13 and study the inversion number of the blow-up

graphs.

2 Proofs of Theorems 1.7 to 1.9

In this section we first prove Theorem 1.7.

2.1 Proof of Theorem 1.7

The proof of Theorem 1.7 relies on the ranks of matrices. We prove that the rank of

characteristic vectors of any decycling family of an oriented graph D is no less than inv(D) if

inv(D) is even. We first have the following lemma.

Lemma 2.1 For any odd integer n and every symmetric matrix M ∈ Mn(F2), there is U ∈

Mn(F2) such that U tU = M .

Proof. By induction on n. It is trivial when n = 1. Let M = (mij)1≤i,j≤n be a symmetric

matrix with n ≥ 3. We complete the proof by considering two cases.

Case 1. There exists i such that mii = 1. By interchanging columns and corresponding

rows we assume i = 1.

Case 1.1. There exists j 6= 1 such that the submatrix A =

(

m11 m1j

mj1 mjj

)

is non-singular.

Also assume j = 2.

In this subcase, M =

(

A B

Bt M0

)

. Note that

(

I2 0

−BtA−1 In−2

)(

A B

Bt M0

)(

I2 −A−1B

0 In−2

)

=

(

A 0

0 M0 − BtA−1B

)

.

Since m11 = 1 and A is non-singular, A =

(

1 1

1 0

)

or

(

1 0

0 1

)

. Obviously, there is U1 ∈ M2(F2)

such that U t
1U1 = A. By induction, there is U2 ∈ Mn−2(F2) such that U t

2U2 = M0 − BtA−1B.

Thus the result holds.

Case 1.2. For every j > 1, Aj =

(

m11 m1j

mj1 mjj

)

is singular.
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In this subcase, Aj =

(

1 1

1 1

)

or

(

1 0

0 0

)

since M is symmetric. By elementary column

transformations and corresponding row transformations we can change all

(

1 1

1 1

)

to

(

1 0

0 0

)

.

Thus we can assume

M =















1 0 0 · · · 0

0 0 m23 . . . m2n

0 m32 0 . . . m3n

...
...

...
. . .

...

0 mn2 mn3 · · · 0















.

Let

C =















1 0 0 · · · 0

0 1 m23 . . . m2n

0 m32 0 . . . m3n

...
...

...
. . .

...

0 mn2 mn3 · · · 0















.

There is V ∈ Mn(F2) such that V tV = C by Case 1.1. Assume V = (α1, α2, . . . , αn). Let

U = (1, α1 + α2, α3, . . . , αn), where 1 is the all-ones vector. Then U ∈ Mn(F2). Note that

1 · 1 = 1, 1 · αi = αi · αi = 0 for i ≥ 3, 1 · αi = αi · αi = 1 for i ≤ 2 and α1 · αi = 0 for i ≥ 2.

Hence U tU = M .

Case 2. mii = 0 holds for every i ∈ [n].

Let

C0 = M +















1 0 0 · · · 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 · · · 0















.

There is U0 ∈ Mn(F2) such that U t
0U0 = C0 by Case 1. Assume U0 = (α′

1, α
′
2, . . . , α

′
n). Let

U = (α′
1 + 1, α′

2, α
′
3, . . . , α

′
n). Note that 1 · 1 = 1 and 1 · α′

i = α′
i · α

′
i = 0 for all 1 ≤ i ≤ n.

Hence M = U tU and we are done. �

Lemma 2.2 For every even integer k and a tournament T with inv(T ) = k, rank(Λ) ≥ k,

where Λ = {u|u ∈ V (T )} is the set of characteristic vectors of a decycling family of T . More-

over, rank(Λ) = k if the decycling family of T is a k-decycling family.

Proof. Suppose for a contradiction that rank(Λ) < k. Then there are k−1 vectors {α1, . . . , αk−1}

⊂ Λ such that u is a linear combination of them for each u ∈ V (T ). Let u =
∑k−1

i=1 λu,iαi and

M ∈ Mk−1(F2) the Gram matrix of {α1, α2, . . . , αk−1}. Then there exists U ∈ Mk−1(F2)

such that M = U tU by Lemma 2.1. Assume U = (β1, β2, . . . , βk−1). Then βi ∈ F
k−1
2 and

βi · βj = αi · αj for any i, j ∈ {1, . . . , k − 1}. We have a new (k − 1)-decycling family given by

7



the characteristic vector

u =

k−1
∑

i=1

λu,iβi

for each u ∈ V (T ), because the scalar products between vertices are fixed. A contradiction

with inv(T ) = k. �

Remark 2.3 The results of Lemma 2.1 only hold when k is even. If k is odd, then k − 2

is odd. By Lemma 2.1, there is U ∈ Mk−2(F2) such that U tU = M . Hence we can prove

rank(Λ) ≥ k − 1 by using the same method.

To prove Theorem 1.7, we give a stronger conclusion as following.

Lemma 2.4 Let D be an oriented graph. If inv(
−→
C3 ⇒ D) = inv(D) = k, then there exists

a k-decycling family of D with the set of characteristic vectors Λ = {z|z ∈ V (D)} such that

rank(Λ) = k − 1.

Proof. Note that inv(D) = k. By Observation 1.17, Lemma 2.2 and Remark 2.3, we can assume

rank(Λ) = k for every k-decycling family of D.

Assume V (
−→
C3) = {u, v, w}. Fix a k-decycling family (Xi)1≤i≤k of

−→
C3 ⇒ D. We extend D

to a tournament T such that
−→
C3 ⇒ T has the same k-decycling family and inv(T ) = inv(D) = k

by Observation 1.17. After the inversions, assume the new ordering of V (
−→
C3 ⇒ T ) is

P < u < Q < v < R < w < S,

where {P,Q,R, S} is a partition of V (T ) with possibly empty set. Comparing with the old

ordering of V (
−→
C3 ⇒ T ), that is

{u, v, w} → P ∪Q ∪ R ∪ S,

we can give the scalar products between u,v,w ∈ F
k
2 and p,q, r, s ∈ F

k
2 as following, where

p ∈ P, q ∈ Q, r ∈ R, s ∈ S.

p · u = 1, q · u = 0, r · u = 0, s · u = 0,

p · v = 1, q · v = 1, r · v = 0, s · v = 0,

p ·w = 1, q ·w = 1, r ·w = 1, s ·w = 0.

(1)

Before the inversions, three arcs of
−→
C3 are either u → v, v → w, w → u or u → w, w → v,

v → u. Then we have either u · v = 0, v · w = 0 and u · w = 1, or u · v = 1, v · w = 1 and

u ·w = 0. In both cases, we have u · (v +w) = 1 and w · (u+ v) = 1. Thus u,v +w,u+ v

are nonzero vectors.

Since inv(T ) = k, Λ = {p|p ∈ P} ∪ {q|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S} is the set

of characteristic vectors of the k-decycling family (Xi ∩ V (T ))1≤i≤k, of T . By assumption,

8



rank(Λ) = k. If P = ∅ (resp. Q = ∅ or R = ∅), then u⊥Λ (resp. (u+ v)⊥Λ or (v +w)⊥Λ), a

contradiction with rank(Λ) = k. Hence we have P , Q and R all are non-empty sets. Note that

the digraph Inv(T ; (Xi∩V (T ))i∈I) is acyclic and the ordering of V (T ) in Inv(T ; (Xi∩V (T ))i∈I)

is P < Q < R < S. Particularly, Inv(T 〈Y 〉 ; (Xi ∩ Y )i∈I) is acyclic for any Y ∈ {P,Q,R, S}.

Now we choose p0 ∈ P, q0 ∈ Q, r0 ∈ R. From (1), it is not difficult to show that {p0,q0, r0}

and {u,v,w} are linear independent. Let Φ = {x ∈ F
k
2|x⊥u,x⊥v,x⊥w}. Then rank(Φ) =

k − 3. For any p ∈ P , we have p + p0 ∈ Φ which implies {p|p ∈ P} ⊂ p0 + Φ. So for

any p ∈ P , we can set p = p0 + φp, where φp ∈ Φ. Similarly, for any q ∈ Q, r ∈ R, we set

q = q0 + φq, r = r0 + φr, where φq, φr ∈ Φ. Note that any vector is a linear combination of

{p0,q0, r0} and a vector in Φ. Assume

u+ v = λ1p0 + λ2q0 + λ3r0 + φ.

Since w · (u+v) = 1,u+v /∈ Φ. Then |{λ1, λ2, λ3}∩ (F2 \{0})| ≥ 1. We consider the following

three cases.

Case 1. λ1 = 1.

In this case, τ := p0 + u+ v is a linear combination of q0, r0 and a vector in Φ. Let

Λ′ = {p+ u+ v|p ∈ P} ∪ {q|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S}.

Then Λ′ is the set of characteristic vectors of a k-family, say (X ′
i)1≤i≤k, of T . Obviously,

rank(Λ′) = k − 1. So we just need to show that (X ′
i)1≤i≤k is a k-decycling family of T , that is

Inv(T ; (X ′
i)i∈I) is acyclic. By comparing Λ and Λ′, we have Inv(T 〈Y 〉 ; (X ′

i ∩ Y )i∈I) is acyclic

for any Y ∈ {Q,R, S} and Q < R < S in Inv(T ; (X ′
i)i∈I).

Since (u + v) · r = (u + v) · s = 0, we have (p + u + v) · x = p · x for all p ∈ P and

x ∈ R ∪ S which implies P < R < S in Inv(T ; (X ′
i)i∈I). Since (u + v) · q = 1, we have

(p+u+ v) · q = p · q+1 for all p ∈ P and q ∈ Q which implies Q < P in Inv(T ; (X ′
i)i∈I). For

any p1, p2 ∈ P , we have

(p1 + u+ v) · (p2 + u+ v) = (p1 · p2) + (u+ v) · (u+ v).

Note that u + v is fixed, so the arcs in Inv(T 〈P 〉 ; (Xi ∩ P )i∈I) are either all inverted or not

which implies Inv(T 〈P 〉 ; (X ′
i ∩ P )i∈I) is acyclic. As a conclusion, Inv(T 〈Y 〉 ; (X ′

i ∩ Y )i∈I) is

acyclic for all Y ∈ {P,Q,R, S} and Q < P < R < S in Inv(T ; (X ′
i)i∈I). Thus (X ′

i)1≤i≤k is a

k-decycling family of T .

Case 2. λ2 = 1.

In this case, τ := q0 + u+ v is a linear combination of p0, r0 and a vector in Φ. Let

Λ′ = {p|p ∈ P} ∪ {q + u+ v|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S}.

Then Λ′ is the set of characteristic vectors of a k-family, say (X ′
i)1≤i≤k, of T . Obviously,

rank(Λ′) = k − 1. Since (u + v) · p = (u + v) · r = (u + v) · s = 0, by the same argument
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as that of Case 1, we have Inv(T 〈Y 〉 ; (X ′
i ∩ Y )i∈I) is acyclic for all Y ∈ {P,Q,R, S} and

P < Q < R < S in Inv(T ; (X ′
i)i∈I). Thus (X

′
i)1≤i≤k is a k-decycling family of T .

Case 3. λ3 = 1.

In this case, τ := r0 + u+ v is a linear combination of p0,q0 and a vector in Φ. Let

Λ′ = {p|p ∈ P} ∪ {q|q ∈ Q} ∪ {r+ u+ v|r ∈ R} ∪ {s|s ∈ S}.

Then Λ′ is the set of characteristic vectors of a k-family, say (X ′
i)1≤i≤k, of T . Obviously,

rank(Λ′) = k − 1. Note that (u + v) · p = (u + v) · s = 0 and (u + v) · q = 1. By the same

argument as that of Case 1, we have Inv(T 〈Y 〉 ; (X ′
i ∩ Y )i∈I) is acyclic for all Y ∈ {P,Q,R, S}

and P < R < Q < S in Inv(T ; (X ′
i)i∈I). Thus (X

′
i)1≤i≤k is a k-decycling family of T . �

Now we are going to prove Theorem 1.7.

Proof of Theorem 1.7. By Observation 1.16, inv(
−→
C3 ⇒ D) ≥ k. As we can invert

−→
C3 and

D respectively to transform
−→
C3 ⇒ D into an acyclic digraph, we have inv(

−→
C3 ⇒ D) ≤ k + 1.

If inv(
−→
C3 ⇒ D) = k, then there exists a k-decycling family of D with the set of characteristic

vectors Λ = {u|u ∈ V (D)} such that rank(Λ) = k − 1 by Lemma 2.4, which contradicts with

Lemma 2.2. Hence we have inv(
−→
C3 ⇒ D) = k + 1 as required. �

2.2 Proofs of Theorems 1.8 to 1.9

We observe that in the proof of Theorem 1.7, we only use the property that the rank of

the characteristic vectors and the inversion number are the same. Hence we consider applying

the conclusion to general cases.

Lemma 2.5 For every even integer n and a symmetric matrix M ∈ Mn(F2), there is U ∈

Mn(F2) such that M = U tU if and only if M has a non-zero diagonal entry or M is a singular

matrix.

Proof. We prove by induction on n. It is trivial when n = 2. Assume M = (mij)1≤i,j≤n with

n ≥ 4. We consider three cases.

Case 1. There exists i ∈ [n] such that mii = 1. By interchanging columns and corre-

sponding rows we assume i = 1. Let M =

(

1 B

Bt M0

)

. Note that

(

1 0

−BtA−1 In−1

)(

1 B

Bt M0

)(

1 −A−1B

0 In−1

)

=

(

1 0

0 M0 − BtB

)

.

Since M0−BtB ∈ Mn−1(F2), by Lemma 2.1, M0 −BtB has a decomposition which implies the

result holds.

Case 2. mii = 0 for every i ∈ [n] and M is a non-singular symmetric matrix. Suppose

there is U ∈ Mn(F2) such that U tU = M . Assume U = (α1, α2, . . . , αn). Since 1 ·αj = αj ·αj =
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mjj = 0, for any j ∈ [n], the vector αj has an even number of 1s. So rank(U) < n which implies

rank(M) ≤ rank(U) < n, a contradiction.

Case 3. mii = 0 for every i ∈ [n], and M is a singular symmetric matrix. Then we

can change the first column and first row to all zeros by elementary column transformations

and corresponding row transformations. Thus we can assume M =

(

0 0

0 M ′

)

. Since M ′ ∈

Mn−1(F2), by Lemma 2.1, M ′ has a decomposition which implies the result holds. �

Lemma 2.6 Let D be an oriented graph. If inv(D) = k ≥ 3, then the following propositions

are equivalent.

(1) inv(
−→
C3 ⇒ D) = k.

(2) k is odd and there exists a k-decycling family of D with the set of characteristic vectors

Λ = {z|z ∈ V (D)} such that Λ ⊂ {x ∈ F
k
2|x⊥1}.

Proof. By Observation 1.17, we assume D is a tournament.

(1) ⇒ (2). Obviously k is odd by Theorem 1.7. By Lemma 2.4, there exists a k-decycling

family of D with the set of characteristic vectors Λ = {z|z ∈ V (D)} such that rank(Λ) = k−1.

Under the fixed decycling family, we claim z ·z = 0 for each z ∈ V (D), then the conclusion

can be deduced since 1 · z = z · z = 0. Suppose there is z1 ∈ V (D) such that z1 · z1 = 1.

Then we can choose z2, z3, . . . , zk−1 such that z1, z2, . . . , zk−1 forms a base of Λ. So for each

z ∈ V (D), we have z =
∑k−1

i=1 λz,izi, where λz,i ∈ F2.

Let M ∈ Mk−1(F2) be the Gram matrix of {z1, z2, . . . , zk−1}. Since z1 · z1 = 1, there

exists U ∈ Mk−1(F2) such that M = U tU by Lemma 2.5. Let U = (z′1, z
′
2, . . . , z

′
k−1). Then

z′i · z
′
j = zi · zj. Now we have a new (k − 1)-decycling family given by the characteristic vector

z =

k−1
∑

i=1

λz,iz
′
i

for each z ∈ V (D), because the scalar products between vertices are fixed. Note that z′i ∈ F
k−1
2

and this contradicts with inv(D) = k.

(2) ⇒ (1). Obviously, inv(
−→
C3 ⇒ D) ≥ inv(D) = k. Let V (

−→
C3) = {u, v, w} and define

u = 0,v = w = 1 ∈ F
k
2. It is easy to check that {u,v,w}∪Λ is the set of characteristic vectors

of a k-decycling family of
−→
C3 ⇒ D which implies inv(

−→
C3 ⇒ D) ≤ k. �

Proof of Theorem 1.8. Let D− be the digraph obtained by reversing all arcs of D. Then D

and D− share the same decycling family and inv(D) = inv(D−).

Assume inv(
−→
C3 ⇒ D) = inv(D) = k. By Lemma 2.6 and the fact that D and D− share the

same decycling family, we have k is odd and there exists a k-decycling family of D− with the

set of characteristic vectors Λ = {z|z ∈ V (D−)} such that Λ ⊂ {x ∈ F
k
2|x⊥1}. By Lemma 2.6
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again, inv(
−→
C3 ⇒ D−) = inv(D−). Since inv(

−→
C3 ⇒ D−) = inv(D ⇒

−→
C3) and inv(D) = inv(D−),

we have inv(D ⇒
−→
C3) = inv(

−→
C3 ⇒ D).

Conversely, assume inv(D ⇒
−→
C3) = inv(

−→
C3 ⇒ D−) = inv(D−). By the same argument as

above, we have inv(
−→
C3 ⇒ D) = inv(D ⇒

−→
C3).

Since inv(
−→
C3 ⇒ D), inv(D ⇒

−→
C3) ∈ {inv(D), inv(D) + 1}, we have inv(

−→
C3 ⇒ D) =

inv(D ⇒
−→
C3). �

Lemma 2.7 Let D be an oriented graph with inv(D) = 1. Then inv(
−→
C3 ⇒ H) = inv(D ⇒ H)

and inv(H ⇒
−→
C3) = inv(H ⇒ D) for every oriented graph H.

Proof. We just show that inv(
−→
C3 ⇒ H) = inv(D ⇒ H) holds for every oriented graph

H . Actually, we have the conclusion in the other direction if we reverse all arcs. Obviously

inv(
−→
C3 ⇒ H), inv(D ⇒ H) ∈ {inv(H), inv(H) + 1}.

If inv(
−→
C3 ⇒ H) = inv(H) + 1, the result holds since

−→
C3 ⇒ H is a subdigraph of D ⇒ H .

If inv(
−→
C3 ⇒ H) = inv(H) = k, then k is odd by Theorem 1.7. By Lemma 2.4, there

exists a k-decycling family of H with the set of characteristic vectors Λ = {z|z ∈ V (H)} such

that rank(Λ) = k − 1. Then we obtain a (k + 1)-decycling family of D ⇒ H with the set of

characteristic vectors Λ′ = {z|z ∈ V (D ⇒ H)} such that rank(Λ′) ≤ k if we invert D and H

respectively. Obviously inv(D ⇒ H) = k or k + 1. If inv(D ⇒ H) = k + 1, rank(Λ′) ≥ k + 1

by Lemma 2.2, a contradiction.

Then inv(D ⇒ H) = k = inv(
−→
C3 ⇒ H) which proves the result. �

Now we are going to prove Theorem 1.9.

Proof of Theorem 1.9. By contradiction. Assume D is a tournament by Observation 1.17.

Suppose inv([
−→
C3,

−→
C3, D]) = inv(

−→
C3 ⇒ D) = k. Then k is odd by Theorem 1.7. By Lemma 2.6,

there exists a k-decycling family (Xi)1≤i≤k of
−→
C3 ⇒ D with the set of characteristic vectors

Λ = {z|z ∈ V (
−→
C3 ⇒ D)} such that Λ ⊂ F where F = {x ∈ F

k
2|x⊥1}. Then rank(F ) = k − 1.

Let Γ = {x ∈ Λ|x ∈ V (D)} be the set of the characteristics vectors of the k-decycling family

(Xi ∩ V (D))1≤i≤k of D. Since inv(D) is either k or k − 1, rank(Γ) ≥ k − 1 by Remark 2.3

and Lemma 2.2. By Remark 2.3 and Λ ⊂ F , rank(Λ) = k − 1. From Γ ⊂ Λ, we have

rank(Γ) = k−1. Assume V (
−→
C3) = {u, v, w}. Under the fixed decycling family, assume the new

ordering of V (
−→
C3 ⇒ D) is

P < u < Q < v < R < w < S,

where P,Q,R, S form a partition of V (D) with possibly empty set. Then Γ = {p|p ∈ P} ∪

{q|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S}. Comparing with the original tournament

{u, v, w} → P ∪Q ∪ R ∪ S,

we can give the scalar products between u,v,w ∈ F
k
2 and p,q, r, s ∈ F

k
2, where p ∈ P, q ∈

12



Q, r ∈ R, s ∈ S. That is

p · u = 1, q · u = 0, r · u = 0, s · u = 0,

p · v = 1, q · v = 1, r · v = 0, s · v = 0,

p ·w = 1, q ·w = 1, r ·w = 1, s ·w = 0.

(2)

By the same argument as the proof in Lemma 2.4, we have u · (v+w) = 1 and w · (u+v) = 1

which implies that u,v +w,u+ v are nonzero vectors.

If P = ∅ (resp. Q = ∅ or R = ∅), then u⊥Γ (resp. (u+v)⊥Γ or (v+w)⊥Γ). Note that u

(resp. u+v or v+w) is linear independent with 1 and Γ ⊂ F . Thus we have rank(Γ) ≤ k−2,

a contradiction with rank(Γ) = k − 1. Hence we have P , Q and R all are non-empty sets.

Now we can choose p0 ∈ P, q0 ∈ Q, r0 ∈ R. From (2), it is not difficult to show that

{p0,q0, r0} and {u,v,w} are linear independent. Let Φ = {x ∈ F |x⊥u,x⊥v,x⊥w}. Since

rank({1,u,v,w}) = 4, rank(Φ) = k − 4. By the same argument as the proof in Lemma 2.4,

for any p ∈ P (resp. q ∈ Q or r ∈ R), there is φp ∈ Φ ( resp. φq ∈ Φ or φr ∈ Φ) such that

p = p0 + φp (resp. q = q0 + φq or r = r0 + φr). Note that any vector is a linear combination

of {p0,q0, r0} and a vector in Φ. Assume

u+ v = λ1p0 + λ2q0 + λ3r0 + φ.

Since w · (u+ v) = 1,u+ v /∈ Φ. Then |{λ1, λ2, λ3} ∩ (F2 \ {0})| ≥ 1. Let

Γ′ =







{p+ u+ v|p ∈ P} ∪ {q|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S} if λ1 = 1,

{p|p ∈ P} ∪ {q+ u+ v|q ∈ Q} ∪ {r|r ∈ R} ∪ {s|s ∈ S} if λ2 = 1,

{p|p ∈ P} ∪ {q|q ∈ Q} ∪ {r+ u+ v|r ∈ R} ∪ {s|s ∈ S} if λ3 = 1.

By the same argument as the proof in Lemma 2.4, we have Γ′ is the set of characteristic

vectors of a k-decycling family of D. Obviously, rank(Γ′) = k − 2, we have a contradiction

because the rank of the characteristics vectors of any decycling family of D is at least k − 1.�

Proof of Corollary 1.10. We prove it by induction on k. The situation when k = 2 is proved

by Lemma 2.7. Assume k ≥ 3. By Lemma 2.7 and Theorem 1.8, we can assume j 6= 1 and then

inv([D1, D2, . . . , Dk]) = inv([
−→
C3, D2, . . . , Dk]) by Lemma 2.7. If j 6= k, inv([

−→
C3, D2, . . . , Dk]) =

inv([
−→
C3, D2, . . . , Dk−1,

−→
C3]) by Lemma 2.7. If j = k, inv([

−→
C3, D2, . . . , Dk]) = inv([D2, . . . , Dk,

−→
C3])

by Theorem 1.8. By Lemma 2.7, inv([D2, . . . , Dk,
−→
C3]) = inv([

−→
C3, D3, . . . , Dk,

−→
C3]).

Hence we can assume inv([D1, D2, . . . , Dk]) = inv([
−→
C3, D2, . . . , Dk−1,

−→
C3]). By Theorems

1.8 and 1.9, for any oriented graph D, inv([
−→
C3,

−→
C3, D]) = inv([

−→
C3, D,

−→
C3]) = inv([D,

−→
C3,

−→
C3]) =

inv(
−→
C3 ⇒ D) + 1. Then we obtain the result as required. �

3 Blow-up graphs

The content in this section is inspired by Alon el at. [1]. They mainly concerned about

the graph D = TTk[D1, D2, . . . , Dk]. We generalize the base graph TTk to any tournament H ,

since it creates a larger inversion number sometimes.
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Proof of Theorem 1.13. By contradiction. Assume Di is tournament for all 1 ≤ i ≤ n.

First inv(T [D1, D2, · · · , Dn]) ≤ n + 1 as we can invert T to acyclic and then invert Di one

after another. Since T [
−→
C3]n is a subdigraph of T [D1, D2, . . . , Dn], we only need to prove the

situation when Di =
−→
C3 by Observation 1.16. Let inv(T [D1, D2, . . . , Dn]) = k. For short, set

G = T [D1, D2, . . . , Dn]. Then there exists a k-decycling family (Xi)i∈I of G with the set of

characteristic vectors Λ = {u ∈ F
k
2|u ∈ V (G)}. Note that the digraph Inv(G; (Xi)i∈I) is acyclic.

Recall u < v (resp. u → v) means uv ∈ A(Inv(G; (Xi)i∈I) (resp. uv ∈ A(G)).

Let V (Di) = {ui, vi, wi}, 1 ≤ i ≤ n. Since Inv(Di; (Xj)j∈I) is acyclic, we can assume

ui < vi, ui < wi and ui · vi = 0,ui ·wi = 1, which means vi → wi for 1 ≤ i ≤ n.

Claim 3.1 {ui}1≤i≤n are linearly independent.

Proof of Claim 3.1. It is equivalent to show that for any nonempty set I ⊆ [n],
∑

i∈I ui 6= 0.

Let I ⊆ [n]. Note that ui is a nonzero vector for all 1 ≤ i ≤ n. Then we can assume

|I| ≥ 2. Choose m ∈ I such that um′ < um for any m′ ∈ I\{m}. Since um < {vm, wm}, then

um′ < {vm, wm} for any m′ ∈ I\{m}. Note that either um′ → {vm, wm} or {vm, wm} → um′,

which means um′ ·(vm+wm) = 0. Since um ·(vm+wm) = 1, we have (
∑

i∈I ui)·(vm+wm) = 1.

Thus
∑

i∈I ui 6= 0 as required.

Let V (T ) = {x1, x2, . . . , xn}, where xi corresponds to Di for 1 ≤ i ≤ n.

Claim 3.2 For any nonempty set I ⊆ [n]. Let S = {ui,vi,wi|i ∈ I}. If rank(S) = |I|, then

T 〈{xi}i∈I〉 is acyclic.

Proof of Claim 3.2. Let R = {ui, vi, wi|i ∈ I}. We prove it by induction on |I|. Let

Z = {vi, wi|i ∈ I} and choose z ∈ Z such that z < y for any y ∈ Z \ {z}. Assume z ∈ {vt, wt},

where t ∈ I. Since rank(S) = |I|, there exists J ⊆ I such that z =
∑

j∈J uj by Claim 3.1.

If J = ∅, then z = 0 which implies all arcs incident with z are not inverted. Hence z → y

for all y ∈ Z \ {z}. So xt → xi for each i ∈ I \ {t} in T and z = vt by vt → wt. Let

R′ = R \ {ut, vt, wt} and S ′ = S \ {ut,vt,wt}. Since ut → R′ and ut < R′, we have ut⊥S ′

which implies rank(S ′) = |I| − 1. By the inductive hypothesis, T
〈

{xi}i∈I\{t}
〉

is acyclic. Hence

T 〈{xi}i∈I〉 is acyclic as required.

Now we consider the case J 6= ∅. If J = {t}, then z = ut. Recall z ∈ {vt, wt}. If

z = vt (resp. z = wt), then vt = ut and vt < wt (resp. wt = ut and wt < vt) which implies

1 = ut · wt = vt · wt (resp. 0 = ut · vt = wt · vt), a contradiction with vt → wt. So we have

J 6= {t}. Let us ∈ {uj|j ∈ J} such that x < us for any x ∈ {uj|j ∈ J} \ {us}. We consider two

cases.

Case 1. s 6= t. Then {z} ∪ {uj|j ∈ J} < {vs, ws}. For any y ∈ {z} ∪ {uj|j ∈ J \ {s}}, we

have either y → {vs, ws} or {vs, ws} → y which implies y · (vs+ws) = 0. Hence (z+
∑

j∈J uj) ·

(vs +ws) = 1 by us · (vs +ws) = 1, a contradiction with z =
∑

j∈J uj.

Case 2. s = t. In this case, us < z by assumption. Let us′ ∈ {uj|j ∈ J \{t}} such that x <

us′ for any x ∈ {uj|j ∈ J \ {t, s′}}. Then z < {vs′, ws′} and {uj|j ∈ J} ≤ us < z < {vs′, ws′}.
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For any y ∈ {z} ∪ {uj|j ∈ J \ {s′}}), we have either y → {vs′, ws′} or {vs′, ws′} → y which

implies we have y·(vs′+ws′) = 0. Therefore (z+
∑

j∈J uj)·(vs′+ws′) = 1 by us′ ·(vs′+ws′) = 1,

a contradiction with z =
∑

j∈J uj.

Now we complete the proof of Theorem 1.13. By Claim 3.1, we have rank(Λ) ≥ n which

implies k ≥ n. If k = n, then rank(Λ) = n. By Claim 3.2, inv(T ) = 0, our final contradiction.

�

Since we can invert T to acyclic and then invert Di one after another, then for oriented

graphs Di with inv(Di) = 1, the following inequality holds

n ≤ inv(T [D1, D2, · · · , Dn]) ≤ n + inv(T ).

Here we prove that there exists T such that it cannot reach the upper bound.

Proof of Theorem 1.14. From Theorem 1.2, for each odd integer k ≥ 3, there is a tournament

D with inv(D) = k such that inv(D ⇒
−→
C3) ≤ k. Since D is a subgraph of D ⇒

−→
C3, we have

inv(D ⇒
−→
C3) = k. From Theorem 1.8, we know inv(D) = inv(

−→
C3 ⇒ D) = k. Let Tk = u1 ⇒ D.

It’s not hard to find that inv(Tk) = k, since D is a subgraph of Tk and the decycling family

of D gives a decycling family of Tk. Assume V (Tk) = {u1, u2, . . . , unk
}. We need to show

inv(Tk[D1, D2, . . . , Dnk
]) ≤ nk + k − 1 when inv(Di) = 1 for all i.

From Lemma 2.6, there is a k-decycling family (Xi)1≤i≤k ofD such that every characteristic

vector is orthogonal to 1. It means |{i ∈ [k]|v ∈ Xi}| is even for any v ∈ V (D). The

corresponding blow-up of Xi is X
′
i =

⋃

uj∈Xi
V (Dj). Since inv(Dj) = 1, for each j ∈ [nk], there

exists a Yj ⊂ V (Dj) such that Inv(Dj ; Yj) is acyclic. Then it is not hard to check that there

exists a (nk + k − 1)-decycling family as following:

Zi = Y1 ∪X ′
i 1 ≤ i ≤ k,

Zk+j−1 = Yj 2 ≤ j ≤ nk.

Hence inv(Tk[D1, D2, . . . , Dnk
]) ≤ nk + k − 1 and we are done. �
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