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DERIVED FUNCTORS AND HILBERT POLYNOMIALS OVER

HYPERSURFACE RINGS

TONY J. PUTHENPURAKAL

Abstract. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let
I be an m-primary ideal. We show that there is a non-negative integer rI (de-

pending only on I) such that if M is any non-free maximal Cohen-Macaulay
(= MCM) A-module the function n → ℓ(TorA1 (M,A/In+1)) (which is of poly-
nomial type) has degree rI . Analogous results hold for Hilbert polynomials
associated to Ext-functors. Surprisingly a key ingredient is the classification
of thick subcategories of the stable category of MCM A-modules (obtained by
Takahashi, see [8, 6.6]).

1. introduction

Let (A,m) be a Cohen-Macaulay local ring of dimension d ≥ 1 and let I be
an m-primary ideal. If N is an A-module of finite length then ℓ(N) denotes its
length. Let M be a maximal Cohen-Macaulay (= MCM) A-module. The function

tI(M,n) = ℓ(TorA1 (M,A/In+1)) is of polynomial type, see [9, Corollary 4] (also
see [5, Proposition 17]). Let tM

I
(z) ∈ Q[z] be such that tM

I
(n) = tI(M,n) for all

n ≫ 0. It is easily shown that deg tM
I
(z) ≤ d − 1. In [5, Theorem 18] we proved

that deg tM
m
(z) = d − 1 for any non-free MCM A-module. It was also shown that

if I is a parameter ideal then tI(M,n) = 0 for all n ≥ 0, see [5, Remark 20]. In
general it is a difficult question to determine the degree of tM

I
(z) and the answer is

known only for a few classes of ideals and modules, see [3, 3.5] for some examples.
The fact that deg tM

m
(z) = d− 1 for non-free MCM’s has an important consequence

in the study of associated graded modules (with respect to m) of MCM A-modules,
see [6].

In this paper we prove few surprising results. Recall A is said to be a hypersurface

ring if its completion Â = Q/(f) where (Q, n) is a regular local ring and f ∈ n
2 is

non-zero. We show

Theorem 1.1. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let I
be an m-primary ideal. Then there is a non-negative integer rI (depending only on
I) such that if M is any non-free maximal MCM A-module then deg tM

I
(z) = rI .

1.2. For the Ext functors we prove an analogous result. It is known that if M is a
finitely generated A-module the function n → ℓ(Ext1A(M,A/In+1)) is of polynomial
type say of degree sM

I
, see [9, Corollary 4]. We prove

Theorem 1.3. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let
I be an m-primary ideal. Then there is a non-negative integer sI (depending only
on I) such that if M is any non-free maximal MCM A-module then sM

I
= sI .
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It is also known that if M is a finitely generated A-module the function n →
ℓ(Extd+1

A
(A/In+1,M)) is of polynomial type say of degree eM

I
, see [9, Theorem 5].

Let Spec0(A) = Spec(A) \ {m}. We prove

Theorem 1.4. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let
I be an m-primary ideal. Then there is a non-negative integer eI (depending only
on I) such that if M is any non-free maximal MCM A-module free on Spec0(A)
then eM

I
= eI .

See 4.4 on why in Theorem 1.4 we need to restrict to the case of MCM modules
free on Spec0(A) while in Theorems 1.1 and 1.3 we do not have such restriction.

Technique used to prove the result: We first note that the function tI(M,n)
is a function on CM(A) the stable category of MCM A-modules. We also note
that CM(A) is a triangulated category [1, 4.4.1]. Let CM0(A) be the thick sub-
ctegory of MCM A-modules which are free on the punctured spectrum Spec0(A)
of A. The crucial ingredient in our proofs is that CM0(A) has no proper thick
subcategories, see [8, 6.6]. We first prove Theorem 1.1 for non-free MCM modules
in CM0(A) and then prove for all non-free MCM A-modules by using an induction
on dimHomA(M,M). The techniques to prove Theorems 1.3 and 1.4 are similar.

Here is an overview of the contents of this paper. In section two we discuss a
few preliminaries that we need. In section three we prove Theorems 1.1, 1.3, 1.4
when M is free on the punctured spectrum of A. Finally in section four we prove
Theorems 1.1 and 1.3.

2. Preliminaries

In this section we discuss a few preliminary results that we need. We use [4]
for notation on triangulated categories. However we will assume that if C is a
triangulated category then HomC(X,Y ) is a set for any objects X,Y of C.

2.1. Let C be a skeletally small triangulated category with shift operator Σ and let
I(C) be the set of isomorphism classes of objects in C. By a weak triangle function
on C we mean a function ξ : I(C) → Z such that

(1) ξ(X) ≥ 0 for all X ∈ C.
(2) ξ(0) = 0.
(3) ξ(X ⊕ Y ) = ξ(X) + ξ(Y ) for all X,Y ∈ C.
(4) ξ(ΣX) = ξ(X) for all X ∈ C.
(5) If X → Y → Z → ΣX is a triangle in C then ξ(Z) ≤ ξ(X) + ξ(Y ).

2.2. Set

ker ξ = {X | ξ(X) = 0}.

The following result (essentially an observation) is a crucial ingredient in our proof
of Theorem 1.1.

Lemma 2.3. (see [7, 2,3] ) (with hypotheses as above) ker ξ is a thick subcategory
of C.
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2.4. Let (A,m) be a hypersurface ring and let I be an m-primary ideal in A. Let
M be a MCM A-module. Set for n ≥ 0

tI(M,n) = ℓ(TorA1 (M,A/In+1))

sI(M,n) = ℓ(Ext1A(M,A/In+1)))

eI(M,n) = ℓ(Extd+1
A

(A/In+1,M))).

Let Ωi

A
(M) denote the ith-syzygy of M . We prove

Lemma 2.5. (with hypotheses as above)

(1) For all n ≥ 0 the functions tI(−, n), sI(−, n) and eI(−, n) are functions on
CM(A)

(2) For all n ≥ 0 we have tI(M,n) = tI(Ω
1
A
(M), n), sI(M,n) = sI(Ω

1
A
(M), n) and

eI(M,n) = eI(Ω
1
A
(M), n).

Proof. (1) Let E = M ⊕ F = N ⊕ G where F,G are free A-modules. Then by
definition tI(E, n) = tI(M,n) = tI(N,n). Thus tI(−, n) is a function on CM(A).

The proof for assertions on sI(−, n) and eI(−, n) are similar.
(2) We may assume that M has no free summands. Set N = ΩA

1 (M). Let
0 → N → F → M → 0 be the minimal presentation of M with F = Ar. Then note
as A is a hypersurface ring and M is MCM without free summands we get that a
minimal presentation of N is as follows 0 → M → G → N → 0 where G = Ar. By
using the first exact sequence we get

0 → TorA1 (M,A/In+1) → N/In+1N → F/In+1F → M/In+1 → 0.

So we have

tI(M,n) = ℓ(N/In+1N) + ℓ(M/In+1M)− rℓ(A/In+1A).

Using the second exact sequence we find that tI(M,n) = tI(N,n). The result
follows.

The proof for assertions on sI(−, n) and eI(−, n) are similar. �

3. CM0(A)

In this section we give proofs of Theorem 1.1, 1.3 and 1.4 when M is free on
Spec0(A).

Theorem 3.1. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let
I be an m-primary ideal. Then there is a non-negative integer rI (depending only
on I) such that if M ∈ CM0(A) is non-zero then deg tM

I
(z) = rI .

Proof. We first note that for any MCM M we have deg tM
I
(z) ≤ d − 1, see [9,

Corollary 4]. We set the degree of the zero polynomial to be −1. Set

r = max{deg tMI (z) | M ∈ CM0(A)}.

If r = −1 then we have nothing to prove. So assume r ≥ 0. For M ∈ CM0(A)
define

ξI(M) = lim
n→∞

r!

nr
tI(M,n).

We note that ξI(M) ≥ 0 and is zero precisely when deg tI(M, z) < r.
Claim: ξI(−) is a weak triangle function on CM0(A), see 2.1.
Assume the claim for the time being. Then ker ξ is a thick subcategory of CM0(A).
Also if deg tLi (z) = r then L /∈ ker ξ. So ker ξ 6= CM0(A). As CM0(A) has no proper
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thick subcategories, see [8, 6.6], it follows that ker ξ = 0. Therefore deg tM
I
(z) = r

for all M 6= 0 in CM0(A).
It remains to show ξI is a weak triangle function on CM0(A). The first three

conditions are trivial to satisfy. By 2.5(2) it follows that ξI(Ω
−1
A

(M)) = ξI(M). Let
L → M → N → Ω−1(L) is a triangle in CM0(A) then note that we have a short
exact sequence of A-modules

0 → M → N ⊕ F → Ω−1(L) → 0, where F is free.

Therefore we have an inequality

tI(N,n) ≤ tI(M,n) + tI(Ω
−1(L), n).

The result follows. �

The following two results can be proved similarly as in 3.1. We have to use that
deg sM

I
(z) ≤ d − 1 (see [9, Corollary 4]) and that deg eM

I
(z) ≤ d (see [9, Corollary

7]).

Theorem 3.2. Let (A,m) be a hypersurface local ring of dimension d ≥ 1 and let
I be an m-primary ideal. Then there is a non-negative integer sI (depending only
on I) such that if M ∈ CM0(A) is non-zero then deg sM

I
(z) = rI .

Theorem 3.3. (= Theorem 1.4) Let (A,m) be a hypersurface local ring of dimen-
sion d ≥ 1 and let I be an m-primary ideal. Then there is a non-negative integer eI
(depending only on I) such that if M ∈ CM0(A) is non-zero then deg eM

I
(z) = rI .

4. Proofs of Theorem 1.1 and 1.3

In this section we give proofs of Theorem 1.1 and 1.3. We need a few prelimi-
naries.

4.1. Let M be any finitely generated A-module. Set
Li(M) =

⊕
n≥0

TorAi (M,A/In+1) for i ≥ 0. Let R = A[It] be the Rees algebra of
I. We have an exact sequence of R-modules

0 → R(1) → A[t](1) → L0(A) → 0.

Tensoring with M yields an inclusion 0 → L1(M) ⊆ R(1) ⊗M and isomorphisms

Li(M) ∼= TorAi−1(R(1),M) for i ≥ 2. It follows that Li(M) are finitely generatedR-

module for all i ≥ 1. We note that if ΩA
2 (M) ∼= M then we have Li(M) ∼= Li+2(M)

for all i ≥ 1.

4.2. We also need the following notion. Let M ∈ CM(A). Let

Supp(M) = {P | MP is not free AP −module}.

It is readily verified that Supp(M) = V (Hom(M,M)).

Proof of Theorem 1.1. By Theorem 3.1 we have that there exists rI such that for
any non-free MCM module E ∈ CM0(A) we have deg tE

I
(z) = rI .

Claim: For any non-free MCM A-module M we have deg tM
I
(z) = rI .

We prove this assertion by induction on dimSupp(M). If dimSupp(M) = 0 then

M is free on Spec0(A). In this case we have nothing to show.
Now assume dim Supp(M) > 0. As L1(M)n, L2(M)n have finite length for all n

and as L1(M), L2(M) are finitely generated R-modules it follows that there exists
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l such that mlLi(M)n = 0 for all n and for i = 1, 2. As M has period two it follows
that mlLi(M)n = 0 for all i ≥ 1 and all n ≥ 0.

Let

x ∈ m
l \

⋃

P⊇ann Hom(M,M)

P minimal

P.

Let M
x
−→ M → N → Ω−1(A) be a triangle in CM(A). It is readily verified that

support of Hom(N,N) is contained in the intersection of support of Hom(M,M)
and A/(x). So dimSupp(N) ≤ dimSupp(M) − 1. It is also not difficult to prove

that N is not free A-module. By induction hypotheses deg tN
I
(z) = rI . By the

structure of triangles in CM(A), see [1, 4.4.1], we have an exact sequence 0 → G →
N → M/xM → 0 with G-free. It follows that L3(N) = L3(M/xM). We also have

an exact sequence 0 → M
x
−→ M → M/xM → 0. As x ∈ annLi(M) it follows that

we have an exact sequence

0 → L3(M) → L3(M/xM) → L2(M) → 0.

As the Hilbert function of L3(M) and L2(M) are identical, 2.5(2) we get that
2tM

I
(z) = tN

I
(z). It follows that deg tM

I
(z) = rI . By induction the result follows. �

4.3. To prove Theorem 1.3 we need a few preliminaries. Let M be a finitely
generated Cohen-MacaulayA-module of dimension r. Let
Ei(M) =

⊕
n≥0

ExtiA(M,A/In+1). The exact sequence of R-modules

0 → R(1) → A[t](1) → L0(A) → 0,

induces an isomorphism Ei(M) ∼= Exti+1
A

(M,R(1)) for all i > d− r. In particular
Ei

A
(M) are finitely generatedR-modules for all i > d−r. We note that if ΩA

2 (M) ∼=
M then we have Ei(M) ∼= Ei+2(M) for all i ≥ 1. The proof of Theorem 1.3 is
mostly similar to the proof of Theorem 1.1. So we mostly sketch the proof.

Sketch of a proof of Theorem 1.3. By Theorem 3.2 we have that there exists rI
such that for any non-free MCM module L ∈ CM0(A) we have deg sL

I
(z) = sI .

Claim: For any non-free MCM A-module M we have deg sM
I
(z) = sI .

We prove this assertion by induction on dimSupp(M). If dimSupp(M) = 0 then

M is free on Spec0(A). In this case we have nothing to show.
Now assume dim Supp(M) > 0. As E1(M)n, E

2(M)n have finite length for all n

and as E1(M), E2(M) are finitely generated R-modules it follows that there exists
l such that mlEi(M)n = 0 for all n and for i = 1, 2. As M has period two it follows
that mlEi(M)n = 0 for all i ≥ 1 and all n ≥ 0. Let

x ∈ m
l \

⋃

P⊇ann Hom(M,M)

P minimal

P.

Let M
x
−→ M → N → Ω−1(A) be a triangle in CM(A). As before we have

dimSupp(N) ≤ dimSupp(M) − 1 and N is not free. By induction hypotheses

deg sN
I
(z) = rI . By the structure of triangles in CM(A), see [1, 4.4.1], we have an

exact sequence 0 → G → N → M/xM → 0 with G-free. It follows that E3(N) =

E3(M/xM). We also have an exact sequence 0 → M
x
−→ M → M/xM → 0. As

x ∈ annLi(M) it follows that we have an exact sequence

0 → E2(M) → E3(M/xM) → E3(M) → 0.
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As the Hilbert function of E3(M) and E2(M) are identical, 2.5(2) we get that
2sM

I
(z) = sN

I
(z). It follows that deg sM

I
(z) = sI . By induction the result follows.

�

Remark 4.4. Consider U i(M) =
⊕

n≥0
ExtiA(A/I

n+1,M). Then for i ≥ d + 1

it is possible to give a natural R-module structure on U i(M). However with this
structure U i(M) is NOT finitely generated (note if xt ∈ R1 then x1tU

i(M)n ⊆
U i(M)n−1). Thus it is not possible to extend the result in 3.3 to all MCM modules.
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