# DERIVED FUNCTORS AND HILBERT POLYNOMIALS OVER HYPERSURFACE RINGS 

TONY J. PUTHENPURAKAL


#### Abstract

Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. We show that there is a non-negative integer $r_{I}$ (depending only on $I$ ) such that if $M$ is any non-free maximal Cohen-Macaulay ( $=$ MCM) $A$-module the function $n \rightarrow \ell\left(\operatorname{Tor}_{1}^{A}\left(M, A / I^{n+1}\right)\right.$ ) (which is of polynomial type) has degree $r_{I}$. Analogous results hold for Hilbert polynomials associated to Ext-functors. Surprisingly a key ingredient is the classification of thick subcategories of the stable category of MCM $A$-modules (obtained by Takahashi, see [8, 6.6]).


## 1. INTRODUCTION

Let $(A, \mathfrak{m})$ be a Cohen-Macaulay local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. If $N$ is an $A$-module of finite length then $\ell(N)$ denotes its length. Let $M$ be a maximal Cohen-Macaulay $(=\mathrm{MCM}) A$-module. The function $t_{I}(M, n)=\ell\left(\operatorname{Tor}_{1}^{A}\left(M, A / I^{n+1}\right)\right)$ is of polynomial type, see [9, Corollary 4] (also see [5, Proposition 17]). Let $t_{I}^{M}(z) \in \mathbb{Q}[z]$ be such that $t_{I}^{M}(n)=t_{I}(M, n)$ for all $n \gg 0$. It is easily shown that $\operatorname{deg} t_{I}^{M}(z) \leq d-1$. In [5, Theorem 18] we proved that $\operatorname{deg} t_{\mathfrak{m}}^{M}(z)=d-1$ for any non-free MCM $A$-module. It was also shown that if $I$ is a parameter ideal then $t_{I}(M, n)=0$ for all $n \geq 0$, see [5, Remark 20]. In general it is a difficult question to determine the degree of $t_{I}^{M}(z)$ and the answer is known only for a few classes of ideals and modules, see [3, 3.5] for some examples. The fact that $\operatorname{deg} t_{\mathfrak{m}}^{M}(z)=d-1$ for non-free MCM's has an important consequence in the study of associated graded modules (with respect to $\mathfrak{m}$ ) of MCM $A$-modules, see 6.

In this paper we prove few surprising results. Recall $A$ is said to be a hypersurface ring if its completion $\widehat{A}=Q /(f)$ where $(Q, \mathfrak{n})$ is a regular local ring and $f \in \mathfrak{n}^{2}$ is non-zero. We show

Theorem 1.1. Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $r_{I}$ (depending only on $I)$ such that if $M$ is any non-free maximal $M C M A$-module then $\operatorname{deg} t_{I}^{M}(z)=r_{I}$.
1.2. For the Ext functors we prove an analogous result. It is known that if $M$ is a finitely generated $A$-module the function $n \rightarrow \ell\left(\operatorname{Ext}_{A}^{1}\left(M, A / I^{n+1}\right)\right)$ is of polynomial type say of degree $s_{I}^{M}$, see [9, Corollary 4]. We prove

Theorem 1.3. Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $s_{I}$ (depending only on $I$ ) such that if $M$ is any non-free maximal MCM $A$-module then $s_{I}^{M}=s_{I}$.

[^0]It is also known that if $M$ is a finitely generated $A$-module the function $n \rightarrow$ $\ell\left(\operatorname{Ext}_{A}^{d+1}\left(A / I^{n+1}, M\right)\right)$ is of polynomial type say of degree $e_{I}^{M}$, see [9, Theorem 5]. Let $\operatorname{Spec}^{0}(A)=\operatorname{Spec}(A) \backslash\{\mathfrak{m}\}$. We prove

Theorem 1.4. Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $e_{I}$ (depending only on $I)$ such that if $M$ is any non-free maximal $M C M A$-module free on $\operatorname{Spec}^{0}(A)$ then $e_{I}^{M}=e_{I}$.

See 4.4 on why in Theorem 1.4 we need to restrict to the case of MCM modules free on $\operatorname{Spec}^{0}(A)$ while in Theorems 1.1 and 1.3 we do not have such restriction.

Technique used to prove the result: We first note that the function $t_{I}(M, n)$ is a function on $\underline{\mathrm{CM}}(A)$ the stable category of MCM $A$-modules. We also note that $\underline{\mathrm{CM}}(A)$ is a triangulated category [1, 4.4.1]. Let $\underline{\mathrm{CM}}_{0}(A)$ be the thick subctegory of MCM $A$-modules which are free on the punctured spectrum $\operatorname{Spec}^{0}(A)$ of $A$. The crucial ingredient in our proofs is that $\mathrm{CM}_{0}(A)$ has no proper thick subcategories, see [8, 6.6]. We first prove Theorem 1.1 for non-free MCM modules in ${\underline{\mathrm{CM}_{0}}}_{0}(A)$ and then prove for all non-free MCM $A$-modules by using an induction on $\operatorname{dim} \underline{\operatorname{Hom}}_{A}(M, M)$. The techniques to prove Theorems 1.3 and 1.4 are similar.

Here is an overview of the contents of this paper. In section two we discuss a few preliminaries that we need. In section three we prove Theorems $1.1,1.3,1.4$ when $M$ is free on the punctured spectrum of $A$. Finally in section four we prove Theorems 1.1 and 1.3

## 2. Preliminaries

In this section we discuss a few preliminary results that we need. We use [4] for notation on triangulated categories. However we will assume that if $\mathcal{C}$ is a triangulated category then $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a set for any objects $X, Y$ of $\mathcal{C}$.
2.1. Let $\mathcal{C}$ be a skeletally small triangulated category with shift operator $\Sigma$ and let $\mathbb{I}(\mathcal{C})$ be the set of isomorphism classes of objects in $\mathcal{C}$. By a weak triangle function on $\mathcal{C}$ we mean a function $\xi: \mathbb{I}(\mathcal{C}) \rightarrow \mathbb{Z}$ such that
(1) $\xi(X) \geq 0$ for all $X \in \mathcal{C}$.
(2) $\xi(0)=0$.
(3) $\xi(X \oplus Y)=\xi(X)+\xi(Y)$ for all $X, Y \in \mathcal{C}$.
(4) $\xi(\Sigma X)=\xi(X)$ for all $X \in \mathcal{C}$.
(5) If $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ is a triangle in $\mathcal{C}$ then $\xi(Z) \leq \xi(X)+\xi(Y)$.
2.2. Set

$$
\operatorname{ker} \xi=\{X \mid \xi(X)=0\}
$$

The following result (essentially an observation) is a crucial ingredient in our proof of Theorem 1.1.

Lemma 2.3. (see [7, 2,3]) (with hypotheses as above) ker $\xi$ is a thick subcategory of $\mathcal{C}$.
2.4. Let $(A, \mathfrak{m})$ be a hypersurface ring and let $I$ be an $\mathfrak{m}$-primary ideal in $A$. Let $M$ be a MCM $A$-module. Set for $n \geq 0$

$$
\begin{aligned}
& t_{I}(M, n)=\ell\left(\operatorname{Tor}_{1}^{A}\left(M, A / I^{n+1}\right)\right) \\
& \left.s_{I}(M, n)=\ell\left(\operatorname{Ext}_{A}^{1}\left(M, A / I^{n+1}\right)\right)\right) \\
& \left.e_{I}(M, n)=\ell\left(\operatorname{Ext}_{A}^{d+1}\left(A / I^{n+1}, M\right)\right)\right)
\end{aligned}
$$

Let $\Omega_{A}^{i}(M)$ denote the $i^{t h}$-syzygy of $M$. We prove
Lemma 2.5. (with hypotheses as above)
(1) For all $n \geq 0$ the functions $t_{I}(-, n), s_{I}(-, n)$ and $e_{I}(-, n)$ are functions on $\underline{\mathrm{CM}}(A)$
(2) For all $n \geq 0$ we have $t_{I}(M, n)=t_{I}\left(\Omega_{A}^{1}(M), n\right), s_{I}(M, n)=s_{I}\left(\Omega_{A}^{1}(M), n\right)$ and $e_{I}(M, n)=e_{I}\left(\Omega_{A}^{1}(M), n\right)$.
Proof. (1) Let $E=M \oplus F=N \oplus G$ where $F, G$ are free $A$-modules. Then by definition $t_{I}(E, n)=t_{I}(M, n)=t_{I}(N, n)$. Thus $t_{I}(-, n)$ is a function on $\underline{\mathrm{CM}}(A)$.

The proof for assertions on $s_{I}(-, n)$ and $e_{I}(-, n)$ are similar.
(2) We may assume that $M$ has no free summands. Set $N=\Omega_{1}^{A}(M)$. Let $0 \rightarrow N \rightarrow F \rightarrow M \rightarrow 0$ be the minimal presentation of $M$ with $F=A^{r}$. Then note as $A$ is a hypersurface ring and $M$ is MCM without free summands we get that a minimal presentation of $N$ is as follows $0 \rightarrow M \rightarrow G \rightarrow N \rightarrow 0$ where $G=A^{r}$. By using the first exact sequence we get

$$
0 \rightarrow \operatorname{Tor}_{1}^{A}\left(M, A / I^{n+1}\right) \rightarrow N / I^{n+1} N \rightarrow F / I^{n+1} F \rightarrow M / I^{n+1} \rightarrow 0
$$

So we have

$$
t_{I}(M, n)=\ell\left(N / I^{n+1} N\right)+\ell\left(M / I^{n+1} M\right)-r \ell\left(A / I^{n+1} A\right)
$$

Using the second exact sequence we find that $t_{I}(M, n)=t_{I}(N, n)$. The result follows.

The proof for assertions on $s_{I}(-, n)$ and $e_{I}(-, n)$ are similar.

## 3. $\underline{\mathrm{CM}}_{0}(A)$

In this section we give proofs of Theorem 1.1, 1.3 and 1.4 when $M$ is free on $\operatorname{Spec}^{0}(A)$.

Theorem 3.1. Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $r_{I}$ (depending only on $I)$ such that if $M \in \underline{\mathrm{CM}}_{0}(A)$ is non-zero then $\operatorname{deg} t_{I}^{M}(z)=r_{I}$.
Proof. We first note that for any MCM $M$ we have $\operatorname{deg} t_{I}^{M}(z) \leq d-1$, see 9 , Corollary 4]. We set the degree of the zero polynomial to be -1 . Set

$$
r=\max \left\{\operatorname{deg} t_{I}^{M}(z) \mid M \in{\left.\underline{\mathrm{CM}_{0}}(A)\right\} . . . .}\right.
$$

If $r=-1$ then we have nothing to prove. So assume $r \geq 0$. For $M \in{\underline{\operatorname{CM}_{0}}(A)}^{0}$ define

$$
\xi_{I}(M)=\lim _{n \rightarrow \infty} \frac{r!}{n^{r}} t_{I}(M, n)
$$

We note that $\xi_{I}(M) \geq 0$ and is zero precisely when $\operatorname{deg} t_{I}(M, z)<r$.
Claim: $\xi_{I}(-)$ is a weak triangle function on $\mathrm{CM}_{0}(A)$, see 2.1
Assume the claim for the time being. Then $\operatorname{ker} \xi$ is a thick subcategory of ${\underline{\mathrm{CM}_{0}}}_{0}(A)$. Also if $\operatorname{deg} t_{i}^{L}(z)=r$ then $L \notin \operatorname{ker} \xi$. So $\operatorname{ker} \xi \neq \underline{\mathrm{CM}}_{0}(A)$. As $\underline{\mathrm{CM}}_{0}(A)$ has no proper
thick subcategories, see [8, 6.6], it follows that $\operatorname{ker} \xi=0$. Therefore $\operatorname{deg} t_{I}^{M}(z)=r$ for all $M \neq 0$ in $\mathrm{CM}_{0}(A)$.

It remains to show $\xi_{I}$ is a weak triangle function on $\mathrm{CM}_{0}(A)$. The first three conditions are trivial to satisfy. By 2.5(2) it follows that $\xi_{I}\left(\Omega_{A}^{-1}(M)\right)=\xi_{I}(M)$. Let $L \rightarrow M \rightarrow N \rightarrow \Omega^{-1}(L)$ is a triangle in $\underline{\mathrm{CM}}_{0}(A)$ then note that we have a short exact sequence of $A$-modules

$$
0 \rightarrow M \rightarrow N \oplus F \rightarrow \Omega^{-1}(L) \rightarrow 0, \quad \text { where } F \text { is free. }
$$

Therefore we have an inequality

$$
t_{I}(N, n) \leq t_{I}(M, n)+t_{I}\left(\Omega^{-1}(L), n\right)
$$

The result follows.
The following two results can be proved similarly as in 3.1. We have to use that $\operatorname{deg} s_{I}^{M}(z) \leq d-1$ (see [9, Corollary 4]) and that $\operatorname{deg} e_{I}^{M}(z) \leq d$ (see [9, Corollary 7]).
Theorem 3.2. Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $s_{I}$ (depending only on $I)$ such that if $M \in \underline{\mathrm{CM}}_{0}(A)$ is non-zero then $\operatorname{deg} s_{I}^{M}(z)=r_{I}$.

Theorem 3.3. (= Theorem (1.4) Let $(A, \mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. Then there is a non-negative integer $e_{I}$ (depending only on $I$ ) such that if $M \in \underline{\mathrm{CM}}_{0}(A)$ is non-zero then $\operatorname{deg} e_{I}^{M}(z)=r_{I}$.

## 4. Proofs of Theorem 1.1 and 1.3

In this section we give proofs of Theorem 1.1 and 1.3 . We need a few preliminaries.
4.1. Let $M$ be any finitely generated $A$-module. Set
$L_{i}(M)=\bigoplus_{n \geq 0} \operatorname{Tor}_{i}^{A}\left(M, A / I^{n+1}\right)$ for $i \geq 0$. Let $\mathcal{R}=A[I t]$ be the Rees algebra of $I$. We have an exact sequence of $\mathcal{R}$-modules

$$
0 \rightarrow \mathcal{R}(1) \rightarrow A[t](1) \rightarrow L_{0}(A) \rightarrow 0
$$

Tensoring with $M$ yields an inclusion $0 \rightarrow L_{1}(M) \subseteq \mathcal{R}(1) \otimes M$ and isomorphisms $L_{i}(M) \cong \operatorname{Tor}_{i-1}^{A}(\mathcal{R}(1), M)$ for $i \geq 2$. It follows that $L_{i}(M)$ are finitely generated $\mathcal{R}$ module for all $i \geq 1$. We note that if $\Omega_{2}^{A}(M) \cong M$ then we have $L_{i}(M) \cong L_{i+2}(M)$ for all $i \geq 1$.
4.2. We also need the following notion. Let $M \in \underline{\mathrm{CM}}(A)$. Let

$$
\underline{\operatorname{Supp}}(M)=\left\{P \mid M_{P} \text { is not free } A_{P}-\text { module }\right\} .
$$

It is readily verified that $\underline{\operatorname{Supp}}(M)=V(\underline{\operatorname{Hom}}(M, M))$.
Proof of Theorem 1.1. By Theorem 3.1 we have that there exists $r_{I}$ such that for any non-free MCM module $E \in{\underline{\mathrm{CM}_{0}}}_{0}(A)$ we have $\operatorname{deg} t_{I}^{E}(z)=r_{I}$.

Claim: For any non-free MCM $A$-module $M$ we have $\operatorname{deg} t_{I}^{M}(z)=r_{I}$.
We prove this assertion by induction on $\operatorname{dim} \underline{\operatorname{Supp}}(M)$. If $\operatorname{dim} \underline{\operatorname{Supp}}(M)=0$ then $M$ is free on $\operatorname{Spec}^{0}(A)$. In this case we have nothing to show.

Now assume $\operatorname{dim} \underline{\operatorname{Supp}}(M)>0$. As $L_{1}(M)_{n}, L_{2}(M)_{n}$ have finite length for all $n$ and as $L_{1}(M), L_{2}(\overline{M)}$ are finitely generated $\mathcal{R}$-modules it follows that there exists
$l$ such that $\mathfrak{m}^{l} L_{i}(M)_{n}=0$ for all $n$ and for $i=1,2$. As $M$ has period two it follows that $\mathfrak{m}^{l} L_{i}(M)_{n}=0$ for all $i \geq 1$ and all $n \geq 0$.

Let

$$
x \in \mathfrak{m}^{l} \backslash \bigcup_{\substack{P \supseteq \operatorname{ann} \\ P}} P
$$

Let $M \xrightarrow{x} M \rightarrow N \rightarrow \Omega^{-1}(A)$ be a triangle in $\underline{\mathrm{CM}}(A)$. It is readily verified that support of $\underline{\operatorname{Hom}}(N, N)$ is contained in the intersection of support of $\underline{\operatorname{Hom}}(M, M)$ and $A /(x)$. So $\operatorname{dim} \underline{\operatorname{Supp}}(N) \leq \operatorname{dim} \underline{\operatorname{Supp}}(M)-1$. It is also not difficult to prove
 structure of triangles in $\underline{\mathrm{CM}}(A)$, see [1, 4.4.1], we have an exact sequence $0 \rightarrow G \rightarrow$ $N \rightarrow M / x M \rightarrow 0$ with $G$-free. It follows that $L_{3}(N)=L_{3}(M / x M)$. We also have an exact sequence $0 \rightarrow M \xrightarrow{x} M \rightarrow M / x M \rightarrow 0$. As $x \in \operatorname{ann} L_{i}(M)$ it follows that we have an exact sequence

$$
0 \rightarrow L_{3}(M) \rightarrow L_{3}(M / x M) \rightarrow L_{2}(M) \rightarrow 0
$$

As the Hilbert function of $L_{3}(M)$ and $L_{2}(M)$ are identical, 2.5(2) we get that $2 t_{I}^{M}(z)=t_{I}^{N}(z)$. It follows that $\operatorname{deg} t_{I}^{M}(z)=r_{I}$. By induction the result follows.
4.3. To prove Theorem 1.3 we need a few preliminaries. Let $M$ be a finitely generated Cohen-Macaulay $A$-module of dimension $r$. Let $E^{i}(M)=\bigoplus_{n \geq 0} \operatorname{Ext}_{A}^{i}\left(M, A / I^{n+1}\right)$. The exact sequence of $\mathcal{R}$-modules

$$
0 \rightarrow \mathcal{R}(1) \rightarrow A[t](1) \rightarrow L_{0}(A) \rightarrow 0
$$

induces an isomorphism $E^{i}(M) \cong \operatorname{Ext}_{A}^{i+1}(M, \mathcal{R}(1))$ for all $i>d-r$. In particular $E_{A}^{i}(M)$ are finitely generated $\mathcal{R}$-modules for all $i>d-r$. We note that if $\Omega_{2}^{A}(M) \cong$ $M$ then we have $E^{i}(M) \cong E^{i+2}(M)$ for all $i \geq 1$. The proof of Theorem 1.3 is mostly similar to the proof of Theorem 1.1 So we mostly sketch the proof.

Sketch of a proof of Theorem 1.3. By Theorem 3.2 we have that there exists $r_{I}$ such that for any non-free MCM module $L \in \underline{C M}_{0}(A)$ we have $\operatorname{deg} s_{I}^{L}(z)=s_{I}$.

Claim: For any non-free MCM $A$-module $M$ we have $\operatorname{deg} s_{I}^{M}(z)=s_{I}$.
We prove this assertion by induction on $\operatorname{dim} \underline{\operatorname{Supp}}(M)$. If $\operatorname{dim} \underline{\operatorname{Supp}}(M)=0$ then $M$ is free on $\operatorname{Spec}^{0}(A)$. In this case we have nothing to show.

Now assume $\operatorname{dim} \underline{\operatorname{Supp}}(M)>0$. As $E^{1}(M)_{n}, E^{2}(M)_{n}$ have finite length for all $n$ and as $E^{1}(M), E^{2}(\overline{M)}$ are finitely generated $\mathcal{R}$-modules it follows that there exists $l$ such that $\mathfrak{m}^{l} E^{i}(M)_{n}=0$ for all $n$ and for $i=1,2$. As $M$ has period two it follows that $\mathfrak{m}^{l} E^{i}(M)_{n}=0$ for all $i \geq 1$ and all $n \geq 0$. Let


Let $M \xrightarrow{x} M \rightarrow N \rightarrow \Omega^{-1}(A)$ be a triangle in $\underline{\mathrm{CM}}(A)$. As before we have $\operatorname{dim} \underline{\operatorname{Supp}}(N) \leq \operatorname{dim} \underline{\operatorname{Supp}}(M)-1$ and $N$ is not free. By induction hypotheses $\operatorname{deg} \overline{s_{I}^{N}(z)}=r_{I}$. By the structure of triangles in $\underline{\mathrm{CM}}(A)$, see [1, 4.4.1], we have an exact sequence $0 \rightarrow G \rightarrow N \rightarrow M / x M \rightarrow 0$ with $G$-free. It follows that $E^{3}(N)=$ $E^{3}(M / x M)$. We also have an exact sequence $0 \rightarrow M \xrightarrow{x} M \rightarrow M / x M \rightarrow 0$. As $x \in \operatorname{ann} L_{i}(M)$ it follows that we have an exact sequence

$$
0 \rightarrow E^{2}(M) \rightarrow E^{3}(M / x M) \rightarrow E^{3}(M) \rightarrow 0
$$

As the Hilbert function of $E^{3}(M)$ and $E^{2}(M)$ are identical, 2.5(2) we get that $2 s_{I}^{M}(z)=s_{I}^{N}(z)$. It follows that $\operatorname{deg} s_{I}^{M}(z)=s_{I}$. By induction the result follows.

Remark 4.4. Consider $U^{i}(M)=\bigoplus_{n \geq 0} \operatorname{Ext}_{A}^{i}\left(A / I^{n+1}, M\right)$. Then for $i \geq d+1$ it is possible to give a natural $\mathcal{R}$-module structure on $U^{i}(M)$. However with this structure $U^{i}(M)$ is NOT finitely generated (note if $x t \in \mathcal{R}_{1}$ then $x_{1} t U^{i}(M)_{n} \subseteq$ $\left.U^{i}(M)_{n-1}\right)$. Thus it is not possible to extend the result in 3.3 to all MCM modules.

## References

[1] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Mathematical Surveys and Monographs, 262. American Mathematical Society, Providence, RI, 2021.
[2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, 1998.
[3] D. Katz and E. Theodorescu, On the degree of Hilbert polynomials associated to the torsion functor, Proc. Amer. Math. Soc, 135, (2007), 3073-3082.
[4] A. Neeman, Triangulated categories, Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ, 2001.
[5] T. J. Puthenpurakal, Hilbert-coefficients of a Cohen-Macaulay module, J. Algebra 264 (2003), no. $1,82-97$.
[6] _, A sub-functor for Ext and Cohen-Macaulay associated graded modules with bounded multiplicity, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2567--2589.
[7] , Derived functors and Hilbert polynomials over regular local rings, arXiv:2312.16982
[8] R. Takahashi, Classifying thick subcategories of the stable category of Cohen-Macaulay modules, Adv. Math. 225 (2010), no. 4, 2076-2116.
[9] E. Theodorescu, Derived functors and Hilbert polynomials, Math. Proc. Camb. Phil. Soc. 132 (2002), 75-88.

Department of Mathematics, IIT Bombay, Powai, Mumbai 400076
Email address: tputhen@math.iitb.ac.in


[^0]:    Date: April 24, 2024.

