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Abstract—Pre-training GNNs to extract transferable knowl-
edge and apply it to downstream tasks has become the de
facto standard of graph representation learning. Recent works
focused on designing self-supervised pre-training tasks to extract
useful and universal transferable knowledge from large-scale
unlabeled data. However, they have to face an inevitable question:
traditional pre-training strategies that aim at extracting useful
information about pre-training tasks, may not extract all useful
information about the downstream task. In this paper, we
reexamine the pre-training process within traditional pre-training
and fine-tuning frameworks from the perspective of Information
Bottleneck (IB) and confirm that the forgetting phenomenon in
pre-training phase may cause detrimental effects on downstream
tasks. Therefore, we propose a novel Delayed Bottlenecking Pre-
training (DBP) framework which maintains as much as possible
mutual information between latent representations and training
data during pre-training phase by suppressing the compression
operation and delays the compression operation to fine-tuning
phase to make sure the compression can be guided with labeled
fine-tuning data and downstream tasks. To achieve this, we
design two information control objectives that can be directly
optimized and further integrate them into the actual model
design. Extensive experiments on both chemistry and biology
domains demonstrate the effectiveness of DBP. The code is
available in https://anonymous.4open.science/r/TKDE-DBP.

Index Terms—Pre-training, Graph neural networks, Informa-
tion bottleneck, Forget

I. INTRODUCTION

IN recent years, Graph Neural Networks (GNNs) have
shown prominent performances in various fields including

social networking [1]–[5], molecular computing [6]–[10], web
recommendation [9], [11]–[16], and bioinformatics [17]–[19].
Meanwhile, pre-training GNN, which is capable of enhancing
the performance of GNN on specific-data-required down-
stream tasks by extracting universal transferable knowledge
from large-scale unlabeled graph-structured data, has also
attracted the great attention of both academic and industrial
communities [20]–[22].
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Great efforts [23]–[29] have been studied in the field of
pre-training GNN to achieve knowledge extraction, and exist-
ing works can be roughly distinguished into two categories,
contrastive self-supervised learning [26]–[29] and generative
self-supervised learning [23]–[25]. The previous one aims at
learning knowledge in different semantic levels by contrasting
the enhanced views of different data, while the latter one
tries to recover and generate graph structure data to eventually
learn the property patterns of vertexes and edges within the
graph structure [30], [31]. In summary, all these methods have
paid all their attention to the design of the self-supervised
pre-training task to extract useful information with regard to
the pre-training task from large-scale unlabeled datadata [26],
[32]–[36]. However, considering the difference between the
pre-training task and downstream tasks, we have to face an
inevitable question: can the pre-training process transfer all
useful information to the downstream task from large-scale
unlabeled data?

To answer this question, we need to re-examine the pre-
training process within the traditional pre-training and fine-
tuning framework from the perspective of information extrac-
tion. Some previous work indicates that, given a specific learn-
ing task, animals choose to forget some remembered behaviors
to better adapt to some specific tasks [37]–[40]. Meanwhile,
[41]–[44] also indicate that this kind of biological forgetting
phenomenon can also be found during the training process
of neural networks. As illustrated in Figure 1(a), the neural
network quickly learns information from data during the first
phase and compresses the representation by forgetting some
learned information which is useless to the pre-training task in
the second phase. According to [42], such forgetting behavior
is to better fit the target of the pre-training task. Nevertheless,
considering the pre-training task which is artificially designed
to extract universal transferable information from unlabeled
data and is totally different from the downstream task in
general [45], [46], such forgetting behavior is harmful to
the learning and transformation of universal knowledge since
those dropped information may be useful and of significance
to downstream tasks.

Challenges. To solve the above-mentioned deficiencies of
traditional pre-training GNNs, there is a key challenge needs
to be addressed: How to improve existing pre-training and
fine-tuning strategy to make sure that the useful information
with regard to a downstream task can be maintained as much
as possible?

To address these challenges, as demonstrated in Figure 1(b),
we propose a novel Delayed Bottlenecking Pre-training (DBP)
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Fig. 1. Information-theoretic analysis of conventional and delayed bottle-
necking pre-training in graph neural networks. Subfigure (a) presents the
dynamics of information encoding in latent space during conventional pre-
training, denoted as Z, relative to the pre-training data X and associated task
Y , and its subsequent impact on downstream task Y ′. In this regime, the
latent representation Z undergoes a compression process, optimized for Y ,
which inadvertently discards non-salient features for Y but may be pertinent to
Y ′, thereby diminishing the mutual information I(Z;Y ′) post-compression.
Subfigure (b) depicts an alternative approach with the proposed Delayed
Bottlenecking Pre-Training, where the compression of Z during the pre-
training phase is deliberately modulated. This control preserves a broader set
of features in Z, allowing for enhanced mutual information I(Z;Y ′) post-
fine-tuning, which is refined under the guidance of labeled data specific to
Y ′.

framework to address the issue of information forgetting
during pre-training. In particular, as illustrated in Figure 1(b),
we first re-analyze the whole procedure of pre-training from
the perspective of IB, and formulate the information dropping
during pre-training. Based on this, we first design a novel
information compression delayed pre-training strategy that
maintains as much as possible mutual information between
latent representations and training data during the pre-training
phase by suppressing the compression operation. Then, we
delay the compression operation to fine-tuning phase to make
sure the compression can be guided with labeled fine-tuning
data and downstream tasks. In the pre-training phase, DBP
includes a newly designed information-based representation
reconstruction which can maintain the mutual information
between latent representation and training data by decoding
the learned latent representation into the features of vertexes
and edges. In the fine-tuning phase, we borrow the core idea
of Depth Variational Information Bottleneck (DVIB) [42] and
extend it to be adapted to graph-structured data, hence making
sure that the delayed information compression is optimized
with the guidance of labeled fine-tuning data and downstream
task. Extensive experiments on both chemistry and biology
domains verify the effectiveness of our proposed strategy on
various pre-training GNNs.

The main contributions are summarized as follows:
• New theoretical analysis: For the first time, we analyze

the information forgetting of the compression operation in
pre-training GNNs from the perspective of the Informa-
tion Bottleneck (IB) theory. To our knowledge, this is the
first paper that aims at alleviating the influence of such

kind of inevitable information forgetting on downstream
tasks.

• Novel framework and methods: We propose a DBP
framework that includes a novel information compression
delayed pre-training strategy to enhance the performances
of pre-training GNNs. In DBP, we propose a novel
information-based representation reconstruction and an
extended Graph-DVIB to respectively achieve informa-
tion maintaining in the pre-training phase, and labeled
fine-tuning data and downstream task-guided information
compression in the fine-tuning phase.

• Extensive empirical evaluation: Extensive experiments
on both chemistry and biology domains demonstrate the
effectiveness of our proposed framework while incorpo-
rating different pre-training GNNs.

II. RELATED WORK

Pre-training GNNs. Recently, Pre-training GNNs have re-
ceived significant attention since they can alleviate the heavy
reliance of traditional GNNs on data with fine-grained labels.
Generally, pre-training GNNs usually consist of two phases: i)
Pre-training: learning model parameters and node embeddings
from large-scale unlabeled graph data; ii) Fine-tuning: fine-
tuning the learned parameters and embeddings with labeled
graph data to make the network more applicable to down-
stream tasks. Existing methods, which mostly follow such
a two-phase framework, can be roughly divided into two
categories: contrastive pre-training [26], [27], [47] and gen-
erative pre-training [23], [24]. Contrastive pre-training learns
graph representation by contrasting the semantic differences
between pre-define positive and negative samples. In particu-
lar, DGI [47] focuses on the correspondences between nodes
and subgraphs, GraphLoG [27] pays attention to correlogram
and subgraph pairs, and GraphCL [27] contrasts subgraph
level with different data augmentations. On the other hand,
generative pre-training captures the intrinsic dependencies
between node attributes and graph structure by generating
node attributes and edges, e.g., jointly generating nodes and
edges [23] or reconstructing shadowed nodes [24]. However,
all these methods paid all their attention to designing self-
supervised tasks to maximally extract useful information with
regard to the pre-training task from large-scale unlabeled
data, ignoring the issue that the knowledge extracted by
the pre-training task cannot be completely transferred to the
downstream task due to the differences between pre-training
and downstream tasks.
Mutual Information and Its Application. Mutual informa-
tion (MI) is a measure of the degree of interdependence be-
tween random variables based on Shannon entropy. It is often
used to measure the nonlinear correlation between variables,
so it can be regarded as a measure of the true dependence
between variables. For two random variables X and Y , the
mutual information between them is as follows:

I(X;Y ) = H(X)−H(X|Y ) (1)

Here, H(X) is the information entropy of X , and H(X|Y )
is the conditional entropy of random variable X under the
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condition of known random variable Y . From a probabilistic
perspective, mutual information is derived from the joint
probability distribution p(x, y) and the marginal probability
distribution p(x) and p(y) of the random variables X and
Y . The dependence between X and Y is stronger when the
divergence between the joint probability distribution p(x, y)
and the marginal product p(x)p(y) is larger. It is widely used
in deep learning because it can measure the real dependencies
between variables.

However, since the true distribution in neural networks is
difficult to know, the calculation and optimization of mutual
information is a difficult problem. In graph learning, many
studies on optimizing neural networks through information
theory choose MINE [47] or variational methods [42] to ap-
proximate the upper and lower bounds of mutual information
to achieve the goal of optimizing mutual information. Many
self-supervised learning methods on graphs also utilize mutual
information. For example, DGI [47] relies on maximizing
mutual information between patch representations and cor-
responding high-level graph summaries to learn node repre-
sentations in graph-structured data. GraphMVP [48] performs
self-supervised learning by optimizing the mutual information
between molecular 2D topology and 3D geometric views to
improve correspondence and consistency between these views.
Besides representation learning and self-supervised learning,
mutual information has also been used in the study of neu-
ral network interpretability and training dynamics. Typically,
[42] investigates the correlation between changes in mutual
information between representation and training data and
labels during neural network training and the generalization
and robustness of neural networks. These studies inspire us
whether there will be related problems in the pre-training
process of GNN.

IB Theory. IB theory can be used in deep learning to seek the
balance between fitting and generalization by controlling the
mutual information between latent representation and training
data. The main idea of such equilibrium can be summarized
into two points: i) enlarging the information that is useful
to the task within the representation, and ii) suppressing the
information that is irrelevant to the task within the repre-
sentation [42], [49], [50]. Given the significant potential of
IB in enhancing model interpretability and generalization,
recent researchers attempt to explore its effect on extracting
graph representations [50]–[52]. Specifically, GIB [50] extends
general IB to graph data as a modified regularization on
both structure and feature information, hence achieving more
robust node representations. And, SIB [51] and VIB-GSL [52]
apply IB to subgraph recognition and graph structure learning,
respectively. Collectively, these methods directly utilize the IB
principle to learn minimal but sufficient information. However,
directly using IB in pre-training GNNs to learn minimal but
sufficient information with regard to the pre-training task will
definitely result in the issue of information forgetting during
the procedure of seeking the minimal information subset.

III. DELAYED BOTTLENECKING PRE-TRAINING:
CAUSATION, STRATEGY, AND DERIVATION

A key insight of this paper is information suppressing
in pre-training may lose useful information with regard to
the downstream task. In this section, we first conduct a
theoretical analysis to demonstrate the existence of this effect
and formulate the information forgetting during pre-training,
and further pointedly propose the improvement strategy.

A. Re-analyzing Parameter Transfer in Pre-training

In this subsection, we re-analyze the information forgetting
problem during pre-training and its impact on parameter
transfer. Ideally, the essence of pre-training is to extract
transferable knowledge from pre-training data, so the objective
optimization process of pre-training can be described as:

θ0 = argmin
θ

Lp(fθ;Dpre)

= argmax
θ

Iθ(fθ;Dpre),
(2)

where Lp represents the optimization objective of pre-training,
and Iθ(fθ;Dpre) denotes the information extracted by model
fθ from pre-training dataset Dpre. After training, the optimal
model parameter set θ0 and the corresponding extracted in-
formation Iθ(fθ;Dpre) are transferred to the downstream task
through parameter initialization.

Lemma 1 (Representation Forgetting). According to the re-
search of [42], in the normal training process, the mutual
information I(X;Z) between input data X and latent rep-
resentation Z first increases and then decreases in the early
stage of training, while the mutual information I(X;Y ) be-
tween input data X and output Y keeps increasing. Formally:

∃θmax, s.t. ∀θ < θmax,
∂I(X;Zθ)

∂θ
> 0;

∀θ > θmax,
∂I(X;Zθ)

∂θ
< 0.

(3)

Theorem 1 (Pre-training Information Transfer). Since the
pre-training task itself is also a training task, according to
Lemma 1, for the existing pre-trained GNN model fθ, the
extracted information Iθ(fθ;Dpre) will gradually increase to
Iθmax

(fθmax
;Dpre), and then decrease to Iθ0(fθ0 ;Dpre) when

obtaining the optimal parameter θ0, i.e.,

θ → θ0 =⇒
Iθ(fθ;Dpre) → Iθmax

(fθmax
;Dpre) → Iθ0(fθ0 ;Dpre).

(4)

In this process, the forgotten information, probably contains
some information which is useless to the pre-training task
but useful to the downstream task. If such information is
forgotten and cannot be transferred to the downstream task,
the parameter set θ0 and extracted information Iθ(fθ;Dpre)
are not optimal anymore.

B. Delayed Bottlenecking Strategy

In this subsection, we propose a novel strategy, Delayed
Bottlenecking (DBP), to alleviate the above problem. The
basic idea of such a strategy is to suppress the information
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Fig. 2. Architecture of DBP framework. Subfigure (a) corresponds to the generative and contrastive learning based self-supervised pre-training model. The
optimization objective of pre-training consists of Lcon and Lpi which are respectively used to extract general knowledge and avoid excessive information
compression. Subfigure (b) indicates the information control based fine-tuning model. The optimization objective of fine-tuning, which is composed of Lcls

and Lfi, encourages enhanced information compression to improve classification performance. The two-phase transition is implemented by means of parameter
transfer.

compression imposed for the pre-training task in pre-training
and enhance the compression based on the downstream task
in fine-tuning, i.e., make sure Iθ0(fθ0 ;Dpre) be closer to
Iθmax(fθmax ;Dpre) while obtaining the optimal pre-training
parameter set θ0.

Such operation of maintaining as much as possible infor-
mation to fine-tuning phase can also be viewed as that the
pre-trained parameters and representation are skewed to the
downstream task, and to achieve this target, we can formulate
two information control objectives respectively for pre-training
and fine-tuning phases, i.e.,

i) Pre-training phase:

Lpi = −I(Dpre;Z) (5)

ii) Fine-tuning phase:

Lfine = Lcls + β · Lfi

where

 Lcls = −I(Y ;Z)

Lfi = I(Dfine;Z)

(6)

where I(·; ·) represents the mutual information, Z is the latent
representation, Y is the downstream target, β is employed to
control the degree of enhancing compression in fine-tuning
and can be tuned based on task and dataset. Lfine is used
to enhance compression with the guidance of the downstream
task and labeled fine-tuning data. Therefore, it contains two
components, Lfi is to enhance the compression based on
labeled fine-tuning data, and Lcls is to enhance the mutual
information between latent representation and downstream
task, hence improving the final performance of our model in
the downstream task. Different from traditional optimization
problems, in the field of deep learning, the issue of optimiz-
ing such objectives can also be converted into seeking the

variational upper bounds respectively for Lpi and Lfine to
achieve the minimization constraint of mutual information in
both pre-training and fine-tuning periods. We then detailedly
discuss these in the next subsection.

C. Information Control Objectives for Optimization

Due to the intractability of mutual information, the IB
objectives in Equations 5 and 6 are hard to be directly used
in optimization. Therefore, in this subsection, we derive the
tractable upper bounds of Lpi and Lfi. The variational upper
bounds ensure that the original mutual information objective
can be reduced in case the empirical risks of Lfine and Lpi

are reduced.

Proposition 1 (Upper bound of Lpi). Given pre-training
dataset Dpre, latent representation Zp learned from Dpre, and
graph Gp = (Xp, Ep) ∈ Dpre, we have

Lpi = −I(Dpre;Z)

≤ −EZp∼pθ(Zp|Xp,Ep)[log qφ(Xp, Ep|Zp)]
(7)

where pθ(Zp|Xp, Ep) is the variational approximation of true
conditional probability p(Zp|Xp, Ep) in the encoder during
pre-training, and qφ(Xp, Ep|Zp) is the variational approxi-
mation of the true conditional probability q(Xp, Ep|Zp) in the
decoder during pre-training.

Proof. For pre-training dataset Dpre, latent representation Zp

learned from Dpre, and graph Gp = (Xp, Ep) ∈ Dpre, we
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have:

I(Dpre;Zp) = H(Dpre)−H(Dpre|Zp)

≥ −H(Dpre|Zp)

(1)
=

∫
dZpdGp p(Zp, Gp) log p(Gp|Zp)

(2)
=

∫
dZpdGp p(Zp, Gp) log qφ(Gp|Zp)

+

∫
dZpdGp p(Zp, Gp) log

p(Gp|Zp)

qφ(Gp|Zp)

(3)
=

∫
dZpdGp p(Zp, Gp) log qφ(Gp|Zp)

+

∫
dGp p(Gp|Zp) log

p(Gp|Zp)

qφ(Gp|Zp)

(4)
=

∫
dZp pθ(Zp|Gp) log qφ(Gp|Zp)

+ KL [p(Gp|Zp)||q(Gp|Zp)]

(5)

≥
∫

dZp pθ(Zp|Gp) log q(Gp|Zp)

(6)
= EZp∼pθ(Zp|Gp)[log qφ(Gp|Zp)]

(7)
= EZp∼pθ(Zp|Xp,Ep)[log qφ(Xp, Ep|Zp)].

(8)

Among Equation 8, step (1) is the definition of mutual infor-
mation. Steps (2) and (3) are based on the integral property.
Steps (4) and (5) are defined according to the KL divergence.
Steps (6) and (7) are based on the properties of integrals and
expectations.

Lpi = −α · I(Dpre;Zp)

≤ −α · EZp∼pθ(Zp|Xp,Ep)[log qφ(Xp, Ep|Zp)]
(9)

In the fine-tuning phase, we encourage the downstream task
can compress information with ground-truth labels, so that the
learned knowledge during pre-training can be transferred and
generalized on the downstream task more quickly.

Proposition 2 (Upper bound of Lfine). Given fine-tuning
dataset Dfine, latent representation Zf learned from Dfine,
the label y of downstream task Y , and graph Gf = (Xf , Ef ) ∈
Dfine, we have

Lfine =β · I(Dfine;Z)− I(Y ;Z)

≤β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )]

− EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]
(10)

where pω(Zf |Xf , Ef ) is the variational approximation of true
conditional probability p(Zf |Xf , E)f in the encoder during
fine-tuning, r(Zf ) is an estimation of prior probability p(Zf )
of Zf , and qγ(y|Zf ) is the variational approximation of the
true conditional probability q(y|Zf ) in the classifier.

Proof. For fine-tuning dataset Dfine, latent representation Zf

learned from Dfine, the label of downstream task y, and graph

Gf = (Xf , Ef ) ∈ Dfine, we have:

I(y;Zf )− β · I(Dfine;Zf )

≥
∫

dXfdydZf p(Xf ) p(y|Xf ) p(Zf |Xf ) log q(y|Zf )

− β ·
∫

dXfdZf p(Xf ) p(Zf |Xf ) log
p(Zf |Xf )

r(Zf )

(1)
=

∫
dZf pω(Zf |Xf ) log qγ(y|Zf )

− β ·
∫

dZ pω(Zf |Xf ) log
pω(Zf |Xf )

r(Zf )
(2)
= EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]

− β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )].

(11)

Among Equation 11, step (1) is based on the properties
of conditional probability and marginal probability. Step (2)
follows from the definition of expectation. Thus, we can obtain
an upper bound on the information control objective of the
fine-tuning stage:

Lfine =β · I(Dfine;Zf )− I(y;Zf )

≤β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )]

− EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )].
(12)

D. Proof for Parameters Transfer

In this section, we will prove how the proposed two-stage
loss function improves the transfer of pre-trained parameters.
First, we introduce some additional definitions and lemmas:

Definition 1 (KL Divergence). For two probability distribu-
tions P and Q, the KL divergence between them is defined
as:

DKL(P∥Q) = Ex∼P

[
log

P (x)

Q(x)

]
(13)

Lemma 2 (Chain Rule of KL Divergence). For three proba-
bility distributions P (X,Y ), Q(X,Y ), and R(X), we have:

DKL(P (X,Y )∥Q(X,Y )) = DKL(P (X)∥R(X))

+ Ex∼P (X)[DKL(P (Y |X)∥Q(Y |X))]
(14)

Lemma 3 (Non-Negativity of KL Divergence). For any two
probability distributions P and Q, we have DKL(P∥Q) ≥ 0,
with equality holding if and only if P = Q almost everywhere.

The equality holds if and only if Q(x)
P (x) is a constant almost

everywhere, i.e., P = Q almost everywhere. The proof of this
lemma can be demonstrated using Jensen’s inequality, but is
omitted here due to space constraints.

Now, we restate and prove the main theorem:

Theorem 2 (Bounding Posterior Distributions via DBP). Let
Dpre,Dfine denote the pre-training data and fine-tuning data,
respectively, Zp, Zf denote the corresponding latent represen-
tations, and Y denote the labels for the downstream task.
Define: Lpi = −I(Dpre;Zp)

Lfi = βI(Dfine;Zf )− I(Y ;Zf )
(15)
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We make the following assumptions:

Assumption 1. H denotes the model hypothesis space,
P (H), Q(H) denote two prior distributions;

Assumption 2. P (Zp|Dpre, H) = Q(Zp|Dpre, H),∀H ∈ H;

Assumption 3. P (Zf |Dfine, H) = Q(Zf |Dfine, H),∀H ∈
H;

Assumption 4. P (Y |Zf , H) = Q(Y |Zf , H),∀H ∈ H.

Then the optimization objectives Lpi and Lfi satisfy:

DKL(P (H|Dpre)∥Q(H|Dpre))

≤ DKL(P (H)∥Q(H))− Lpi(P ) + Lpi(Q)

DKL(P (H|Dfine)∥Q(H|Dfine))

≤ DKL(P (H)∥Q(H)) +
1

β
(Lfi(P )− Lfi(Q))

(16)

Theorem 2 provides a theoretical basis for improving the
parameter transfer process by indicating that minimizing Lpi

and Lfi can control the difference between the posterior
distributions of the prior distribution under the pre-training
and fine-tuning data, respectively. Specifically:

• Minimizing Lpi(P ) aligns the posterior P (H|Dpre) after
pre-training with the reference posterior Q(H|Dpre), pre-
venting overfitting to the pre-training data when Q(H) is
the prior. This suppresses excessive information compres-
sion during pre-training, allowing the learned parameters
and representations to adequately retain information from
the pre-training data for subsequent fine-tuning.

• Minimizing Lfi(P ) aligns the posterior P (H|Dfine)
after fine-tuning with Q(H|Dfine), preventing overfitting
to the fine-tuning data. Simultaneously, it maximizes
IP (Y ;Zf ) − βIP (Dfine;Zf ), consistent with maximiz-
ing the mutual information between the latent represen-
tation and downstream labels via Lcls while enhancing
information compression via Lfi to adapt the pre-trained
parameters to the downstream task during fine-tuning.
This reflects the core delayed bottlenecking strategy of
delaying the focus of information compression to the fine-
tuning stage, guided by downstream supervision, which
can better control parameter learning in both phases
compared to simply maximizing pre-training mutual in-
formation.

Proof. First, we prove the first inequality. By Lemma 2, we
have:
DKL(P (H,Zp,Dpre)∥Q(H,Zp,Dpre))

= DKL(P (H)∥Q(H))

+ EP (H)[DKL(P (Zp,Dpre|H)∥Q(Zp,Dpre|H))]

= DKL(P (H)∥Q(H))

+ EP (H)[DKL(P (Dpre|H)∥Q(Dpre|H))]

+ EP (H),P (Dpre|H)[DKL(P (Zp|Dpre, H)∥Q(Zp|Dpre, H))]

= DKL(P (H)∥Q(H))

+ EP (H)[DKL(P (Dpre|H)∥Q(Dpre|H))]

≥ DKL(P (H)∥Q(H))

+ EP (H)[DKL(P (Dpre|H)∥Q(Dpre|H))]
(17)

where the second equality uses assumption (2), and the last
inequality uses Lemma 3. On the other hand, we have:

DKL(P (H,Zp,Dpre)∥Q(H,Zp,Dpre))

= E(P (H,Zp,Dpre)

[
log

P (h, zp, d
pre)

Q(h, zp, dpre)

]
= E(P (H,Zp,Dpre)

[
log

P (h)P (dpre|h)P (zp|dpre, h)
Q(h)Q(dpre|h)Q(zp|dpre, h)

]
= E(P (H,Zp,Dpre)

[
log

P (h)

Q(h)

+ log
P (dpre|h)
Q(dpre|h)

+ log
P (zp|dpre, h)
Q(zp|dpre, h)

]
= DKL(P (H)∥Q(H))

+ EP (H,Dpre)

[
log

P (dpre|h)
Q(dpre|h)

]
+ E(P (H,Zp,Dpre)

[
log

P (zp|dpre, h)
Q(zp|dpre, h)

]
= DKL(P (H)∥Q(H)) + IP (Dpre;H)− IQ(Dpre;H)

+ EP (H,Dpre)[DKL(P (Zp|Dpre, H)∥Q(Zp|Dpre, H))]

= DKL(P (H)∥Q(H))− Lpi(P ) + Lpi(Q)
(18)

Combining the above two inequalities, we obtain:

DKL(P (H|Dpre)∥Q(H|Dpre))

≤ DKL(P (H,Zp,Dpre)∥Q(H,Zp,Dpre))

≤ DKL(P (H)∥Q(H))− Lpi(P ) + Lpi(Q) (19)

Next, we prove the second inequality. Similarly, we have:

DKL(P (H,Zf ,Dfine, Y )∥Q(H,Zf ,Dfine, Y ))

= DKL(P (H)∥Q(H))

+ EP (H)

[
DKL(P (Zf ,Dfine, Y |H)∥

Q(Zf ,Dfine, Y |H))
]

= DKL(P (H)∥Q(H))

+ EP (H)

[
DKL(P (Dfine|H)∥Q(Dfine|H))

]
+ EP (H)EP (Dfine|H)

[
DKL(P (Zf |Dfine, H)

∥Q(Zf |Dfine, H))
]

+ EP (H)EP (Dfine|H)EP (Zf |Dfine,H)

[
DKL(P (Y |Zf , H)

∥Q(Y |Zf , H))
]

= DKL(P (H)∥Q(H)) + EP (H)

[
DKL(P (Dfine|H)

∥Q(Dfine|H))
]

≥ DKL(P (H)∥Q(H))

+ EP (H)

[
DKL(P (Dfine|H)∥Q(Dfine|H))

]
(20)

where the third equality uses Assumptions 3 and 4, and the
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last inequality uses Lemma 3. On the other hand, we have:

DKL(P (H,Zf ,Dfine, Y )∥Q(H,Zf ,Dfine, Y ))

= E(P (H,Zf ,Dfine,Y )

[
log

P (h, zf , d
fine, y)

Q(h, zf , dfine, y)

]
= E(P (H,Zf ,Dfine,Y )

[
log

P (h)

Q(h)
+ log

P (dfine|h)
Q(dfine|h)

+ log
P (zf |dfine, h)
Q(zf |dfine, h)

+ log
P (y|zf , h)
Q(y|zf , h)

]
= DKL(P (H)∥Q(H)) + EP (H,Dfine)

[
log

P (dfine|h)
Q(dfine|h)

]
+ EP (H,Zf ,Dfine)

[
log

P (zf |dfine, h)
Q(zf |dfine, h)

]
+ EP (H,Zf ,Y )

[
log

P (y|zf , h)
Q(y|zf , h)

]
= DKL(P (H)∥Q(H)) + IP (Dfine;H)− IQ(Dfine;H)

+ IP (Zf ;Dfine|H)− IQ(Zf ;Dfine|H)

+ IP (Y ;Zf |H)− IQ(Y ;Zf |H)

= DKL(P (H)∥Q(H)) + β(IP (Dfine;Zf )− IQ(Dfine;Zf ))

− (IP (Y ;Zf )− IQ(Y ;Zf ))

= DKL(P (H)∥Q(H)) +
1

β
(Lfi(P )− Lfi(Q))

(21)
Combining the above two inequalities, we obtain:

DKL(P (H|Dfine)∥Q(H|Dfine))

≤ DKL(P (H,Zf ,Dfine, Y )∥Q(H,Zf ,Dfine, Y ))

≤ DKL(P (H)∥Q(H)) +
1

β
(Lfi(P )− Lfi(Q)) (22)

This completes the proof of the theorem.

IV. DBP FRAMEWORK

Given the theoretical analysis in the previous section, we
still have to consider how to integrate the proposed DBP
strategy into the actual model design, so that the information
control objectives can be applied to graph structure data. We
will discuss these issues in this section.

A. Solution Overview

The solution overview is illustrated in Figure 2 which also
contains the implementations of the above two optimization in-
formation control objectives in the pre-training and fine-tuning
phases. The DBP framework contains two parts: i) a self-
supervised pre-training model for controlling information and
extracting knowledge via generative learning and contrastive
learning, and ii) a fine-tuning model with an information
control module.

B. Generative and Contrastive Learning Based Self-
supervised Pre-training

As shown in Figure 2(a), We built a self-supervised pre-
training model that consists of two components, mask-based
representation contrast and information-based representation

reconstruction. The first one is to extract general knowledge
from pre-training data, and the second component is used to
maintain the mutual information between latent representation
and training data. We will describe these two modules in detail
in the following subsections.
Mask-based Representation Contrast. Before pre-training,
we first use a random masking scheme to mask some nodes
and their connected edges in the original graph Gp = (Xp, Ep)
and record the indices of the masked nodes to obtain the noisy
graph Ĝp = (X̂p, Êp). Then, the original graph Gp and the
noisy graph Ĝp are used as the input of encoder fθ to generate
the original graph node representation Zp and the noisy graph
node representation Ẑp, i.e.,

Zp = fθ(Xp, Ep), Ẑp = fθ(X̂p, Êp) (23)

To realize self-supervised learning, we define the product be-
tween the representations of masked nodes and their connected
nodes in the noisy graph as the negative sample, while the
product of representations in the original graph is correspond-
ingly defined as the positive sample. The contrastive self-
supervised objective can be written as,

Lcon =
∑

u,u′∈mask

−ln(σ(Zp
T
u ·Zpv))−ln(σ(−Ẑpu′

T
·Ẑpv′)) (24)

where u and v are correspondingly the masked nodes and their
connected nodes in the original graph, while u′ and v′ are the
masked nodes and their connected nodes in the noisy graph.
Note here σ indicates the Sigmoid function.
Information-Maintain Representation Reconstruction. We
further introduce the information control theory mentioned
in Proposition 1 into the node representation learning of
the original graph. Here, to obtain the representation Zp of
the original graph by encoder fθ, we let the conditional
probability pθ(Zp|Xp, Ep) be the variational approximation
of the true conditional probability p(Zp|Xp, Ep). To calculate
qφ(Xp, Ep|Zp), we employ a decoder fφ consisting of two
single-layer GNNs to reconstruct node features X̃p and edge
features Ẽp of the original graph from Zp, i.e.,

X̃p, Ẽp = fφ(Zp) (25)

The optimization goal of our information reconstruction task
can be calculated as the cross-entropy (CE) loss between
reconstructed features and original features, and it can be
simplified as the upper bound derived in Equation 7.

Lpi = −EZp∼pθ(Zp|Xp,Ep)[log qφ(Xp, Ep|Zp)] (26)

Here, Lpi allows the representation to retain more information
from the pre-trained dataset by encouraging the reconstructed
nodes and features to have more similarity to the original
graph. It is not only an approximation of our proposed
information control objective, but also indicates that the latent
representation encoded by fθ has the potential to be restored
to the original representation.
Pre-training Objective. The above representation contrast
and reconstruction components work jointly to extract general
knowledge from pre-training data and simultaneously suppress
information compression in latent representation learning.
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This jointly working mechanism determines that the pre-
trained model can effectively avoid information forgetting in
extracting general knowledge, and information compression is
delayed to the fine-tuning phase. Therefore, the overall loss of
pre-training should be the sum of the objectives of these two
components, i.e.,

Lpre = Lcon + α · Lpi

=
∑

u,u′∈mask

−ln(σ(Zp
T
u · Zpv))− ln(σ(−Ẑpu′

T
· Ẑpv′))

− α · EZp∼pθ(Zp|Xp,Ep)[log qφ(Xp, Ep|Zp)]
(27)

where α is a hyper-parameter for adjusting the weight of
information control.

C. Information Controlled Fine-tuning

Similar to recent studies, during fine-tuning, we also employ
the same encoder fω , whose parameters ω are initialized with
the parameter θ of fθ, as in the pre-training phase. Notice
that the labeled map Gf = (Xf , Ef ) in downstream task is
encoded to obtain the latent representation Zf by fω which
calculates the modeling probability pω(Zf |Xf , Ef ), i.e.,

Zf = fω(Xf , Ef ). (28)

As demonstrated in Figure 2(b), different from other pre-
training and fine-tuning works, to avoid information forgetting,
the information compression in pre-training is suppressed,
therefore, we should enhance this operation in the fine-tuning
phase.
Delayed Information Compression. To achieve delayed in-
formation compression in fine-tuning, we add a compression
module consisting of two MLPs between fω and the classifier
to learn the mean µ and variance σ2 respectively.{

µ, σ2
}
= MLPs(Zf ) (29)

Then we sample the graph representation Zf from the multi-
variate normal distribution N (Zf |µ, σ2) with a reparameteri-
zation trick to realize back-propagation, i.e.,

Zt = µ+ σ2 ⊙ ε (30)

where ε ∼ N (0, 1). We further refer to the information
control theory mentioned in Proposition 2 to calculate the
Kullback-Leibler (KL) divergence of distribution N (Zf |µ, σ2)
and Gaussian prior distribution r(Zf ) to realize information
control during fine-tuning. The optimization objective is the
term in formula (6) to enhance compression,

Lfi = EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )] (31)

Fine-tuning Objective. Furthermore, we first take Zf as the
input of classifier fγ to compute the variational approximation
qγ(y|Zf ), and the classification loss is the first term in
Equation 6,

Lcls = −EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]. (32)

And based on this, the overall loss of fine-tuning can be
defined as,

Lfine = Lcls + β · Lfi

= −EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]+

β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )],
(33)

where β is a hyper-parameter for adjusting the weight of
information control.

V. EXPERIMENTS

In this section, we compare the performance of our proposed
DBP and various state-of-the-art pre-trained baselines on both
chemistry and biology domains. Then, we conduct a series
of comprehensive model analyses to witness our motivation
and the effectiveness of our delayed bottlenecking information
control strategy.

A. Experimental Settings

Datasets. Following the setting of [25], we conduct experi-
ments on data from two domains: molecular property predic-
tion in chemistry and biological function prediction in biology.
For chemistry domain, we use Zinc-2M - 2 million unlabeled
molecules sampled from the ZINC15 database [53] in the
pre-training phase and eight binary classification datasets in
MoleculeNet [54] in the fine-tuning phase, which are split by
the scaffold splitting scheme. For biology domain, we utilize
395K unlabeled protein ego-networks [25] for self-supervised
pre-training and predict 40 fine-grained biological functions
of 8 species in the fine-tuning phase. We show the statistics
of the two pre-trained datasets and MoleculeNet in TableII,
respectively.
Setups. Following the setting of [25], we employ a five-
layer GNN with 300-dimensional hidden units as the encoder
and two single-layer GNNs as the decoder in the pre-training
phase. We use an Adam optimizer [55] with a learning rate
of 1 × 10−3 to pre-train the GNN for 100 epochs. In the
fine-tuning phase, an information control module and a linear
classifier are appended upon the pre-trained GNN and the
information control module consists of two MLPs. We also
train the model for 100 epochs using the Adam optimizer with
learning rate of 1 × 10−3 and batch size of 32. We utilize a
fixed-step-size learning rate scheduler, which multiplies the
learning rate by 0.3 every 30 epochs. All the results are the
average of five independent runs with the same configuration
and different random seeds.
Attribute Masking Scheme. On chemistry domain, before
pre-training on large-scale molecular graphs, we randomly
mask nodes in 25% of attributes to obtain perturbed graphs.
To compare and learn the node representation of the masked
position and the node representation of the same position in
the original graph, we need to record the index of the mask
position for each training data. On biology domain, before
pre-training on a large-scale protein self-network graph, we
randomly mask the attributes of 25% of its edges to generate a
perturbation graph. We also record the index while controlling
the mask by setting additional weights for the variables.
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TABLE I
ROC-AUC SCORES (%) ON DOWNSTREAM MOLECULAR PROPERTY PREDICTION TASK COMPARED WITH STATE-OF-THE-ART METHODS. BOLD

INDICATES THE BEST PERFORMANCE WHILE UNDERLINE INDICATES THE SECOND BEST ON EACH DATASET.

Method BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG. GAIN

No Pre-training 65.8 ± 4.5 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 67.0 -

EdgePred 67.3 ± 2.4 76.0 ± 0.6 64.1 ± 0.6 60.4 ± 0.7 64.1 ± 3.7 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9 70.3 3.3
InfoGraph 68.2 ± 0.7 75.5 ± 0.6 63.1 ± 0.3 59.4 ± 1.0 70.5 ± 1.8 75.6 ± 1.2 77.6 ± 0.4 78.9 ± 1.1 71.1 4.1

AttrMasking 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 71.1 4.1
ContextPred 68.0 ± 2.0 75.7 ± 0.7 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 70.9 3.9

GraphPartition 70.3 ± 0.7 75.2 ± 0.4 63.2 ± 0.3 61.0 ± 0.8 64.2 ± 0.5 75.4 ± 1.7 77.1 ± 0.7 79.6 ± 1.8 70.8 3.8
GraphCL 69.5 ± 0.5 75.4 ± 0.9 63.8 ± 0.4 60.8 ± 0.7 70.1 ± 1.9 74.5 ± 1.3 77.6 ± 0.9 78.2 ± 1.2 71.3 4.3

GraphLoG 72.5 ± 0.8 75.7 ± 0.5 63.5 ± 0.7 61.2 ± 1.1 76.7 ± 3.3 76.0 ± 1.1 77.8 ± 0.8 83.5 ± 1.2 73.4 6.4
GraphMAE 72.1 ± 0.5 75.2 ± 0.6 64.0 ± 0.2 60.1 ± 1.1 82.1 ± 1.1 76.3 ± 2.4 76.9 ± 1.0 83.1 ± 0.7 73.7 6.7

S2GAE 71.8 ± 0.5 75.5 ± 0.8 63.9 ± 0.3 60.6 ± 0.8 80.7 ± 1.9 76.4 ± 1.6 76.4 ± 1.5 80.5 ± 0.9 73.3 6.3

DBP 72.8 ± 0.4 77.8 ± 0.4 65.5 ± 0.3 62.5 ± 0.8 82.8 ± 1.3 77.3 ± 1.1 78.8 ± 1.2 83.7 ± 1.0 74.9 7.9

TABLE II
STATISTICS FOR DATASETS.

Dataset Type #graphs Avg.# nodes #tasks

Zinc-2M Pre-trained 2,000,000 26.6 -
PPI Networks Pre-trained 395,000 27.8 -

BBBP Chemistry 2,038 24.1 1
Tox21 Chemistry 7,831 18.6 12

ToxCast Chemistry 8,598 18.8 617
SIDER Chemistry 1,425 33.6 27
ClinTox Chemistry 1,478 26.2 2
MUV Chemistry 93,087 14.3 17
HIV Chemistry 41,127 24.5 1

BACE Chemistry 1,513 34.1 1
Biological Func. × 8 Biology 88,000 - 40

GNN Architectures. Our experiments are mainly conducted
on GIN, but to verify the effectiveness of our method, we
conduct experiments with different GNN architectures in Table
3 in the original manuscript. All GNNs in our experiments
(e.g., GCN [56], GraphSAGE [57], GAT [58], GIN [59])
are with 5 layers, 300-dimensional hidden units, and a mean
pooling readout function. In addition, two attention heads are
employed in each layer of the GAT model.
Baselines. To demonstrate the effectiveness and robust-
ness of DBP, we compare it with state-of-the-art self-
supervised pre-training methods on chemistry and biology
domains: EdgePred [57], InfoGraph [60], AttrMasking [25],
ContextPred [25], GraphPartition [61], GraphCL [26],
GraphLoG [27], GraphMAE [62], and S2GAE [63]. EdgePred
infers link existence between node pairs. ContextPred explores
graph structure distribution by sampling and predicting sur-
rounding structures. AttrMasking masks and predicts node
or edge attributes based on the neighborhood to learn their
distribution. InfoGraph constructs contrastive loss using node
representations of the graph instance and other graphs. Graph-
Partition is a topology-based method that partitions nodes
into subsets to minimize cross-subset edges. GraphCL utilizes
node dropping, edge perturbation, attribute masking, and sub-
graph sampling to construct views for contrastive learning.
GraphLoG aligns embeddings of related graphs/subgraphs to
construct a locally smooth latent space, and models global
structure with a hierarchical model. GraphMAE conducts

self-supervised pre-training by masking and reconstructing
node features, introducing the masked autoencoding idea from
computer vision. S2GAE randomly masks edges and learns to
reconstruct them with direction-aware masking strategies and a
cross-correlation decoder, demonstrating superior performance
on link prediction, node classification, and graph classification
tasks.

B. Performance Comparison

Results on Chemistry Domain. The performance comparison
between the proposed DBP and SOTA methods on chemistry
domain is shown in Table I. DBP achieves the highest average
ROC-AUC score and gain among all self-supervised learning
strategies and performs best on six of eight tasks. We believe
that such significant improvements can be attributed to the
proposed information compression delayed pre-training strat-
egy, which preserves more beneficial information in the pre-
training phase and benefits downstream tasks in the fine-tuning
phase.
Results on Biology Domain. The results in Table III show that
DBP also achieves the best performance on biology domain,
especially achieving a gain of 6.3% compared to the No-
pretrain baseline. This illustrates that the proposed strategy is
general and generalizable. We argue that these properties are
mainly affected by reasonable information control, which can
learn more transferable prior knowledge and transfer them to
the fine-tuning phase, thus benefiting more downstream tasks
involving fine-grained classification.
Results w.r.t. Different GNN Architectures. Table IV com-
pares the performance of DBP and state-of-the-art pre-training
baselines, w.r.t. four different GNN architectures: GCN [56],
GraphSAGE [57], GAT [58], and GIN [59]. It can be ob-
served that the proposed DBP consistently yields the best
performance among all methods across architectures. This
demonstrates that our strategy is pluggable and applicable to
various GNN architectures. We deem that this improvement
over previous works is mainly from the information com-
pression delayed pre-training strategy in DBP, which is not
included in existing methods.
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Fig. 3. Dynamics of the mutual information I(Y, Z) between the target labels Y and the learned representations Z across training epochs for different
variants on two molecular property prediction datasets (BBBP and SIDER).
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Fig. 4. ROC-AUC curves across training epochs for different variants of the proposed DBP method on SIDER and ClinTox.

C. Analysis of the Training Process

To gain a deeper understanding of our model, we analyzed
various aspects of the training dynamics.
Dynamics of Predictive Information. Figure 3 illustrates the
changes in mutual information between the representation Z
and the label Y during the fine-tuning phase for different
methods. Different values of β represent the varying intensities
of the information control during the fine-tuning phase, where
the blue line represents the DBP without information con-
trol, and AttrMasking represents the traditional masking pre-
training strategy. Across different variants (e.g., GCN, GAT,
and GIN) and datasets (e.g., BBBP, ToxCast, SIDER, and
ClinTox), these comparisons exhibit similar trends. Overall,
the DBP method with information control strategies achieves
higher mutual information I(Y ;Z) during the fine-tuning
phase as compared to the traditional methods and DBP with
less information control, which demonstrates the universality

and effectiveness of our information control strategy across
different datasets and models in enhancing the extraction of
predictive relevant information during the fine-tuning stage.
Dynamics of Performance Change. Figure 4 shows the
changes in performance during the fine-tuning phase for
different methods, using AUC-ROC as the performance metric.
Similar to Figure 3, different values of β represent the varying
intensities of information control during the fine-tuning phase,
where the blue line represents the DBP without information
control, and AttrMasking represents the traditional masking
pre-training strategy. Across different variants and datasets, our
strategy improves performance, but the performance ceiling is
related to the choice of the intensity of information control β.
For instance, on the ClinTox dataset, GCN exhibits the highest
performance at β = 0.0005, while GIN performs better at
β = 0.1. We will continue to analyze the sensitivity to β in
Section V-D.
Dynamics of Generalization Gap. Figure 6 demonstrates
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TABLE III
ROC-AUC SCORES (%) ON DOWNSTREAM BIOLOGICAL FUNCTION

PREDICTION TASK COMPARED WITH STATE-OF-THE-ART METHODS. BOLD
INDICATES THE BEST PERFORMANCE WHILE UNDERLINE INDICATES THE

SECOND BEST.

Method ROC-AUC GAIN Method ROC-AUC GAIN

No Pre-training 64.8 ± 1.0 - EdgePred 65.9 ± 0.7 1.1
InfoGraph 65.1 ± 0.5 0.3 AttrMasking 65.7 ± 0.5 0.9

ContextPred 65.8 ± 0.3 1.0 GraphPartition 68.7 ± 0.2 3.9
GraphCL 68.9 ± 0.6 4.1 GraphLoG 69.1 ± 0.7 4.3

DBP ROC-AUC: 71.2 ± 0.4 GAIN: 6.4

TABLE IV
ROC-AUC SCORES (%) UNDER VARIOUS GNN ARCHITECTURES. ALL
RESULTS ARE REPORTED ON BIOLOGY DOMAIN. BOLD INDICATES THE

BEST PERFORMANCE WHILE UNDERLINE INDICATES THE SECOND BEST.

Method GCN GraphSAGE GAT GIN

EdgePred 64.7 ± 1.0 67.4 ± 1.5 67.4 ± 1.3 65.9 ± 1.7
AttrMasking 64.4 ± 1.2 64.3 ± 0.8 67.7 ± 1.2 65.7 ± 1.3
ContextPred 64.6 ± 1.4 66.3 ± 0.7 66.9 ± 2.0 66.0 ± 1.2

GraphCL 67.6 ± 1.3 68.6 ± 0.4 67.2 ± 0.7 67.9 ± 0.9
GraphLoG 68.2 ± 0.6 68.8 ± 0.8 67.5 ± 1.0 69.1 ± 0.7

DBP 70.5 ± 0.7 70.2 ± 0.9 68.9 ± 1.3 71.2 ± 0.4

the changes in the generalization gap during the fine-tuning
process for different methods. Similar to Figure 4, different
values of β represent the varying intensities of the infor-
mation control during the fine-tuning phase, where the blue
line represents the DBP without information control, and
AttrMasking represents the traditional masking pre-training
strategy. Tests were conducted across different variants and
datasets. Overall, our information control strategy achieves a
lower generalization error during the fine-tuning phase com-
pared to traditional methods and DBP with less information
control. This relates to the conclusions drawn from Figure
3, as our information control strategy transfers more usable
predictive relevant information, leading to the model learning
more useful representations and thereby resulting in a smaller
generalization error.

D. Further Analysis

Effect of Information Control Objective Function. We
attempt to analyze the effect of individually applying the
information control objective function in the pre-training or
fine-tuning phase on chemistry domain, with the same ex-
perimental setups as in Section V-A. As shown in Figure
5(a), we have an interesting observation: When the pre-
trained information control objective function is individually
applied, its performance improvement on downstream tasks is
limited, but applying the information control objective function
independently in the fine-tuning phase can further improve the
model performance. The reason might be that the information
control objective in the fine-tuning phase is more conducive
to improving classification performance, while the additional
information retained by the information control module in the

pre-training phase needs to be further compressed and selected
before being applied to downstream tasks.
Analysis on Information Control Hyperparameters. The
hyperparameters α and β that adjust the strength of infor-
mation control are crucial to DBP, so we further investi-
gate the impact of different hyperparameter combinations on
model performance. Experimental results on three downstream
chemistry datasets are shown in Figure 5(b). Interestingly, we
observed that the performance of the model on downstream
tasks degrades when the hyperparameters are too large or
too small. We argue that excessively suppressing information
compression in the pre-training phase will interfere with
general knowledge extraction, while excessively enhancing
information compression in the fine-tuning phase will make
the latent representation less informative.
Comparison with Existing Work. As graph pre-training
research advances, some studies have noticed the negative
impact of differences between pre-training and fine-tuning
tasks, although they do not deeply analyze from an information
and neural network training behavior perspective. For example,
L2P-GNN [64] approaches from a meta-learning angle, sim-
ulating the fine-tuning process during pre-training to quickly
adapt to new downstream tasks. GPPT [65]using ideas from
natural language processing’s prompt learning, proposes a pre-
training method focused on node classification, transforming
downstream node classification tasks into edge prediction tasks
similar to pre-training goals, bridging the gap between pre-
training and fine-tuning objectives.

However, these methods primarily aim to reduce target
differences during the fine-tuning stage, without analyzing
the entire information transfer process across both stages.
In contrast, our method analyzes the fundamental knowledge
transfer from pre-training datasets to fine-tune downstream
tasks from an information compression perspective. This
framework could also be combined with downstream fine-
tuning process variants like prompt learning and meta-learning
in the future.
Complexity Analysis. The DBP framework encompasses pre-
training and fine-tuning phases. Pre-training involves self-
supervised and reconstruction tasks, both with a computa-
tional complexity of O(V + E). Fine-tuning introduces an
information compression module and a classifier, each with a
complexity of O(V ). Overall, DBP maintains a complexity of
O(V + E), similar to traditional GNNs.

VI. CONCLUSIONS

In this paper, we reexamine the pre-training process within
the traditional pre-training and fine-tuning framework from the
perspective of Information Bottleneck, and confirm that the
forgetting phenomenon in the pre-training phase exactly has
detrimental effects on downstream tasks. Then, we propose a
DBP framework that maintains as much as possible mutual
information during the pre-training phase by suppressing the
compression operation and delays the compression operation
to fine-tuning phase. To achieve this, we design two in-
formation control objectives that can be directly optimized
and further integrate them into the model design. Extensive
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（a） （b）

Fig. 5. Hyperparameter sensitivity analysis and ablation study with respect to DBP. Subfigure (a) shows our ablation experiments on the information control
modules during the pre-training and fine-tuning stages. Subfigure (b) illustrates our analysis experiments on the relationship between the information control
hyperparameters α and β and model performance across three datasets during the pre-training and fine-tuning stages.
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Fig. 6. Generalization gap across training epochs for different variants of the proposed DBP method on four molecular property prediction datasets (BBBP,
ToxCast, SIDER, and ClinTox).

experiments demonstrate the effectiveness and generalization
of DBP.
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