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ABSTRACT
Recommender systems have become an integral part of online
services to help users locate specific information in a sea of data.
However, existing studies show that some recommender systems
are vulnerable to poisoning attacks, particularly those that involve
learning schemes. A poisoning attack is where an adversary injects
carefully crafted data into the process of training a model, with the
goal of manipulating the system’s final recommendations. Based
on recent advancements in artificial intelligence, such attacks have
gained importance recently. At present, we do not have a full and
clear picture of why adversaries mount such attacks, nor do we
have comprehensive knowledge of the full capacity to which such
attacks can undermine a model or the impacts that might have.
While numerous countermeasures to poisoning attacks have been
developed, they have not yet been systematically linked to the
properties of the attacks. Consequently, assessing the respective
risks and potential success of mitigation strategies is difficult, if not
impossible. This survey aims to fill this gap by primarily focusing
on poisoning attacks and their countermeasures. This is in contrast
to prior surveys that mainly focus on attacks and their detection
methods. Through an exhaustive literature review, we provide a
novel taxonomy for poisoning attacks, formalise its dimensions,
and accordingly organise 30+ attacks described in the literature.
Further, we review 40+ countermeasures to detect and/or prevent
poisoning attacks, evaluating their effectiveness against specific
types of attacks. This comprehensive survey should serve as a
point of reference for protecting recommender systems against
poisoning attacks. The article concludes with a discussion on open
issues in the field and impactful directions for future research. A
rich repository of resources associated with poisoning attacks is
available at https://github.com/tamlhp/awesome-recsys-poisoning.
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1 INTRODUCTION
In the era of data deluge, identifying relevant information to sup-
port decision making has become a challenging task for the users
of online services. By helping users to find useful, personalised in-
formation, a recommender system can not only increase a service’s
usability, it can also contribute directly to the platform provider’s
ultimate success. For this reason, companies like Youtube, Amazon,
and eBay are deploying recommender systems as one of the primary
means by which their customers locate items of interest – be they
videos, individual products, or categories of products [6]. Recom-
mender systems have actually been around for decades; however,
it has only been in the last decade that they have seen great com-
mercial success as evidenced by their enormous growth in recent
years. In fact, back in 2018, Industry Arc forecast the recommender
system market to increase from US$1.14 billion to US$12.03 billion
by 2025 [1] – a prediction that looks set to prove true. Statistics like
this are clear evidence that recommender systems have become an
integral part of helping internet users navigate the sea of choices
they face every time they go online.

In many practical scenarios, recommender systems operate in a
relatively open environment. That is, these systems rely on data that
is generated by other users, whether actively through comments,
posts, and ratings, or passively through clicks, views, or purchases.
While this openness is key to the success of many systems, given
that the quality of a recommendations usually depends on drawing
from a large pool of candidate data, it also renders recommender
systems prone to manipulation [71, 99, 127, 163]. More specifically,
recommender systems are known to be vulnerable to poisoning
attacks [106], in which an adversary injects carefully crafted data
into the model’s training data so as to change the model’s behaviour.
Clearly, such vulnerabilities are unavoidable to some extent, even
though the operators of recommender systems are generally acutely
aware that such attacks can occur. Yet, poisoning attacks remain a
very powerful means of manipulating users. As such, they can seri-
ously undermine the commercial success of any company falling
victim to such an attack. A prime example of a poisoning attack is to
crowdsource users who will post fraudulent ratings of a company’s
products for a small fee per rating. Fraudulent positive ratings will
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promote a company’s products, while fraudulent negative ones will
demote those of the company’s competitors. Marketplaces such as
Amazon and eBay suffer from such attacks daily [72, 77, 114]. The
use of fake reviews to increase the number of recommendations
of particular movies is another well-documented example of a poi-
soning attack motivated by economic considerations [2]. Hence,
a comprehensive understanding of the different types of poison-
ing attacks that can be launched against recommender systems –
along with their goals, capacities, and impacts – is an important
prerequisite for designing robust models.

1.1 Prior Classifications and Surveys of
Recommender Systems

Recommender systems typically fall into one of three categories:
i) content-based filtering; ii) collaborative filtering; or iii) hybrid
systems. Of these, collaborative filtering (CF) methods [112] have
been the mainstream of recommender system research, due to
the high quality of the resulting recommendations. Therefore, in
this survey, we have focused on CF-based recommender systems,
breaking them down into the learning scheme used [4], as follows:

• Memory-based CF recommender systems rely on nearest
neighbour search, which is applied directly to a user’s inter-
action history. As such, these approaches do not work with
an explicit model. For example, a recommendation algo-
rithm finds the closest users to a given target user, identifies
their common preferences, and derives a recommendation
for the target user based on those shared preferences.

• Model-based CF recommender systems presume an under-
lying “generative” model that explains the user-item inter-
actions. These systems attempt to estimate a model which
generates the recommendations for a given target user.

With the models adopted by CF recommender systems becoming
more and more advanced over the past two decades, the attacks on
them have changed as well. These attacks can be divided into two
broad paradigms: AI attacks and classic heuristic attacks.

(1) Classic heuristic attacks: The strategy these attacks follow
comprises two steps: (1) detecting malicious users, which
is formulated as an optimisation problem; and (2) solving
the problem, which is done through a heuristic technique.
Attacks that fall into this category date back 20 years, but
they are still employed these days. While many of the spe-
cific methods used by these attacks seem relatively simple,
they have proven to be effective.

(2) AI-based attacks: Over the last seven years, we have seen
the advent of various attacks that train an end-to-end frame-
work to forge user profiles and imitate authentic user be-
haviours. For instance, several schemes based on generative
adversarial networks (GANs) have recently been proposed
that automatically mimic the behaviour of genuine users
to influence the targeted system [5, 75, 123]. Another tech-
nique is to exploit the reward signal in a reinforcement
learning scheme as a back-door into the recommender
model [116].

Figure 1: Adversarial attacks vs. poisoning attacks

While AI-based poisoning attacks pose severe threats to rec-
ommender systems, existing surveys of attacks on these systems
primarily focus on classic heuristic attacks and their respective
countermeasures [103, 113, 120, 130, 131]. The more recent studies
cover a combination of heuristic and AI-based attacks. Additionally,
some surveys cover poison attacks in general [45], while others
investigate these attacks in specific domains. So far however, no one
has undertaken a survey focussed on recommender systems [170].
In this survey, we address this gap by providing a comprehensive
overview of the state-of-the-art attacks on recommender systems
and the countermeasures one can take to prevent them. As sum-
marised in Tab. 1, we also go beyond existing surveys by: providing
a generic taxonomy for poisoning attacks; formalising the dimen-
sions of this taxonomy; and linking the attacks to countermeasures.
This last exercise not only highlights which measures effectively
detect and prevent certain attacks, it also sheds light on the ability
of attacks to resist certain countermeasures. Finally, our survey is
accompanied by a collection of materials that will enable scientists
to kick-start their own research work in the field.

Figure 2: The process of a typical poisoning attack

Several existing surveys consider adversarial attacks on rec-
ommender systems [41, 129]. While there are some conceptual
similarities between poisoning attacks and adversarial attacks, they
do have fundamental differences (as illustrated in Fig. 1). The aim of
an adversarial attacks [32, 58, 101, 102] is to find some adversarial
samples that corrupt the outcome of a recommender system at the
time of inference without altering the underlying model [41, 129].
These attacks manipulate the input data to temporarily deceive the
system into producing inaccurate predictions or recommendations
during the attack. Poisoning attacks, however, are mounted during
the model’s training phase [16]. Here, the attacker injects carefully
crafted data into the model’s training data with the goal of funda-
mentally converting the true model into an attack model that yields
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Table 1: The comparison between our work and existing surveys.

Category Sub-category [45] [170] [131] [130] [113] [120] [103] Ours

Attacks

Classic heuristic attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AI-based attacks ✓ ✓ ✓
Unified taxonomy ✓
Formalisation of attack dimensions ✓
Recommender system domain of applications ✓

Countermeasures

Detection of classic heuristic attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Detection of AI-based attacks ✓ ✓ ✓
Formalising vulnerabilities in recommender systems ✓
Prevention against classic heuristic attacks ✓ ✓ ✓
Prevention against AI-based attacks ✓
Countermeasures effective against attacks ✓
Countermeasures weak against attacks ✓

Discussion Research gaps & future research directions ✓ ✓ ✓ ✓
Materials collection ✓

outcomes beneficial to the attacker’s goal. By injecting malicious
data during training, the attacker aims to bias the system’s learning
process and manipulate its recommendations in persistently.

To provide a more concrete example, consider an online market-
place that recommends products to users based on their browsing
history. In an adversarial attack, an attacker might manipulate the
content of a particular product listing or modify the user’s browsing
history temporarily to promote a specific item. This would influ-
ence the recommendations shown to that user during their current
session. Conversely, in a poisoning attack, the attacker would inject
malicious data into the system’s training data, such as fraudulent
reviews or manipulated purchase records. In this way, the attacker
would bias the model to favour certain products or manipulate the
recommendation rankings, thereby impacting the recommenda-
tions not just for a single user session but for a broader set of users
over an extended period of time. Consequently, these two different
types of attacks have distinct goals and implications. Adversarial
attacks are largely orthogonal to the poisoning attacks covered in
this survey.

1.2 Main Contributions
This survey is intended as a point of reference for protecting rec-
ommender systems against poisoning attacks. To this end, we have
structured the field of poisoning attacks and countermeasures based
on a comprehensive literature review. More specifically, this survey
contributes the following:

• We discuss the challenges that an attacker faces in the
domain of recommender systems, while separating attacks
on recommender systems from related approaches in fields
such asmachine learning and computer vision. For example,
recommender systems generally exploit the correlations
between user and item data to generate recommendations.
These correlations can create a certain robustness in the
underlying model that renders attacks difficult.

• We present the first comprehensive review of poisoning
attacks on recommender systems, covering both classic
heuristic modes of attack as well as AI-based attacks. To
structure and present these 30+ attacks, we devised a tax-
onomy of five dimensions that provides a holistic view of
the full field of this research.

• We present an extensive review of 40+ defenses for the
identified poisoning attacks. Moreover, we link the attacks
with the countermeasures, considering both measures that
are effective against certain attacks as well as measures
that can be expected to fail against certain attacks.

• Moving beyond our main objective, we also describe open
issues in the field and conclude the survey with directions
of promising future research.

• To enable researchers to kickstart their work in the field,
we have assembled a public repository 1 that includes all re-
viewed papers as well as the program codes and the datasets
released in the context of these studies. As such, this repos-
itory provides researchers entering the field with a com-
prehensive collection of material to support their work in
securing recommender systems against potential threats.

1.3 Survey Methodology
We implemented several procedures to ensure a high-quality survey.
To identify pertinent articles that establish the state-of-the-art in
poisoning attacks, we first extracted papers indexed by the major
computer science repositories, including Scopus and DBLP. Re-
alising that some important work may not be indexed in these
databases, we also screened articles using Google Scholar. With
DBLP, we queried key terms in the articles’ titles using the reposi-
tory’s search interface.WithGoogle Scholar and Scopus, we searched
the articles’ content. Having collected all relevant articles, we then
processed and filtered them. Any paper deemed irrelevant was re-
moved. For example, a paper was removed if it focused on poisoning
attacks in a field other than recommender systems, such as machine
learning or cybersecurity. We also concentrated on publications
in top-tier venues (including RecSys, SIGIR, IJCAI, WWW, and
KDD) and adopted a lightweight screening procedure for workshop
proceedings and publications in entry-level venues.

1.4 Structure of the Survey
The rest of this article is organised as follows. §2 provides an
overview of recommender systems and the security landscape in
this field. We also highlight the unique challenges in securing rec-
ommender systems from poisoning attacks. §3 introduces a novel

1https://github.com/tamlhp/awesome-recsys-poisoning

https://github.com/tamlhp/awesome-recsys-poisoning
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taxonomy for poisoning attacks and formally defines the dimen-
sions of this taxonomy. In §4, we review existing work on poisoning
attacks according to this taxonomy, covering both model-agnostic
and model-intrinsic techniques. §5 describes countermeasures to
detect and prevent poisoning attacks. Finally, we highlight research
gaps and future research directions in §6, before concluding the
article in §7.

2 BACKGROUND
2.1 Overview of Recommender Systems
Recommender systems based on collaborative filtering (CF) [112]
are ubiquitous. For example, the recommender systems seen on
YouTube, Netflix, Amazon, and Google Play are all CF-based sys-
tems. These models analyse the past interactions between users
and items to derive a recommendation for a specific target user.
Hence, CF-based recommenders can be divided into the following
categories based on the underlying strategy(s) used to capture those
historical interactions.

2.1.1 Matrix-factorisation-based. MF-based recommender systems
[8, 70] assume that a small number of latent factors are sufficient
to represent the users’ past behaviour. Based on that assumption,
a low-rank matrix is used to estimate the full user-item rating
matrix. More specifically, this low-rank matrix serves as the basis
for inferring missing values in the full user-item rating matrix.
A recommendation for a target user is then derived as a list of
the items with the highest prediction scores, even if the user has
never interacted with these items before. Some methods go a step
further to improve the prediction results by assigning different
weights based on the activeness of the users and the popularity of
the items [142].

2.1.2 Graph-based. Graph-based recommender systems model the
historic interactions between users and items as aweighted bipartite
graph, called the user preference graph [56, 65]. A random walk
is then performed over the user preference graph to generate the
recommendations. The walk starts at a user and returns to that
user with a predefined probability. The stationary probability of
the consequent random walk is then used to generate the list of
recommendations.

2.1.3 Association-rule-based. The idea behind recommender sys-
tems based on association rules is to find the co-occurrence patterns
in items based on the ratings issued by users [10, 15]. For instance,
consider an example in which many users have assigned high rat-
ings to two items, item X and item Y. As many users appreciate
both items, the system assumes that there must be a hidden relation
between the two. Hence, when a user assigns a high rating to item
X, item Y will be recommended.

2.1.4 Neighbourhood-based. Neighbourhood-based recommender
systems [97, 107] make recommendations based on the similarities
between users and/or items.With user-based similarities, the system
finds the nearest users and aggregates their ratings to recommend
items. The same process applies to item-based similarities.

2.1.5 Deep-learning-based. Deep-learning-based recommender sys-
tems involve a variety of deep learning models to model the in-
teractions between users and items [9, 88, 163] – from multilayer
perceptrons [100] to autoencoders [157] ; from deep reinforcement
learning [95, 96, 151] to adversarial networks [29]. What all these
systems have in common is that they leverage contemporary al-
gorithms in their training schemes, which generally significantly
improves the quality of recommendations compared to the other
categories of recommender systems.

2.2 Poisoning Attacks
In a poisoning attack, an adversary tampers with the training data
of a machine learning model to corrupt its integrity. Fig. Fig. 2
illustrates the typical process of a poisoning attack compared to
a normal learning process. In the latter case, a machine learning
model is trained on some data that is subsequently used to derive a
recommendation [80]. As such, the quality of the machine learning
model depends on the quality of the data used for training. In a
poisoning attack, data is injected into the training set, and hence
the model, to produce unintended or harmful conclusions [98]. In
this way, adversaries can launch an attack against even the most
advanced training algorithms and the most complex models.

In a poisoning attack on a recommender system, the data in-
jected into the training set will typically relate to fake users and
their fake ratings as an attempt to modify the resulting recom-
mendations. Here, the usual goal is to either promote an item (if
bolstering one’s own reputation) or demote one (if attacking one’s
competitors) [164]. The general course of action for an adversary
is to infiltrate the recommender system by registering a number
of fake users. These users will then rate a subset of items to co-
erce the desired result. Independent of the attack strategy, and no
matter whether it is a classic heuristic or an AI-based attack, the
fake data, which can be crafted either manually or automatically,
will influence any model that learns from the data. As a result,
the recommendations derived from the model will be manipulated
towards the adversary’s goal.

One way to categorise poisoning attacks on recommender sys-
tems is to divide them by the type of recommender system they
are designed to target. Are they model-agnostic? or model-intrinsic?
Model-agnostic attacks ignore the underlying model and any algo-
rithms used to build it. For this reason, the effectiveness of these
types of attacks is typically limited. Model-intrinsic attacks, how-
ever, are optimised for a specific type of training process. As such,
these attacks can cause substantial damage to the underlying model.

Some scholars have likened poisoning attacks to profile pollu-
tion attacks, e.g., [86]. However, there are some notable differences
between the two:

• Profile pollution attacks are designed to disrupt the rating
behaviour of regular users with the intention of compro-
mising the system. These attacks can not only be targeted
at recommendation systems but also at other personalised
online services, such as information retrieval or web search
systems [89, 125, 169]. For instance, attackers can manipu-
late a user’s browsing history to distort their personalised
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recommendations. However, executing such attacks usu-
ally requires that the adversary exploit vulnerabilities in
the cross-site request forgery (CSRF) [18, 79], which limits
their scalability.

• Poisoning attacks, as detailed above, inject fake users to-
gether with fake ratings into a system, so that the model
learns biased behaviour [31]. Not only can these attacks be
performed at large scales, adversaries can also incorporate
multiple different goals into their attacks.

Between these two types of attacks, we note that poisoning attacks
pose a more severe threat to economies and society. From an eco-
nomic perspective, the motivations to promote/demote products
and services on a large scale are very strong. Such attacks can make
or break a company. However, they can cause irreversible harm
to the fairness and trustworthiness of the targeted recommender
system and bring the platform owner into disrepute. From a so-
cial perspective, poisoning attacks can manipulate popular belief.
For instance, an adversary that compromises a recommender sys-
tem delivering online news can directly manipulate a community’s
opinions about anything, including an election or public policy.

2.3 Characteristics of Poisoning Attacks on
Recommender Systems

It is important to note that poisoning attacks are not simply mali-
cious assaults on an online system. In fact, poisoning attacks are of
great significance to the sustainability of machine learning models
in that they are the de facto standard procedure for evaluating a
model’s robustness against noise or polluted data. Considering the
vital role poisoning attacks play in the field of machine learning,
they have been studied for a wide range of machine learning mod-
els, including support vector machines [124], decision trees [49],
regression models [21], and neural networks [54]. However, generic
poisoning attacks on machine learning models have only limited
application to recommender systems for several reasons.

• Data correlation. While machine learning models learn hid-
den knowledge from one source of training data, recom-
mender systems learn user preferences from the interac-
tions of two data sources – the users and the items. Hence,
a recommender system’s robustness stems from the cor-
relations between these data [104]. This makes poisoning
attacks on recommender systems different from attacks of
traditional machine learning models, most particularly, in
that they typically require more effort to execute. For in-
stance, in a poisoning attack on a computer vision system,
it may be enough to change a single pixel [118], whereas
a successful poisoning attack on a recommender system
would require the adversary to inject many, many user-item
correlations into the model’s dataset.

• The lack of prior knowledge. Another popular approach to
poisoning attacks in the field of machine learning is to
leverage gradient descent to discover dedicated perturba-
tions, which are subsequently combined with the regular
samples. As these combinations are undetectable, they can
significantly affect the quality of the learned models. By

contrast, recommender systems are typically black-box sys-
tems that do not provide access to the underlying model.
This means the attack must usually be based only on the
training data (i.e., the rating matrix). Additionally, users
of recommender systems often have privacy concerns and,
hence, are hesitant to publish their preferences. This means
that an attack will commonly be based on only a small
subset of the data on which the recommender model was
trained.

• Multiple attack goals. When attacking a recommender sys-
tem, an adversary typically has several attack goals in mind.
For example, one aim might be to promote a set of items,
while another goal is to tarnish the reputation of their com-
petitors’ items. However, fusing multiple goals generally
involves a trade-off of some sort since certain actions that
are beneficial to one goal may undermine the success of the
other goal. Additionally, attacks striving to achieve multi-
ple goals are generally easier to characterise and, hence, to
detect.

2.4 Challenges when Securing Recommender
Systems against Poisoning Attacks

The general problem of securing machine learning models against
poisoning attacks has been studied extensively [52, 106, 106, 168].
While the literature includes elaborate countermeasures against
poisoning attacks [12], challenges remain, especially when trying
to secure a recommender system against such an attacks.

• Openness. Recommender systems are typically public, i.e.,
they are accessible to large numbers of users, making them
very vulnerable to poisoning attacks. The data used to
influence the recommendations is also open, in the sense
that it cannot be characterised a priori in terms of volume
or distribution, which offers many degrees of freedom for
data manipulation.

• Concept drift. To secure recommender systems, many exist-
ing methods apply anomaly detection techniques [122] to
identify and filter out fake users. However, recommender
systems commonly suffer from a phenomenon called con-
cept drift, meaning that user behaviour constantly evolves
due to seasonal or trending preferences. Consequently, real
users can easily be misclassified as fake users [51].

• Imbalanced data. Any classification of regular and fake
users is also hampered by the imbalance of the respective
classes. Attacks typically have a certain “budget”, meaning
there is a limit on howmany fake users/ratings an adversary
can inject into the system and, moreover, this number of
fake users is often only a tiny portion of the overall user
base.

2.5 Application Perspectives of Poison Attacks
in recommender systems

In this survey, we examine the key domains where recommender
systems are widely used: e-commerce [92], social media [167], and
news recommendations [149]. In e-commerce [92], poison attacks
can cause biased recommendations, erode user trust, and result
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in financial losses. Social media platforms [167] face the risks of
misinformation, polarisation, and the promotion of harmful con-
tent. News recommendations [149] can be manipulated to shape
opinions and compromise democratic values. Understanding these
vulnerabilities helps to develop targeted defences to protect users,
maintain trust, and ensure the responsible use of recommender
systems across domains.

3 THREAT MODEL AND TAXONOMY
Tabassi et al. [121] proposed a general taxonomy for organising
poisoning attacks on machine learning models. However, in the
light of the above attack characteristics and challenges faced in the
context of recommender systems, we present a novel taxonomy
that is specifically geared towards poisoning attacks on recom-
mender systems. As illustrated in Fig. 3,our taxonomy comprises
five distinct dimensions. These five dimensions were included for
the following reasons:

(1) The dimensions are specific to the domain of recommender
systems. For example, attacks in the general field of ma-
chine learning may seek to violate the integrity or con-
fidentiality of the learned models. Yet, in the context of
recommender systems, the goals specifically relate to pro-
moting or demoting items.

(2) The dimensions are relevant to the general threat model of
data poisoning attacks. These dimensions are important for
highlighting the current gaps in research and for outlining
directions of future research into poisoning attacks on rec-
ommender systems. See §6 for a more detailed discussion
on future directions of research.

Figure 3: Taxonomy of poisoning attacks on RecSys.

Notably, this taxonomy applies to both classic heuristic attacks
and AI-based attacks. The remaining subsections provide a formal
and comprehensive view of the dimensions of the taxonomy and of
the threat model associatedwith poisoning attacks on recommender
systems. (§3.2 - §3.6). The section begins with some general notions
and notations related to CF-based recommender systems as a primer
for those not familiar with this material. (§3.1).

3.1 Collaborative Filtering: A Primer
Consider a basic CF scenario, where U is the number of users and
I is the number of items. The tuple (⟨𝑢, 𝑖⟩, 𝑟𝑢𝑖 ) indicates that user
𝑢 has rated the item 𝑖 with a rating score of 𝑟𝑢𝑖 . The rating matrix
R ∈ R |U |× |I | captures all these interactions between users and
items. Note that not all entries of the rating matrix R are actually
filled with rating scores. Indeed, the goal of the recommender sys-
tem is to estimate the missing entries. This estimation task can be
formulated as predicting the complete user-item matrix R̃ based on
prior knowledge of R, where each 𝑟𝑢𝑖 ∈ R̃ represents a prediction
of the rating score 𝑟𝑢𝑖 . The prediction problem is then formulated
as a predictive model to approximate the function: 𝑓 : U × I → R
with 𝑓 : ⟨𝑢, 𝑖⟩ ↦→ 𝑟𝑢𝑖 , where 𝜃 is the set of model parameters. Before
revealing the optimisation problem for this recommendation task,
we need to introduce the standard loss functions commonly used
in recommender systems.

Common loss functions in recommender systems. In general,
loss functions in recommender systems are a means to measuring
how close the predicted rating is 𝑟𝑢𝑖 to the actual rating 𝑟𝑢𝑖 . The
two most common loss functions are:

(1) Least squares loss: which is the maximum likelihood estima-
tion under a Gaussian distribution [108]. More specifically,
the loss function casts the recommendation problem as a
regression problem [62], formally defined as

ℓ (𝑟𝑢𝑖 , 𝑟𝑢𝑖 ) =
∑︁

𝑟𝑢𝑖 ∈R,𝑟𝑢𝑖 ∈R̃
𝑤𝑢𝑖 (𝑟𝑢𝑖 − 𝑟𝑢𝑖 )2 (1)

where 𝑤𝑢𝑖 is the contributed weight of the user 𝑢-item 𝑖

pair into the overall loss.
(2) Binary cross-entropy loss: which is the maximum likelihood

estimation under a Bernoulli distribution [39]. More pre-
cisely, the loss function casts the recommendation problem
as a binary logistic regression problem [85], formally de-
fined as

ℓ (𝑟𝑢𝑖 , 𝑟𝑢𝑖 ) =
∑︁

𝑟𝑢𝑖 ∈R,𝑟𝑢𝑖 ∈R̃
𝑟𝑢𝑖 log 𝑃𝑢𝑖 + (1 − 𝑟𝑢𝑖 ) log(1 − 𝑃𝑢𝑖) (2)

where 𝑃𝑢𝑖 is the non-linear activation over the predicted
rating 𝑟𝑢𝑖 . This is then calculated by 𝑃𝑢𝑖 = 𝜎 (𝑟𝑢𝑖 ) = 1

1+𝑒−𝑟𝑢𝑖 .

The optimisation problem. Having chosen a loss function (ℓ),
the prediction task is then formulated as an optimisation problem:

min
𝜃

∑︁
𝑟𝑢𝑖 ∈R

ℓ (𝑓 (⟨𝑢, 𝑖⟩;𝜃 ), 𝑟𝑢𝑖 ) (3)

The predicted matrix R̃ is then used to recommend a list of items
to a user that the user has not encountered yet. For instance, if the
goal is to suggest𝐾 items to user𝑢, the model will extract the top-𝐾
items that: (i) the user has not yet rated; and (ii) have the highest
predicted score in the row vector (𝑟𝑢1, 𝑟𝑢2, . . . , 𝑟𝑢𝑁 ) of R̃.

3.2 The Adversary’s Goal
Generally, attacks on recommender systems aim to either promote
an item, demote an item, or both. However, an attack can either be
non-targeted, where the goal is a general degrading of performance;
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or targeted, where a specific item or items is the quarry. These
attack goals are formally characterised next.

3.2.1 Untargeted poisoning attacks. The goal in an untargeted at-
tack is tomaximise the error of the recommender system, eventually
rendering it useless. Suppose U′ is the set of controlled users in-
jected by an adversary with R′ ∈ R |U′ |× |I | being their rating
scores. An untargeted poisoning attack would be formulated as the
following optimisation problem:

min
R′

| |R′ | | 𝑠 .𝑡 : 𝑓 (⟨𝑢, 𝑖⟩;𝜃 ) ≠ 𝑟𝑢𝑖 ,∀ 𝑟𝑢𝑖 ∈ R ∪ R′ (4)

Alternatively, relying on a maximisation problem instead of the
more common CF minimisation (Eq. 3), the adversary will seek to
maximise the loss between the predicted and actual rating scores.
This leads to the following problem formulation:

min
R′

| |R′ | | max
𝑟𝑢𝑖 ∈R∪R′

ℓ (𝑓 (⟨𝑢, 𝑖⟩;𝜃 ), 𝑟𝑢𝑖 ) (5)

3.2.2 Targeted poisoning attacks. The adversary’s goal in a targeted
attack is to increase or decrease the popularity of a targeted item.
These attacks can be referred to as promotion and demotion attacks,
respectively. Since both attacks are similar and exchangeable, we
have only described a promotion attack to keep the discussion con-
cise. For a demotion attack, simply change instances of ‘maximise’
to ‘minimise’ and vice versa.

Let 𝑡 be the target item, and let R′ be the rating scores of the
controlled users injected by adversary. A promotion attack would
then be formulated as follows:

min
R′

| |R′ | | 𝑠 .𝑡 : 𝑓 (⟨𝑢, 𝑖⟩;𝜃 ) = 𝑟𝑢𝑡 ,∀ 𝑟𝑢𝑖 ∈ R ∪ R′ (6)

Here, the attackmechanism tries to boost the visibility of the target 𝑡
and, thus, minimise the loss between the predicted and the expected
rating score 𝑟𝑢𝑡 of all users who rated item 𝑡 . This problem is similar
to the primary setting of CF (Eq. 3), except that only the target item
is involved.

min
R′

| |R′ | | min
𝑟𝑢𝑡 ∈R∪R′

ℓ (𝑓 (⟨𝑢, 𝑡⟩;𝜃 ), 𝑟𝑢𝑡 ) (7)

While the aim of the promotion attack in Eq. 7 is to boost the popu-
larity of the target item, this type of attack is oftentimes referred
to as a non-resilience targeted attack. The reason is that this kind
of attack is easily detected due to the level of skew in the rating
distribution, as the model will excessively favour the target item
to the exclusion of all else. Conversely, a resilience targeted attack
strives to promote the target less obviously and without hampering
the recommendations for any other items in the system. This attack
is formulated as an unconstrained optimisation problem:

min
R′

| |R′ | | min
𝑟 ∈R∪R′

ℓ (𝑓 (⟨𝑢, 𝑖⟩;𝜃 ), 𝑟𝑢𝑖 ) + ℓ (𝑓 (⟨𝑢, 𝑡⟩;𝜃 ), 𝑟𝑢𝑡 ) (8)

Beyond promotion and demotion attacks, a couple of studies have
recently shed light on a novel attack objective called the ancil-
lary effect [103]. These approaches are hybrid attacks that aim to
manipulate a group of users or items.

3.3 The Adversary’s Knowledge
The characteristics of the attacker’s knowledge plays an essential
role in the threat model. This is because the impact of an attack

will differ significantly depending on the extent of knowledge an at-
tacker has about the system they are trying to undermine. Consider
the following types of attacks based on the background knowledge
an adversary might have:

• Black-box attack. In a black-box attack, the adversary does
not know the details of the target system. Specifically, they
will not be aware of the architecture of the system, the
function 𝑓 used for prediction or its parameters 𝜃 , or the
users’ past behaviours R.

• Grey-box attack. In a grey-box attack, the adversary has
limited knowledge. As such, she can merely modify the
user-item interaction matrix R by injecting a limited num-
ber of controlled users along with their ratings to create a
poisoned matrix R′.

• White-box attack. In this type of attack, the adversary has
thorough knowledge of the system, including the prediction
function 𝑓 , its parameter set 𝜃 , and the entire history of
interactions between users and items R.

In machine learning, both white-box and black-box attacks are
widespread, and both have been shown to be efficient attacks during
the training phase. In the field of recommender systems, however,
grey-box attacks are of particular importance, as will be discussed
in more detail in §4.

3.4 The Attack Impact
Considering the different types of background knowledge possessed
by an adversary, there are three general, long-term impacts of a
poisoning attack on a recommender system, as listed below.

• Availability. Recommender systems make decisions based
on the data they have amassed in the past. White-box
and grey-box attacks disturb the input data to these al-
gorithms [64]. At first, an adversary will inject fake users
to manipulate the recommender system and weaken the
accuracy of the underlying model. However, this weakened
model will ultimately serve as a backdoor, helping the ad-
versary to obtain complete control over the system, thereby
compromising its availability.

• Replication. While black-box attacks are less efficient at
harming the system’s availability [13], they may instead
replicate the system. A common tactic is to reverse-engineer
the underlying model as a simulation. Once known, the
model can then be replicated and exploited.

• Unnoticeability. Some poisoning attacks ensure that their
approach goes unnoticed by preserving crucial data char-
acteristics when injecting fake data. Conventional tech-
niques to guard the recommender system generally fail to
address this particular vulnerability. Even with protection
techniques in place, such undetected attacks can often be
effective and may cause significant damage.

3.5 The Adversary’s Capabilities
When attacking a recommender system in the real world, an adver-
sary has many tools at her disposal. Commonly, the attacker will
possess at least one of the following capabilities.
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• Fake users. Any recommender system can be manipulated
if the attacker injects enough fake users. However, in prac-
tice, there is a trade-off between the ability of an attacker to
execute an attack and a system’s robustness. In particular,
injecting a large number of fake users is difficult from an op-
erational point of view. Many injections tend to inevitably
yield markers that separate controlled users from ordinary
ones, so that the injected users can be detected easily. The
maximum number of fake users that can be injected as part
of a specific attack is called attack size, denoted asU′. This
number is typically much lower than the overall number
of usersU in the system.

• Fake ratings. For each fake user, a number of non-zero fake
ratings is injected into the target model. However, there
is typically a bound 𝑘 on the number of ratings that can
be injected, called the profile size This is because, in real-
life, users generally only interact with a few items in a the
system [94]. Formally, the fake ratings are denoted as R′.
Moreover, the domain for these ratings is given by B(R, 𝑘),
which denotes the space around the actual rating matrix R
of radius 𝑘 , i.e., the maximum number of amended ratings.

• Fake co-occurrence. Instead of inserting fake ratings for
fake users directly, an attacker may also manipulate the
recommender model by introducing fake co-occurrences
between items. That is, given a target item, the poisoning
attack is based on injecting visits to other items for users
that are already linked to the target item.

• Fake links. Several approaches for recommender systems
exploit knowledge graphs as an auxiliary source of informa-
tion to improve recommendation accuracy [138]. As these
knowledge graphs frequently depend on third-party data,
they represent a vulnerability. That is, an adversary may
add fake links to rewrite the knowledge graph’s structure,
thereby influencing the recommender system.

• Fake images. Many recommender systems use images of
items to address the cold start problem. Again, such ex-
ternal data sources provide an angle through which to at-
tack the recommender system [78]. An attacker may create
dedicated images of items that, once injected into the rec-
ommender system, promote particular items and increase
their ranking in the given recommendations.

3.6 The Attack Approach
To achieve their goal, the approach taken by adversaries often
depends on their knowledge and capabilities. In general, the field
makes a distinction between the following two types of approaches:

• Injection. The most common scenario for a poisoning at-
tack is that the adversary has limited knowledge about the
targeted system. As such, the adversary will tend to inject
a limited number of well-designed users. In addition, these
fake users will also assign ratings to several other items so
as to disguise the attack and their real target.

• Simulation. In a black-box setting, where the adversary
does not have enough knowledge to perform an injection,
the attack will usually be based on simulating the targeted
recommender system. More precisely, a surrogate model is

trained using data collected from the recommender system
to reproduce the targeted system’s behaviour.

4 POISONING ATTACKS
Poisoning attacks in recommender systems can be divided into
two groups: (1) model-agnostic attacks, which can be executed to
evaluate the trustworthiness of any recommender system; and (2)
model-intrinsic attacks that target a specific type of recommender
system. Tab. 2 provides a summary of the surveyed attacks.

4.1 Model-agnostic Poisoning Attacks
4.1.1 Attack Formulation. A model-agnostic poisoning attack can
be executed against any recommender system, regardless of its
underlying algorithm. This attack strategy involves injecting ma-
nipulated data into the training set, which causes the framework to
learn a biased model. The objective here is to manipulate the rec-
ommender system into promotings/demoting specific items. Math-
ematically, a model-agnostic poisoning attack can be formulated:

min | |R′ − R||22 𝑠 .𝑡 . : 𝑟 ′𝑢𝑖 ∈ R′,∀ fake user 𝑢 and items 𝑖 (9)
This formulation considers the original rating matrix, denoted as
R, as well as the perturbed rating matrix, denoted as R′. The rating
𝑟 ′𝑢𝑖 is the score for an item 𝑖 that the attacker plans to inject on
behalf of a fictitious user𝑢. The notation | | · | |22 denotes the L2 norm.
To ensure the injected rating 𝑟 ′𝑢𝑖 is a valid rating appearing in the
perturbed rating matrix R′, the constraint 𝑟 ′𝑢𝑖 ∈ R′ is needed. This
constraint reflects the attacker’s objective of presenting the injected
data as legitimate, thereby deceiving the recommender system into
considering it as genuine information.

4.1.2 Related Work. Many model-agnostic poisoning attacks were
originally designed to test the general robustness of a recommender
system in terms of its trustworthiness. As such, these attacks are
designed to be independent of any specific prediction model or class
of such models. Some prominent examples of these model-agnostic
attacks follow.

Lam et al.’s shilling attack [72] pioneered the formal definition
of a poisoning attack. This attack focuses on promoting specific
items in the system without disclosing self-interest (MA-01 in
Tab. 2). This classic approach assumes the adversary has knowl-
edge of the rating distributions, and so fake users with manipulated
ratings are injected into the training set. Although they are hard to
detect, shilling attacks can ultimately corrupt the recommendation
model. By contrast, Song et al.’s PoisonRec [116] (MA-02) is an
adaptive poisoning attack with reinforcement learning as the train-
ing scheme. By actively injecting interactions by fake users into the
system, PoisonRec dynamically improves its own attack strategies
through a reward signal. Additionally, a hierarchical tree structure
guides the search space sampling process, which optimises the
attack’s efficiency.

Tang et al.’s adversarially-learned injection attacks [123] (MA-
03) shows us an alternative approach. It focuses on automatically
learning the behaviour of fake users from a separate model. This
method offers an exact solution for generating fake user behaviour
and includes scalability schemes for large-scale datasets. While
these attacks aim to manipulate the recommendation system, their
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Table 2: Summary of poisoning attacks.

Name Authors Type Attack Goal Knowledge & Capability Approach & Impact
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Model-agnostic

MA-01 Lam et al. [72] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-02 Song et al. [116] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-03 Tang et al. [123] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-04 Lin et al. [75] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-05 Wu et al. [133] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-06 Zhang et al. [167] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-07 Fan et al. [46] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-08 Barbieri et al. [17] AI-based ✓ ✓ ✓ ✓ ✓ ✓

MA-09 Wu et al. [136] AI-based ✓ ✓ ✓ ✓ ✓

MA-10 Chen et al. [34] AI-based ✓ ✓ ✓ ✓ ✓ ✓

MA-11 Zhang et al. [159] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MA-12 Lin et al. [76] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Model-intrinsic

MI-01 Li et al. [73] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-02 Yang et al. [143] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-03 Fang et al. [48] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-04 Chris et al. [37] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-05 Hu et al. [61] AI-based ✓ ✓ ✓ ✓ ✓

MI-06 Chen et al. [33] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-07 Zhang et al. [158] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-08 Fang et al. [47] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-09 Chen et al. [35] Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-10 Zhang et al. [160] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-11 Yue et al. [153] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-12 Wu et al. [138] AI-based ✓ ✓ ✓ ✓ ✓

MI-13 Liu et al. [78] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-14 Huang et al. [63] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-15 Zhang et al. [164] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-16 Rong et al. [105] AI-based ✓ ✓ ✓ ✓ ✓ ✓

MI-17 Wu et al. [135] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-18 Yi et al. [149] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

MI-19 Nguyen et al. [92] AI-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

intent is not to replicate the system entirely, but rather to influ-
ence its outputs. Lin et al.’s GAN-based approach [75] (MA-04)
combines GANs with the Augmented Shilling Attack framework
(AUSH) to allow tailored attacks based on specific budgets and goals.
The approach, which has demonstrated some robustness against
various defence strategies, and has been tested on a variety of rec-
ommender systems. By contrast, Zhang et al.’s black-box attacks
[46] (MA-07) and [167] (MA-06) leverage surrogate models and
clone user profiles to promote items in targeted domains. Using
deep reinforcement learning, the model’s parameters are adjusted
by reward signals.

Wu et al.’s TrialAttack [133] (MA-05) employs triple adver-
sarial learning and a flexible end-to-end framework to generate

malicious users. By formulating an optimisation problem, TrialAt-
tack creates fake users with different intents, effectively imitating a
natural distribution of actual user ratings. Barbieri et al.’s approach
[17] (MA-08) uses variational autoencoders to approximate real
user profiles, which tends to generate more realistic malicious pro-
files. Wu et al.’s GOAT [136] (MA-09) integrates GANs with graph
neural networks (GNNs) to strike a balance between feasibility and
effectiveness, where high-order relations are modelled between
co-rated items. Chen et al.’s KGAttack [34] (MA-10) incorporates
knowledge graphs into a hierarchical policy network to generate
fake user profiles. Zhang et al.’s LOKI [159] (MA-11) focuses on
complex black-box next-item recommender systems, using a rec-
ommender simulator and a result estimator to guide the training of
attack agents . Finally, Lin et al.’s Leg-UP [76] (MA-11) uses GANs
to discover patterns in user behaviour and generate fraudulent
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user profiles, addressing visibility concerns in conventional shilling
attacks.

4.2 Model-intrinsic Poisoning Attacks
Model-intrinsic attacks are designed and optimised for a specific
type of recommender system. Here, the different attacks are there-
fore grouped according to the system type.

4.2.1 Attack Formulation. In contrast to model-agnostic poisoning
attacks, model-intrinsic poisoning attacks are based on knowledge
about the underlying algorithms of the target recommender system.
The adversary optimises an objective function to inject manipulated
data while maintaining recommendation accuracy but simultane-
ouslyminimising the chances of detection. Formally, letL represent
the original loss function used in the collaborative filtering process,
which typically measures the squared difference between the pre-
dicted ratings and the actual ratings. Conversely, let A denote the
poison attack objective function designed to maximise the impact of
any injected poisoned data while minimising the effect of that data
on genuine interactions. To encompass both functions, an overall
objective function can be defined as a combination of L and A, as
follows:

E = 𝛼 ∗ L + 𝛽 ∗ A (10)
This formulation introduces two weighting coefficients, 𝛼 and 𝛽 ,
to control the balance between accuracy and the impact of the
attack. These coefficients determine the trade-off between these
two factors. The aim of the optimisation process then becomes
one of finding the optimal values for the latent factor matrices of
the users and items. Additionally, the injected poison data is also
optimised to minimise the objective function E.

4.2.2 Matrix-factorisation-based recommender systems. Li et al.
(MI-01) [73] pioneered poisoning attacks and demonstrated the
effectiveness of generating undetected fake data. By contrast, Yang
et al. [143] (MI-02) focused on injecting fake item co-occurrence
data into the training set. So, while Li et al. seek to manipulate
user behaviour, Yang et al. look to exploit patterns of item selection.
The former essentially imitates normal user behaviour, while the
latter leverages the co-occurrence of items. In another vein, Chris-
takopoulou et al. [37] (MI-04) introduced a “learning-to-attack”
model that is based on a repeated general-sum game. This strat-
egy focusses on the dynamic aspects of the attack, whereas Hu et
al.’s [61] (MI-05) attack was devised specifically for social recom-
mender systems. Their approach is to manipulate users through
fake social connections, which highlights the adaptability to social
RSs, even without direct connections to the attacker.

Chen et al. [33]) (MI-06) proposed a poisoning attack for cross-
domain recommendation. They addressed the challenges of cross-
domain recommendations through a dual-level optimisation prob-
lem and an approximation scheme. Zhang et al. [158] (MI-07), on
the other hand, developed LOKI, a black-box attack that relies on
deep reinforcement learning. LOKI focuses on the next-top-k rec-
ommendations and overcomes access restrictions through training
on a recommender simulator. Fang et al. [47] (MI-08) target influ-
ential users in recommender systems based on matrix factorisation
to optimise ratings. Their approach is essentially to recommend

a target item to regular users. Zhang et al. [160] (MI-10), instead,
focus on handling data incompleteness in recommender systems
by using a probabilistic generative model to select less perturbed
users and items. Liu et al. [78] (MI-13) address the cold start prob-
lem in top-k recommender systems by exploiting images through
their Adversarial Item Promotion (AIP) attack. By contrast, Yue et
al. [153] (MI-11) developed black-box attacks on sequential recom-
mender systems by extracting model parameters without accessing
user-item interaction data.

4.2.3 Graph-based recommender systems. Several poisoning attack
methods have been developed for graph-based recommendation
systems. For example, Fang et al.’s attack [48] (MI-03) injects fake
users and rating scores into the recommender system to manipulate
the model. The premise is to optimise the fake rating scores to max-
imise impact while minimising the chances of being detected. Wu
et al.’s attack [138] (MI-12) targets recommender systems that rely
on knowledge graphs, using deep reinforcement learning to choose
the optimal attack combinations in a step-by-step manner. The
knowledge graph is manipulated before the model is trained, which
effectively alters the target item’s ranking. Lastly, GSPAttack [92]
(MI-19) incorporates generative surrogate-based techniques to fab-
ricate users and user-item interactions, yet recommendation accu-
racy is maintained by preserving the correlations in the data. Unlike
the other methods, GSPAttack emphasises the importance of main-
taining high accuracy for non-target items, which is crucial for the
success of the poisoning attack. These attacks demonstrate different
approaches and considerations in poisoning graph-based recom-
mender systems, showcasing optimisation-based, reinforcement
learning-based, and surrogate-based techniques for manipulating
recommender systems.

4.2.4 Neighbourhood-based recommender systems. Poisoning at-
tacks targeting neighbourhood-based recommender systems are
discussed at some length in Chen et al. [35] (MI-09). The pre-
sented framework, known as UNAttack, shares similarities with
other model-intrinsic poisoning attacks by strategically introduc-
ing fabricated users into the target models. This ensures that the
recommended items are prioritised for a large number of regular
users. Additionally, this research reveals two key findings: (i) rec-
ommender systems relying on Euclidean-based similarity measures
demonstrate high resilience against such attacks; and (ii) UNAttack
can be successfully applied to other recommender systems, includ-
ing neural CF and Bayesian personalised ranking systems.

4.2.5 Deep-learning-based recommender systems. Huang et al. [63]
(MI-14) devised a poisoning attack specifically for these deep
learning-based recommender systems. The attack involves inject-
ing ratings made by fabricated users into the model. Notably, the
definition of these ratings is formulated as an optimisation prob-
lem, which can be approximately solved by incorporating numer-
ous heuristic rules. Interestingly, the attack remains effective even
when the attackers only have access to a relatively small fraction
of user-item interactions.

4.2.6 Federated recommender systems. PipAttack [164] and FedAt-
tack [135] are two notable poisoning attacks designed for federated
recommender systems. PipAttack [164] (MI-15) exploits the popu-
larity bias in data-driven recommender systems, creating fake users
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that mimic popular items to increase the likelihood that they will
be included in recommendation lists. Similarly, Rong et al. [105]
(MI-16) put forward some poisoning attacks for the federated learn-
ing setting that do not require prior knowledge. Rather, they use
random approximation and hard user mining to approximate be-
nign user embeddings. Wu et al.’s [135] FedAttack (MI-17) is an
untargeted attack strategy that employs hard negative sampling.
These attacks degrade the performance of the victim model while
managing to evade most existing defence and detection mecha-
nisms. Additionally, Yi et al. [149] (MI-18) introduce UA-FedRec,
the first study on untargeted attacks in a federated news recom-
mendation system. UA-FedRec undermines the performance of the
global model in federated learning for news recommendation with
minimal malicious client involvement.

4.3 Comparison of Poisoning Attacks
Our goal in this section is to provide a comprehensive comparison
of the characteristics of poisoning attacks as found in the literature.
Our five characteristics are: the adversary’s goal, the impact, the
approach, the adversary’s capability, and their knowledge. Addi-
tionally, we have summarised the studies in terms of the domain(s)
considered, the interaction types included in the attack, the evalua-
tion metrics used, and the related datasets.

4.3.1 The adversary’s goal. Although the literature includes re-
search on both targeted and untargeted poisoning attacks, targeted
attacks dominate the field (see Tab. 2). All approaches support tar-
geted attacks that promote or demote specific items, but only a
small portion of the published strategies consider untargeted at-
tacks, which seek to reduce the efficiency of a recommender system
in general. This imbalance is not surprising, given the much clearer
incentives associated with promotion/demotion attacks. As a result,
adversaries have paid much more attention to targeted attacks, and
accordingly so have scholars. Similarly, only a few works discuss
the ancillary aim of manipulating a group of users or items.

4.3.2 The attack impact. Turning to the impact of poisoning at-
tacks, we infer from Tab. 2 that two-thirds of the attacks focus
on the availability of the targeted system, and one-third focus on
both attacking and replicating the victim model. While the number
of studies related to replication attacks is much lower than that
of availability attacks, the impact caused by replication attacks is
much more severe. The reason being that, in addition to manip-
ulating the target system to perform as desired by the adversary,
replication attacks devise a clone of the victim model, which could
be deployed in direct competition with the target recommender
system [69].

4.3.3 The attack approach. As for the approach followed in a poi-
soning attack, all approaches rely, in some form, on injecting fake
users and ratings into the training data. Yet, Tab. 2 highlights that
several attacks additionally rely on simulating the targeted recom-
mender system, mostly to derive user profiles for injection.

4.3.4 The adversary’s knowledge. Attacks can also be categorised
according to the level of knowledge the adversary has of targeted
system, i.e., white box attacks, grey box attacks, and black box
attacks. Notably, the total rate of attacks in Tab. 2 does not sum to

100% since certain attacks support multiple levels of knowledge.
Nonetheless, the table does illustrate that the execution rate is
evenly distributed among the three levels.

4.3.5 The adversary’s capabilities. The adversary’s capabilities refers
to their ability to inject different types of data into the training
set. The types include: (i) fake users; (ii) fake ratings; (iii) fake
co-occurrences; (iv) fake links; and (v) fake images. Among the
discussed attacks, the most prevalent ones involve injecting fake
users and ratings into the training data. For the majority of studies,
this tactic has been the focus. Fake co-occurrences are considered
in a smaller proportion of attacks, while fake links and fake images
represent specialised attack vectors, each employed exclusively by
a single attack.

4.3.6 Domains. The literature on poison attacks in recommender
systems covers a broad range of application domains, including
movies [105, 135, 164], POI and location-based services [76, 123,
143, 159], citation networks [167], news [149], and others. These
domains demonstrate the extensive impact of poison attacks, as they
can manipulate user preferences, influence market trends, promote
malicious applications, manipulate consumer choices in fashion,
and disrupt information dissemination across various sectors. The
prevalence of poison attacks across so many domains underscores
the importance of developing robust countermeasures to safeguard
the integrity and trustworthiness of the online data we all rely on
these days.

4.3.7 Interaction types. Another relevant dimension is the type
of interaction the system uses to generate its recommendations.
A distinction can be made between the attacks designed to target
recommender systems that rely on explicit interactions between
users and items, and those where these interactions are implicit.
Tab. 9 illustrates that both types of interactions are covered in the
literature, although the main focus falls on recommender systems
with explicit interactions.

4.3.8 Evaluation metrics. Researchers have used a range of evalua-
tion metrics to assess the efficacy of various poisoning attacks [11].
An overview of these metrics appears in Tab. 4, along with a link
to the corresponding attack most commonly being evaluated (see
Tab. 2). Among these metrics, HR@k stands out as the most pre-
dominant, being adopted by nearly two-thirds of studies. This dom-
inance is not surprising, considering that HR@k is commonly used
as the primary evaluation metric [111]. The second popular metric
is NDCG@k, with a smaller portion of the studies. Other metrics
are less popular and have only been used in one or two studies.

4.3.9 Datasets. Tab. 5 provides an overview of contemporary datasets
commonly used to evaluate poisoning attacks on recommender sys-
tems. The table includes links to the respective studies, which are
listed in Tab. 2. Among the popular datasets, the MovieLens dataset
has been used in over two-thirds of the studies, while datasets from
various product categories of Amazon have been used in half the
studies. Both the MovieLens and Amazon datasets are widely recog-
nised within this research community [40], making them valuable
starting points. Three studies have used the Netflix datasets to help
develop their attacks; two have used Yelp; while datasets derived



ACM, Survey, RecSys Poisoning Nguyen, et al.

Table 3: Domain and Evaluation Comparison.

Name Authors Year Type Evaluation Metrics Domains Datasets
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Agnostic
MA-01 Lam et al. [72] 2004 ✓ ✓ movie ML
MA-02 Song et al. [116] 2020 ✓ ✓ game, movie, phone, clothing St, AMV, ML
MA-03 Tang et al. [123] 2020 ✓ ✓ POI, location-based GOW
MA-04 Lin et al. [75] 2020 ✓ ✓ movie, automotive ML, FT, AAT
MA-05 Wu et al. [133] 2021 ✓ ✓ ✓ movie ML, FT

MA-06 Zhang et al. [167] 2021 ✓ ✓ ✓
movie, book, digital music,

social network, citation network
ML, AMB, ADM, NF,

TW, G+, CIT
MA-07 Fan et al. [46] 2021 ✓ ✓ ✓ movie ML, NF
MA-08 Barbieri et al. [17] 2021 ✓ ✓ movie ML
MA-09 Wu et al. [136] 2021 ✓ ✓ ✓ movie, product DB, CI
MA-10 Chen et al. [34] 2022 ✓ ✓ ✓ movie, book, music ML, BC, LA
MA-11 Zhang et al. [159] 2022 ✓ ✓ product, game, POI, location-based ABT, St, GOW

MA-12 Lin et al. [76] 2022 ✓ ✓
movie, POI, location-based,

automotive, tool, grocery, app
ML, FT, YE, AAT,
THI, GGF, AA

Instrinsic
MI-01 Li et al. [73] 2016 ✓ ✓ ✓ movie ML

MI-02 Yang et al. [143] 2017 ✓ ✓ ✓
video, product, movie, POI,
location, social network

YT, eB, AMV,
YE, LI

MI-03 Fang et al. [48] 2018 ✓ ✓ movie ML, AMV
MI-04 Chris et al. [37] 2019 ✓ ✓ movie ML
MI-05 Hu et al. [61] 2019 ✓ ✓ movie FT
MI-06 Chen et al. [33] 2019 ✓ ✓ movie NF,ML
MI-07 Zhang et al. [158] 2020 ✓ ✓ product ABT
MI-08 Fang et al. [47] 2020 ✓ ✓ tourism, music YE, ADM
MI-09 Chen et al. [35] 2021 ✓ ✓ movie FT, ML, AMV
MI-10 Zhang et al. [160] 2021 ✓ ✓ movie ML, AIV
MI-11 Yue et al. [153] 2021 ✓ ✓ ✓ ✓ movie, product ML, ABT
MI-12 Wu et al. [138] 2021 ✓ ✓ movie, business ML, FTr
MI-13 Liu et al. [78] 2021 ✓ ✓ clothing, fashion AMM, TC
MI-14 Huang et al. [63] 2021 ✓ ✓ movie, music ML, LA
MI-15 Zhang et al. [164] 2022 ✓ ✓ ✓ movie, phone ML, AMP
MI-16 Rong et al. [105] 2022 ✓ ✓ ✓ movie, music ML, ADM
MI-17 Wu et al. [135] 2022 ✓ ✓ ✓ movie, product ML, ABT
MI-18 Yi et al. [149] 2022 ✓ ✓ ✓ ✓ news MIND, Feed
MI-19 Nguyen et al. [92] 2023 ✓ ✓ ✓ ✓ app, movie, phone, music FR, ML, AMP, LA

Table 4: Commonly used evaluation metrics.

Abbrv Term

Pre@k The fraction of the top-K recommended items
falling into the recommended ones

RMSE Root mean square error
MAE Mean absolute error
AR Average rating for specific items
NI The increased ranks of the targeted item
UI User impression/Item popularity
HR@k The hit rate ratio
ASR The attack success rate
Recnum The number of page view that contains target items
DR The average display rate
nDCG@k Normalised discounted cumulative gain
Agr@k Agreement at rank k
ER@k The exposure rate at rank k
AUC Area under the ROC Curve
MRR Mean Reciprocal Rank

from other public websites such Twitter, Google+, YouTube, etc.
have been used sporadically.

5 COUNTERMEASURES
Countermeasures to poisoning attacks can be divided into two
subgroups: (1) detection methods, i.e., approaches that aim to iden-
tify user profiles that have been created in poisoning attacks; and
(2) prevention methods, i.e., approaches that aim to make a recom-
mender system more robust to poisoning attacks, without explicitly
trying to identify manipulated profiles. In this section, we review
both types of methods. We then map which countermeasures are
effective against which types of poisoning attacks in (§5.3), and

Table 5: Commonly used datasets.

Abbrv Name Abbrv Name

YT YouTube AMB Amazon Book
eB Ebay NF Netflix
AMV Amazon Movie TW Twitter
YE Yelp G+ Google+
LI Linkin CIT Citation Network
ML MovieLens FTr Fund Transaction
FT Film Trust DB Douban
St Steam CI Ciao
GOW Gowalla AMM Amazon Men
ABT Amazon Beauty TC Tradesy
AAT Amazon Automotive LA Last.fm
ADM Amazon Digital Music AMP Amazon Cell-phone
AIV Amazon Instant Video BC Book-Crossing
THI Tool and Home Improvement AA Apps for Android
GGF Grocery and Gourmet Food MIND Online News
FR App Recommendation Feeds Online News

which countermeasures cannot be expected to work well against
certain attacks (§5.4).

5.1 Detection Methods
This section begins with a discussion on the kinds of features that
are commonly used to detect poisoning attacks. This is followed by
a review of the traits most often employed by detection methods
as signals for detecting poison attacks. The section concludes with
a discussion on the actual methods that have been proposed to
differentiate between genuine user profiles and those that have
been used as part of an attack.
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5.1.1 Detection Features. Existing detection methods can rely on
either model-agnostic features or model-intrinsic features.

Model-agnostic features.Model-agnostic features are designed
to capture general abnormal behaviour, independent of the type of
attack model being used. These include:

(1) Rating deviation from mean agreement (RDMA): This is the
average deviation in ratings given by a particular user to a
number of specific items compared to other users, weighted
by the inverse rating frequency of those items. Formally,
let 𝑟𝑢

𝑖
be the rating given by a user 𝑢 to the item 𝑖 , and let 𝑟𝑖

be the average of the ratings given to item 𝑖 . 𝑛𝑟 𝑖 represents
the number of ratings given to item 𝑖 , while 𝑛𝑢 denotes the
number of items that user 𝑢 has rated. Formally:

𝑅𝐷𝑀𝐴𝑢 =

∑𝑛𝑢
𝑖=0

|𝑟 𝑖𝑢−𝑟 𝑖 |
𝑛
𝑟𝑖

𝑛𝑢
. (11)

(2) Weighted deviation from mean agreement (WDMA): This
feature is the weighted variance of RDMA, which captures
the cumulative differences in user ratings for sparse items.
Using the same notation as above, we have:

𝑊𝐷𝑀𝐴𝑢 =

∑𝑛𝑢
𝑖=0

|𝑟 𝑖𝑢−𝑟 𝑖 |
𝑛2
𝑟𝑖

𝑛𝑢
. (12)

(3) Length variance (LengthVar): This is a measure of the differ-
ence in profile length, which is the number of items rated
by that profile. It is calculated against the average length
of all profiles. With 𝑛𝑢 as the length of the profile 𝑢, and
𝑛𝑢 as the average length of all profiles. We have:

𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑟𝑢 =
𝑛𝑢 − 𝑛𝑢∑

𝑢∈𝑈 (𝑛𝑢 − 𝑛𝑢 )2
. (13)

(4) Degree of similarity with top neighbours (DegSim): This fea-
ture reflects the average similarity of a user to its the top-k
neighbours. Here, 𝑘 denotes the number of neighbours,
while 𝑠𝑖𝑚𝑢,𝑣 is the similarity between users 𝑢 and 𝑣 , com-
puted using, say, Pearson’s correlation [110]. The feature
is then formulated as

𝐷𝑒𝑔𝑆𝑖𝑚𝑢 =

∑𝑘
𝑣=1 𝑠𝑢𝑚𝑢,𝑣

𝑘
(14)

Model-intrinsic features. Despite the many benefits of model-
agnostic features, it has been proven they are not particularly good
at differentiating between genuine and malicious user profiles [120],
especially when a real user exhibits some unusual behaviour. To
address this issue, various model-intrinsic features have been pro-
posed. Below, we review some common, representative notions
associated with such features:

(1) Mean variance (MeanVar): This is a measure that partitions
malicious profiles into different constituent parts: extreme
ratings (for targeted items); other ratings (items to simply
fill up the profile, i.e., so-called filler items); and unrated
items. This feature is estimated by computing the mean
variance between ‘other ratings’ and the average rating of

all items. Let 𝑃𝑢,𝐹 denote the filler items 𝐹 of a user 𝑢, and
let 𝑟𝑢,𝑗 be the rating for item 𝑗 given by user 𝑢. 𝑟𝑢 is the
mean rating given by user 𝑢 to items. We have:

𝑀𝑒𝑎𝑛𝑉𝑎𝑟 =

∑
𝑗∈𝑃𝑢,𝐹 (𝑟𝑢,𝑗×𝑟𝑢 )2

|𝑃𝑢,𝐹 |
(15)

(2) Filler mean target difference model (FMTS): This is a measure
to assess the degree of difference between the ratings in the
targeted partition and those in the filler partition. Adopting
the above notation, this feature is formulated as

𝐹𝑀𝑇𝐷 =

�����
∑
𝑖∈𝑃𝑢,𝐹 𝑟𝑢,𝑖
|𝑃𝑢,𝑇 |

−
∑
𝑘∈𝑃𝑢,𝐹 𝑟𝑢,𝑘
|𝑃𝑢,𝐹 |

����� (16)

(3) Filler average correlation (FAC): This feature reflects the
correlation between the ratings in a profile compared to
the average rating of all items. It is defined as

𝐹𝐴𝐶 =

∑
𝑖∈𝐼𝑢 (𝑟𝑢,𝑖 − 𝑟𝑖 )√︃∑
𝑖∈𝐼𝑢 (𝑟𝑢,𝑖 − 𝑟𝑖 )2

(17)

(4) Filler mean difference (FMD): This feature measures the av-
erage value of the absolute difference of the profile’s ratings
and the average rating of all items, defined as follows:

𝐹𝑀𝐷 =
1
𝑈𝑢

|𝑈 |∑︁
𝑖=1

|𝑟𝑢,𝑖 − 𝑟𝑖 | (18)

5.1.2 Detection Traits. This subsection extends the foundational
framework of detection traits developed by Sundar et al. [120]. Their
framework classifies attack detection traits into four groups: (i) user
profiles, (ii) target ratings, (iii) filler ratings, and (iv) side information.

User profile. This first group of traits is used by detection methods
to differentiate between malicious profiles and genuine profiles. We
have added new characteristics for comparison:

(1) Similarity: The more similar a profile is to its neighbours,
the higher the probability that the profile has been created
as part of an attack.

(2) Size: The attack size (i.e., the number of injected profiles). A
size of highly similar profiles much smaller than the entire
set of user profiles indicates an attack.

(3) Group behaviour: Commonly, user behaviour has hidden
characteristics. For example, a group of malicious users
might have a positive correlation in rating variance. Such
group behaviour reveals valuable clues to help detect mali-
cious users.

(4) Attributes: The user attributes of genuine and injected pro-
files will tend to follow different distributions. For this rea-
son, statistical analysis methods can often reveal abnormal
profiles to help detect attacks.

Target rating. Recall that target ratings are the ratings given to the
item that attackers aim to promote or demote. Two traits related to
target ratings need to be considered:

(1) Crowdability: The frequency of ratings of a targeted item
is generally abnormally high following a poisoning attack.
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Table 6: Overview of methods to detect poisoning attacks on recommender systems.
Name Authors Year Detecting Features Detecting Traits

Model-Agnostic Model-Intrinsic User Filter Target Side
Features Features Profiles Ratings Rating Information
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Agnostic
CM-01 Chirita et al. [36] 2005 ✓ ✓ ✓ ✓

CM-02 Burke et al. [24] 2006 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-03 Mobasher et al. [25] 2006 ✓ ✓ ✓ ✓ ✓ ✓

CM-04 Williams et al. [87, 132] 2007 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-05 Zhang et al. [155] 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-06 Zhang et al. [156] 2014 ✓ ✓ ✓

CM-07 Zhou et al. [176] 2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-08 Yang et al. [147] 2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-09 Hao et al. [60] 2019 ✓ ✓ ✓ ✓ ✓

CM-10 Xu et al. [141] 2019 ✓ ✓ ✓ ✓

CM-11 Zhou et al. [171] 2020 ✓ ✓ ✓

Semi Supervised
CM-12 Wu et al. [137] 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-13 Cap et al. [30] 2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instrinsic
CM-14 Zhang et al. [162] 2006 ✓ ✓ ✓

CM-15 Mehta et al. [81] 2007 ✓ ✓ ✓ ✓ ✓

CM-16 Bryan et al. [23] 2008 ✓ ✓ ✓

CM-17 Meta et al. [84] 2009 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-18 Bhaumik et al. [19] 2011 ✓ ✓ ✓ ✓ ✓ ✓

CM-19 Chung et al. [38] 2013 ✓ ✓ ✓

CM-20 Bilge et al. [20] 2014 ✓ ✓

CM-21 Zhou et al. [172] 2014 ✓ ✓ ✓ ✓ ✓ ✓

CM-22 Zhang et al. [166] 2015 ✓ ✓ ✓

CM-23 Zhou et al. [174] 2015 ✓ ✓ ✓ ✓ ✓

CM-24 Xia et al. [139] 2015 ✓ ✓ ✓

CM-25 Yang et al. [144] 2016 ✓ ✓

CM-26 Yang et al. [145] 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CM-27 Zhang et al. [154] 2018 ✓ ✓ ✓

CM-28 Zhou et al. [175] 2018 ✓ ✓ ✓ ✓ ✓

CM-29 Cai et al. [26] 2019 ✓ ✓ ✓ ✓

CM-30 Cai et al. [27] 2019 ✓ ✓ ✓

CM-31 Cai et al. [28] 2019 ✓ ✓

CM-32 Aktukmark et al. [7] 2019 ✓ ✓ ✓ ✓

CM-33 Yang et al. [146] 2020 ✓ ✓ ✓ ✓

CM-34 Hao et al. [59] 2021 ✓ ✓ ✓ ✓

CM-35 You et al. [150] 2023 ✓ ✓ ✓ ✓

These peaks in rating frequency can be an indicator of
attack.

(2) Skewed Ratings: The ultimate goal of the adversary is to
manipulate user attitudes toward a targeted item. Hence,
fake ratings will tend to deviate from average ratings – a
finding that can be exploited to detect attacks.

Filler rating. As mentioned above, filler ratings are ratings as-
signed to regular items as part of an attack rather than to the target
item. Two traits need to be considered here as well.

(1) Rating: To disguise an attack by maximising similarity, the
ratings assigned to filler items will usually be close to the
current average rating. Based on this observation, a good
strategy may be to first assess the ratings of filler items and
then identify the adversary.

(2) Length: The number of items rated by a profile is known as
the length of the profile. Given that an adversary will try
to create a profile that is as similar to a genuine profile as
possible, a malicious profile will usually be much longer
than a regular profile. Profile length can therefore give
away an attacker.

Side information.More recently, poisoning attacks have begun
to rely on side information to manipulate the target system [117].
This opens up another class of traits for consideration.

(1) Co-occurrence: Some recommender systems use co-occurrence
graphs as the basis for suggesting items to users [143].
With these systems, an adversary might inject crafted co-
occurrence information into the recommender system to
manipulate the recommendations.

(2) User-user graph: The similarity between users is also a char-
acteristic to differentiate malicious from genuine users. Us-
ing graph mining algorithms [161], the similarity of users
can be explored by computing the similarity between nodes
of a graph. The resulting graph of user interactions provides
a valuable angle from which to detect an attack.

5.1.3 Overview of Detection Methods. Tab. 6 provides a summary
of methods used to detect poisoning attacks. These methods are re-
viewed in more detail below, starting with the supervised methods,
before turning to the semi-supervised and unsupervised ones.

Supervised methods. In supervised settings, there needs to be a
label to be able to distinguish a malicious profile from a genuine
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profile. To our best knowledge, Chirita et al. [36] (CM-1) were the
first to formulate detecting a poisoning attack as a classification
problem. Their model verifies success using the RDMA and DegSim
features to detect malicious profiles. Additionally, to improve the
performance of the classifier, two abstract features increase the
generalisability of the mode. However, the main issue with using
abstract features is that regular users with unusual behaviours
might be misclassified as malicious. Therefore, several research
teams i.e., [24], CM-2 and [25] CM-3 have suggested including
some more specific features to improve accuracy,. This improved
model has subsequently been used to detect a wide range of attacks,
including average, segment, random, and bandwagon attacks.

Williams et al. [87, 132] (CM-4) further improved the perfor-
mance of classifiers by combining a reverse-engineered attack with
a mechanism that detects anomalous ratings. These studies go on
to confirm that using various features in an aggregated manner,
such as RDMA, WDMA, LengthVar, MeanVar, DegSim, FAC, FMD,
and FMTD, mean the attacks can be detected more quickly. The
main weakness of this approach is that the detection model’s per-
formance strongly depends on the classifier’s choices. Hence, the
authors recommend using a support vector machine (SVM) to opti-
mise accuracy. Other approaches, such as Zhang et al. [155] CM-5
and Zhang et al. [156] CM-6, incorporate meta-learning over the
set of features used in CM-4. This strategy renders the approach
more effective compared to SVM classifiers that simply rely on
single or majority voting.

Another problem is class imbalance. To overcome this issue,
Zhou et al. [176] (CM-7) devised a dual-phase detection method,
called SVM-TIA. Themethod proceeds in two steps: (1) the Borderline-
SMOTE technique [115] is used to obtain initial results while allevi-
ating any class imbalances; and (2) these results are then fine-tuned
and analysed to discover malicious profiles. The approach mostly
relies on model-intrinsic features, including FMTD, FMD, FAC, and
MeanVar. Yang et al. [147] (CM-8) followed a similar direction to
handle class imbalances , also using a two-step process to improve
detection accuracy. In the first phase, a statistical analysis of various
attack models is applied to extract features from user profiles. Then
RAdaBoost, a variant of AdaBoost, efficiently classifies the injected
profiles. Hao et al. [60] CM-9 developed an ensemble of detection
methods that goes beyond prior approaches by considering the
‘novelty of items’. Here, the popularity of each item is calculated
based on features extracted from the ratings and a user graph, where
differences in popularity provide hints as to the targeted items.

Relying on trust features and time series analysis, Xu et al. [141]
(CM-10) developed TSA-TF, which is a detection method designed
specifically for social recommender systems. Here, suspicious items
are first detected by employing a single exponential smoothing
technique that results in a set of suspicious profiles. Second, four
features are extracted based on rating patterns and the trust re-
lations between users. Finally, an SVM classifies these extracted
features to reveal malicious profiles. To overcome the limitations of
hand-crafted features, Zhou et al. [171] (CM-11) devised DL-DRA,
an approach to detecting poison attacks based on deep learning.
The authors propose an end-to-end learning process that learns di-
rectly from raw rating data. More precisely, a bicubic interpolation

algorithm [42] scales down the rating matrix to overcome problems
with sparsity. A convolutional neural network (CNN) then extracts
any hidden user features based on the resized rating matrix. Finally,
these hidden features are parsed through an algorithm designed
specifically to detect poisoning attacks.

Semi-supervisedMethods. In most recommendation systems, the
number of labelled users is typically quite small. Further, annotating
labels for the remaining users is generally impractical as it costs
too much and, moreover, access to the data is usually restricted. In
these situations, semi-supervised methods have proven to be quite
effective. For example, Wu et al.[137] (CM-12) proposed the first
semi-supervised framework for detecting poisoning attacks called
HySAD. HySAD uses MC-Relief, a wrapper that selects features by
aggregating various popular attack detection metrics. The authors
employ a semi-supervised Naïve Bayes (SNB_𝜆)[140] classifier to
categorise both labelled and unlabelled profiles. Similarly, Cao et
al. [30] (CM-13) introduced a semi-supervised algorithm, called
Semi-SAD, that can learn from both labelled and unlabelled user
profiles. This work combines the Naïve Bayes classifier with a
variant of the expectation-maximization algorithm (EM-𝜆) in a
sequential manner. Specifically, Semi-SAD initially trains the Naïve
Bayes classifier using a small set of labelled profiles. The results are
then fine-tuned and improved by incorporating unlabelled profiles
with the EM-𝜆 algorithm.

Unsupervised methods. In the complete absence of labels, the
only alternative is an unsupervised method of detection. The first
to propose such an approach was Zhang et al. [162] (CM-14). Their
method builds on the idea that the distribution of ratings over time
might reveal various kinds of hidden attacks. On this premise, the
authors grouped consecutive ratings into windows of the same size
𝑘 and found, through a theoretical proof, that some specific window
sizes are optimal for detecting an attack, but only if the number of
malicious profiles is known. For circumstances when the number is
not known, they devised a heuristic algorithm to select the window
size dynamically.

To improve detection accuracy, Mehta et al. [81, 84] applied
principle component analysis (PCA) to the problem of profile de-
tection (CM-17). Bryan et al.’s [23] algorithm called UnRAP was
inspired by the efficacy of a technique developed in the field of
gene expression analysis called Hv_score [22, 23]) (CM-16). The
novelty of their approach is that they formulate detecting an attack
as a problem of detecting anomalous structures. The strategy is so
successful that the method can detect some types of attacks with
higher confidence than even supervised methods.

Based on the hypothesis that malicious profiles will be simi-
lar to each other, many approaches employ clustering to separate
malicious profiles from genuine profiles, i.e., [19] CM-18, [20] CM-
20, [145] CM-26, [154] CM-27. For example, Chung et al. [38]
(CM-19) applied the Beta distribution algorithm [93] to detect poi-
soned profiles.Wen et al. [172] (CM-21) put forward De-TIA, which,
rather than only considering individual attacks, detects groups of at-
tacks. The central idea of De-TIA is to incorporate both the DegSim
metric [173] and the RDMAmetric [174] into a single framework to
better differentiate between malicious profiles and genuine profiles.
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The authors also extend their work to the problem of targeted rating
pattern analysis. Unlike prior work, which only tends to address
a specific type of attack, Zhang et al. [166] (CM-22) continuously
scan the recommender system to identify attacks as they emerge.
Their method looks for the propagation of fraudulent actions; it
also estimates the reliability of users in propagation-based systems.

Adopting a statistical approach, Zhou et al. [174] (CM-23) de-
veloped a method of identifying the ratings patterns associated
with malicious profiles and their features. Likewise, Xia et al. [139]
focused on detecting anomalous items directly in order to filter out
items manipulated by fake profiles ([CM-24]). Separating malicious
profiles from genuine profiles can also be done through user-user
graphs and correlation analysis [144] ([CM-25]).

Zhou et al. [175] (CM-28) detectmalicious behaviour by analysing
ratings as a time series. In this way, they are able to identify anoma-
lous user groups. Similar ideas are discussed in Cai et al. [26]
(CM-29). Their approach, called BS-SC, starts with an in-depth
analysis of user behaviour, after which, the hidden features are
extracted to discriminate between fake users and genuine users.
The second step is to build a similarity matrix behaviour for all
the profiles. Cai et al. [27] (CM-30) presented a similar approach
that involves analysing user behaviour. Unlike most unsupervised
methods, which only consider rating distributions to detect mali-
cious profiles, Aktukmak et al. [7] (CM-32) rely on user features as
an additional reference to enhance detection performance. More
specifically, these researchers employ a probabilistic factorisation
model to project these two data sources into a latent space. Based
on the learned latent space, the framework provides a detection
mechanism for new users based on anomaly statistics. In addition
to protecting recommender systems from poisoning attacks, Cai et
al. [28]CM-31 proposed an approach called Value-based Neighbour
Selection (VNS) that also improves the profitability of e-retailers at
the same time.

Lastly, Yang et al. [146] (CM-33) published a detection method
called IMIA-HCRF that trainsmodels based on various aspects of the
users’ behaviour. It incorporates the density of user ratings as well
as co-visitation behaviour to identify malicious profiles. Exploiting
recent advances in deep learning with graphs [43, 66, 67, 90, 91],
Hao et al. [59] (CM-34) present a method that involves recon-
structing user-user graphs that are subsequently used to identify
malicious profiles. Similarly, You et al. [150] (CM-35) propose Anti-
FakeU, a framework that integrates confidence scores from a mali-
cious user detector into a neighbourhood aggregation mechanism.
Fake users, generated automatically, eliminate the need for labels.
The approach involves constructing a user-user graph to capture
malicious behaviour patterns and a novel GNN-based detector to
identify fake users.

5.2 Prevention Methods
5.2.1 Prevention Formulation. Prevention methods aim to mitigate
the impact of poisoning attacks. One effective defence involves a
form of robust optimisation [83]. Formally, let R denote the set of
observed ratings in the user-item interaction matrix. The objective
function is then formulated as

E = L + 𝜆 ∗ R (19)

In this formulation,L denotes the original loss function, whichmea-
sures the prediction error between the recommended ratings and
the actual ratings. The term 𝜆 ∗ R introduces a regularisation com-
ponent into the objective function, promoting the generation of rat-
ings that align with the observed ratings in the training data [134].
The coefficient 𝜆 determines the balance between accuracy and the
system’s resilience against poisoning attacks.

5.2.2 Mitigating Challenges to Achieve Effective Robustness. Most
prevention methods rely on a combination of techniques. For exam-
ple, the issue of openness is handled through outlier detection, data
sanitisation, and preprocessing techniques [113]. Through such
methods, manipulated data can be identified and filtered out. As
another example, concept drift is often handled by using a dynamic
learning algorithm that adapts to evolving user behaviour [120].
This adaptability allows the system to distinguish between genuine
changes and fake users to help preserve accurate recommendations.
Imbalanced data is generally addressed via ensemble methods [103]
that assign more weight to the minority classes and use an over or
undersampling technique to balance the dataset.

5.2.3 RelatedWork. In addition to detectionmethods, there is a line
of research that aims to make a recommender system more robust
to poisoning attacks without explicitly trying to detect them. More
precisely, these algorithms strive to address the vulnerabilities in
recommender systems that poisoning attacks exploit. This section
briefly highlights existing works in this direction.

In their initial study, Sandvig et al. [109] (CM-36) found that
model-based recommender systems are more stable and robust
than memory-based recommender systems. Building on this, they
devised a robust recommender system based on association rule
mining, which significantly improves upon neighbour- and model-
based recommender systems. Their algorithm captures item rela-
tionships through co-occurrences in user profiles, leading to more
precise recommendations and mitigating the impact of poisoning
attacks. Another study by Mehta et al. [82] (CM-37) explores the
use of statistical techniques, specifically robust M-estimators, for
achieving robustness in recommender systems. They leverage ro-
bust M-estimators to propose a matrix factorisation algorithm that
outperforms other latent semantic-based algorithms such as PLSA
and SVD. Mehta et al.[83] (CM-38) present an attack-resistant al-
gorithm for SVD-based collaborative filtering that integrates the
efficiency of SVD-based detectors into the system. This algorithm
improves both accuracy and robustness of the model. Inspired by
graph-basedmodels for capturingmalicious profiles, GraphRfi [165]
(CM-39) introduces a framework based on a graph convolutional
network (GCN) for user representation learning. It incorporates
dual-task learning with the aim of simultaneously maintaining
robust recommendations while also detecting attacks.

Differential privacy [50] has been widely accepted as an ex-
cellent method for protecting machine learning systems against
poisoning attacks. Hence, there have been several attempts to apply
this idea to recommender systems as well, including by Wadhwa
et al. [126] (CM-40). These studies demonstrate that differentially-
private recommender systems are more robust than other types
of systems and that, in most cases, attack utility is reduced. Anelli
et al.[14] (CM-41) devised the idea of using adversarial training
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to enhance the robustness of visual recommender systems (VRSs),
exploring adversarial attacks and defence strategies specifically tai-
lored to VRSs. Wu et al.[134] (CM-42) presented the APT scheme,
which also involves adversarial training. This time, fake profiles are
simulated and the agents learn to generate fake users with minimal
influence on the target recommender system’s empirical risk. In
turn, using both real and generated data strengthens the recom-
mender system’s robustness through dynamic training. The PORE
framework, introduced by Jia et al. [68] (CM-43), builds recom-
mender systems with a proven robustness against untargeted data
poisoning attacks. PORE can convert any existing recommender
system into a resilient one by limiting fake user ratings, incorpo-
rating knowledge from the recommender system algorithm, and
establishing guarantees against targeted data poisoning attacks.

Figure 4: Effective countermeasures against poisoning at-
tacks.

Figure 5: Poisoning attacks that are resilient against certain
countermeasures.

In summary, early studies on preventing poisoning attacks
primarily focused on traditional analysis techniques, such as sta-
tistical and SVD-based methods. Later approaches have witnessed
more elaborate foundations, such as GCNs and differential privacy.
Moreover, adversarial learning has proven to provide an excellent
opportunity to obtain better representations of user profiles, thereby
significantly improving the robustness of the systems.

5.3 Which Countermeasures are Effective
Against Which Attacks?

Following the idea of attack visualisations [44], we developed a
mapping of which countermeasures are effective against which

attacks. The maps capture the attack traits and link them to the
countermeasures as well as the strategies and capacities of an adver-
sary. Themapping results are shown in Fig. 4. Here, not surprisingly,
we observe a predominant focus on the traits related to users and
ratings, which highlights that many of the aforementioned strate-
gies can actually be expected to achieve some level of robustness
against a large number of attacks.

5.4 Which Countermeasures are Weak Against
Which Attacks?

Most attacks do not only have the goal of promoting or demoting
a set of items. Rather, they also strive to disguise themselves from
countermeasures. While we have already considered this aspect in
our review of poisoning attacks (see the ‘unnoticeable’ column in
Tab. 2), this mapping links these attacks to particular countermea-
sures, as shown in Fig. 5. Here, weak countermeasures are listed in
the left column, while the right column contains attacks that are
resilient against certain countermeasures. In general, there are only
a small number of countermeasures that are weak against specific
attacks. It is also worth noting that each of the found dependen-
cies constitutes an opportunity for research on how to avoid the
corresponding weakness.

6 RESEARCH GAPS, LIMITATIONS, AND
FUTURE DIRECTIONS

6.1 Gaps Related to Poisoning Attacks
From white-box and grey-box to black-box attacks. Existing
poisoning attacks often rely on knowledge of the interactions be-
tween users and items, as is the case with white-box and grey-box
attacks. However, privacy and security concerns typically limit ac-
cess to targeted recommender systems. Although black-box attacks
have gained attention, defining them and finding their countermea-
sures remains an open question requiring further research.

From specific to agnostic attacks. Model-intrinsic attacks cur-
rently dominate the field. However, they are not particularly ap-
plicable to the real world. Future research could therefore focus
on model-agnostic attacks to assess the robustness of emerging
recommender systems.

Side-information fusion. Most existing attacks follow the par-
adigm of injecting fake users and their interactions along with a
small set of filler items into the training data (as discussed in Tab. 2).
However, more recommender systems are recently beginning to
also exploit side information to improve the quality of recommen-
dations, such as domain hypergraphs [55], the social properties
of users [152], and spatial information [119, 128]. Although side
information can help, it also introduces additional complexities
and potential security risks. By including side information, the
attacker can manipulate the recommendations and mislead users.
This emerging strategy deserves special attention as it has the po-
tential to undermine the reliability of recommender systems [148].

6.2 Gaps Related to Countermeasures
Pre-attack detection. Most current countermeasures primarily
focus on detecting poisoning attacks after they have already caused
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irreversible damage. Few approaches attempt to detect pre-attack
behaviour, which involves identifying the malicious activities aimed
at preparing an attack. Future research should not only look to
identify the kinds of abnormal behaviour that precede an attack but
also design mechanisms to monitor this type of behaviour in real-
time. This would see a new category of countermeasures emerge
in the form of a prediction method to sit alongside prevention and
detection.

Going beyond the main traits. As shown in Tab. 6, existing
detection methods primarily focus on key indicators such as the
ratings of filler and target items. However, supplementary informa-
tion, such as a user’s attributes, play an equally important role in
preventing unforeseen damage to the attacked system. For exam-
ple, if a new user is created with suspicious attributes, the system
should implement a mechanism to verify the user before incorpo-
rating their interactions. The same approach can be applied to the
attributes of newly added items (filler items) to prevent manipula-
tion based on these items. Therefore, we believe that incorporating
additional traits into detection methods to identify and mitigate
poisoning attacks represents a promising research direction.

Going beyond accuracy. The pursuit of accuracy has tradition-
ally been the primary goal of attack detection models. However,
it has been recognised in recent years that focusing solely on ac-
curacy is insufficient [57]. Ensuring fairness and explainability of
the models has become equally important [3, 74]. Specifically, ex-
plainability plays a crucial role in developing countermeasures by
understanding the creation of poisoning attacks and deriving pre-
ventive measures against similar attacks. Therefore, there is a need
for research on explainability techniques to address vulnerabilities
in recommender system models.

Overhead optimisation. Our paper primarily focuses on coun-
tering poison attacks in recommender systems. However, we ac-
knowledge that the discussed applications may have broader impli-
cations. As a future direction, we propose optimising the overhead
associated with feature extraction from historical data. This opti-
misation is crucial due to the significant performance impact on
recommender systems. Real-time detection of fake users is essential
for effective countermeasures, necessitating further emphasis on
reducing overhead.

6.3 Limitations of the work
Our limitation is the absence of a quantitative performance compar-
ison between the reviewed poison attacks. Due to space constraints,
we were unable to provide direct empirical evidence regarding the
practical efficacy of these models. However, in future work, we plan
to conduct a comprehensive quantitative performance comparison
using real-world datasets and established evaluation metrics. By ad-
dressing this limitation in a future technical report, in conjunction
with the current survey, our aim is to provide a more practical and
comprehensive understanding of poison attacks in recommender
systems and contribute to advancing this crucial research area.

6.4 Linking Poisoning Attacks and
Countermeasures

Our analysis of published studies on poisoning attacks and coun-
termeasures reveals a concerning trend. While there has been a
significant amount of research on novel types of poisoning attacks,
there has not been much work in recent years on developing coun-
termeasures. This indicates that state-of-the-art recommendation
systems will have various vulnerabilities that can potentially be
exploited and where there is no effective countermeasure to stop
the attack. Therefore, a significant research gap exists that calls for
further investigation on how to assess and enhance the robustness
of recommender systems. This research is crucial for maintain-
ing and partially restoring the trustworthiness and fairness of the
underlying recommendation models.

6.5 Integrating General Vulnerabilities of
Recommender Systems

In addition to the discussed poisoning attacks, recommender sys-
tems are susceptible to vulnerabilities arising from general secu-
rity threats faced by information systems. However, these vul-
nerabilities have been largely overlooked and only informally ad-
dressed [53]. Consequently, there is an urgent need to systemati-
cally describe, analyse, and establish connections between these
general vulnerabilities and attacks on recommender systems. Rigor-
ous methodologies and design principles need to be developed, as
such efforts are crucial for quantitatively assessing the impact of at-
tacks and designing effective techniques to mitigate their associated
risks.

6.6 Tools and Environments for Discovering
Vulnerabilities

As is evident fromTab. 6, existing attack detection techniques do not
cover all the vulnerabilities in today’s recommender systems. There-
fore, building a comprehensive countermeasure means combining
different techniques. Tools that enable the seamless integration
of various detection techniques would help in this regard. Addi-
tionally, practical research on novel attacks and countermeasures
heavily relies on simulation environments for contemporary recom-
mender systemmodels, considering the limited access to production
systems. Future work should prioritise the development of such
simulation environments. These resources will serve as valuable
testbeds for both practitioners and researchers, contributing to the
advancement of the field as a whole.

7 CONCLUSION
In this survey, we presented a comprehensive overview of poison-
ing attacks for recommender systems along with countermeasures
to detect and prevent them. We first distinguished poisoning at-
tacks from similar concepts, such as adversarial attacks, before
introducing a novel taxonomy for poisoning attacks. We formalised
the dimensions of this taxonomy and linked a total of 31 attacks
described in the literature to it. We complemented the discussion
of attacks with a review of 43 countermeasures that have been
proposed to detect or prevent poisoning attacks. Further insights
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have been provided by linking attacks and countermeasures, high-
lighting which countermeasures can be expected to be effective
against which attacks, and which attacks can be expected to be
resilient against which countermeasures. We concluded by high-
lighting research gaps and providing directions for future work.
By providing a public repository that includes all reviewed papers
along with the program codes and datasets released in the context
of these studies, we have also provided researchers in the field a
comprehensive starting point to address these open challenges.

REFERENCES
[1] [n. d.]. https://www.industryarc.com/Research/Recommendation-Engine-

Market-Research-500995
[2] [n. d.]. http://news.bbc.co.uk/2/hi/entertainment/1368666.stm
[3] Behnoush Abdollahi and Olfa Nasraoui. 2018. Transparency in fair machine

learning: the case of explainable recommender systems. In Human and machine
learning. Springer, 21–35.

[4] PH Aditya, Indra Budi, and Qorib Munajat. 2016. A comparative analysis of
memory-based and model-based collaborative filtering on the implementation
of recommender system for E-commerce. In ICACSIS. 303–308.

[5] Alankrita Aggarwal, Mamta Mittal, and Gopi Battineni. 2021. Generative adver-
sarial network: An overview of theory and applications. International Journal
of Information Management Data Insights 1, 1 (2021), 100004.

[6] Charu C Aggarwal et al. 2016. Recommender systems. Vol. 1.
[7] Mehmet Aktukmak, Yasin Yilmaz, and Ismail Uysal. 2019. Quick and accurate

attack detection in recommender systems through user attributes. In RecSys.
348–352.

[8] Bushra Alhijawi and Yousef Kilani. 2020. The recommender system: a survey.
IJAIP 15, 3 (2020), 229–251.

[9] Zafar Ali, Pavlos Kefalas, KhanMuhammad, Bahadar Ali, andMuhammad Imran.
2020. Deep learning in citation recommendation models survey. Expert Systems
with Applications 162 (2020), 113790.

[10] Zafar Ali, Shah Khusro, and Irfan Ullah. 2016. A hybrid book recommender
system based on table of contents (toc) and association rule mining. In INFOS.
68–74.

[11] Zafar Ali, Irfan Ullah, Amin Khan, Asim Ullah Jan, and Khan Muhammad. 2021.
An overview and evaluation of citation recommendation models. Scientometrics
126 (2021), 4083–4119.

[12] Emad Aliwa et al. 2021. Cyberattacks and countermeasures for in-vehicle
networks. CSUR 54, 1 (2021), 1–37.

[13] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2008. Byzantine repli-
cation under attack. In DSN. 197–206.

[14] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and
Felice Antonio Merra. 2021. A study of defensive methods to protect visual
recommendation against adversarial manipulation of images. In SIGIR.

[15] Khalid Anwar, Jamshed Siddiqui, and Shahab Saquib Sohail. 2020. Machine
learning-based book recommender system: a survey and new perspectives.
IJIIDS 13, 2-4 (2020), 231–248.

[16] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir Safavi. 2017.
Mitigating poisoning attacks on machine learning models: A data provenance
based approach. In AISec. 103–110.

[17] Julio Barbieri, Leandro GM Alvim, Filipe Braida, and Geraldo Zimbrão. 2021.
Simulating real profiles for shilling attacks: A generative approach. KBS 230
(2021), 107390.

[18] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In CCS. 75–88.

[19] Runa Bhaumik, Bamshad Mobasher, and Robin Burke. 2011. A clustering ap-
proach to unsupervised attack detection in collaborative recommender systems.
In ICDATA. 1.

[20] Alper Bilge et al. 2014. A novel shilling attack detection method. Procedia
Computer Science 31 (2014), 165–174.

[21] Paula Branco et al. 2016. A survey of predictive modeling on imbalanced
domains. CSUR 49, 2 (2016), 1–50.

[22] Kenneth Bryan and Pádraig Cunningham. 2006. Bottom-up biclustering of
expression data. In CIBCB. 1–8.

[23] Kenneth Bryan, Michael O’Mahony, and Pádraig Cunningham. 2008. Unsu-
pervised retrieval of attack profiles in collaborative recommender systems. In
RecSys. 155–162.

[24] Robin Burke, BamshadMobasher, ChadWilliams, and Runa Bhaumik. 2006. Clas-
sification features for attack detection in collaborative recommender systems.
In KDD. 542–547.

[25] Robin Burke, Bamshad Mobasher, Chad Williams, and Runa Bhaumik. 2006.
Detecting profile injection attacks in collaborative recommender systems. In
CEC/EEE). 23–23.

[26] Hongyun Cai and Fuzhi Zhang. 2019. BS-SC: An Unsupervised Approach
for Detecting Shilling Profiles in Collaborative Recommender Systems. IEEE
Transactions on Knowledge and Data Engineering (2019).

[27] Hongyun Cai and Fuzhi Zhang. 2019. Detecting shilling attacks in recommender
systems based on analysis of user rating behavior. KBS 177 (2019), 22–43.

[28] Yuanfeng Cai and Dan Zhu. 2019. Trustworthy and profit: A new value-based
neighbor selection method in recommender systems under shilling attacks.
Decision Support Systems 124 (2019), 113112.

[29] Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan.
2021. Generative adversarial networks: A survey toward private and secure
applications. CSUR 54, 6 (2021), 1–38.

[30] Jie Cao, Zhiang Wu, Bo Mao, and Yanchun Zhang. 2013. Shilling attack detec-
tion utilizing semi-supervised learning method for collaborative recommender
system. World Wide Web 16, 5-6 (2013), 729–748.

[31] Henry Chacon, Samuel Silva, and Paul Rad. 2019. Deep learning poison data
attack detection. In ICTAI. 971–978.

[32] Yi Chang, Zhao Ren, Thanh Tam Nguyen, Wolfgang Nejdl, and BjörnW Schuller.
2022. Example-based Explanations with Adversarial Attacks for Respiratory
Sound Analysis. In Interspeech. 1–5.

[33] Huiyuan Chen and Jing Li. 2019. Data poisoning attacks on cross-domain
recommendation. In CIKM. 2177–2180.

[34] Jingfan Chen, Wenqi Fan, Guanghui Zhu, Xiangyu Zhao, Chunfeng Yuan, Qing
Li, and Yihua Huang. 2022. Knowledge-enhanced Black-box Attacks for Recom-
mendations. In KDD. 108–117.

[35] Liang Chen, Yangjun Xu, Fenfang Xie, Min Huang, and Zibin Zheng. 2021. Data
poisoning attacks on neighborhood-based recommender systems. Transactions
on Emerging Telecommunications Technologies 32, 6 (2021), e3872.

[36] Paul-Alexandru Chirita, Wolfgang Nejdl, and Cristian Zamfir. 2005. Preventing
shilling attacks in online recommender systems. In WIDM. 67–74.

[37] Konstantina Christakopoulou and Arindam Banerjee. 2019. Adversarial attacks
on an oblivious recommender. In RecSys. 322–330.

[38] Chen-Yao Chung, Ping-Yu Hsu, and Shih-Hsiang Huang. 2013. 𝛽P: A novel
approach to filter out malicious rating profiles from recommender systems.
Decision Support Systems 55, 1 (2013), 314–325.

[39] Bin Dai, Shilin Ding, and GraceWahba. 2013. Multivariate bernoulli distribution.
Bernoulli 19, 4 (2013), 1465–1483.

[40] Debashis Das, Laxman Sahoo, and Sujoy Datta. 2017. A survey on recommen-
dation system. IJCA 160, 7 (2017).

[41] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. 2021. A survey on
adversarial recommender systems: from attack/defense strategies to generative
adversarial networks. CSUR 54, 2 (2021), 1–38.

[42] Zhou Dengwen. 2010. An edge-directed bicubic interpolation algorithm. In
CISP, Vol. 3. 1186–1189.

[43] Chi Thang Duong, Thanh Tam Nguyen, Trung-Dung Hoang, Hongzhi Yin,
Matthias Weidlich, and Quoc Viet Hung Nguyen. 2022. Deep MinCut: Learning
Node Embeddings from Detecting Communities. Pattern Recognition (2022),
109126.

[44] M Evangelopoulou and CW Johnson. 2014. Attack visualisation for cyber-
security situation awareness. (2014).

[45] Jiaxin Fan, Qi Yan, Mohan Li, Guanqun Qu, and Yang Xiao. 2022. A Survey on
Data Poisoning Attacks and Defenses. In 2022 7th IEEE International Conference
on Data Science in Cyberspace (DSC). IEEE, 48–55.

[46] Wenqi Fan, Tyler Derr, Xiangyu Zhao, Yao Ma, Hui Liu, Jianping Wang, Jiliang
Tang, and Qing Li. 2021. Attacking Black-box Recommendations via Copying
Cross-domain User Profiles. In ICDE. 1583–1594.

[47] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. 2020. Influence function
based data poisoning attacks to top-n recommender systems. In WWW. 3019–
3025.

[48] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
attacks to graph-based recommender systems. In ACSAC. 381–392.

[49] Sam Fletcher et al. 2019. Decision tree classification with differential privacy: A
survey. CSUR 52, 4 (2019), 1–33.

[50] Arik Friedman and Assaf Schuster. 2010. Data mining with differential privacy.
In KDD. 493–502.
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A MODEL-INTRINSIC RECSYS
This section provides a comprehensive exploration of various rec-
ommender systems, including ones based on matrix-factorisation,
graphs, neighbourhoods, and deep learning, as well as federated
recommender systems.

A.1 Matrix-factorisation-based RecSys
In collaborative filtering, the objective is to decompose the user-
item interaction matrix into separate matrices representing the
latent factors of the users and items [70]. The user-item interaction
matrix, denoted as R, represents the interactions between users and
items. In this matrix, 𝑟𝑢𝑖 denotes the specific interaction between
user 𝑢 and item 𝑖 . The factorisation can be expressed as:

R ≈ 𝑈 ∗𝑉𝑇 (20)
where𝑈 denotes the user latent factor matrix with a dimension of
𝑚×𝑘 , where𝑚 represents the number of users and 𝑘 represents the
number of latent factors. 𝑉 represents the item latent factor matrix
with a dimension of 𝑛 × 𝑘 , where 𝑛 corresponds to the number of
items. The predicted rating for user𝑢 and item 𝑖 , denoted as 𝑟𝑢𝑖 , can
be computed as the dot product of the respective latent vectors:

𝑟𝑢𝑖 = 𝑈 [𝑖, :] ∗𝑉 [ 𝑗, :] (21)
Matrix factorisation-based recommender systems can be enhanced
by including regularisation terms, bias terms, and other techniques
to improve performance and address additional factors like user/item
biases and temporal dynamics [8]. Nevertheless, the fundamental
principle remains centred around decomposing the rating matrix
into low-rank user and item factor matrices, which means person-
alised recommendations can be generated [8, 70].

A.2 Graph-based RecSys
In a graph-based recommender system, users, items, and their rela-
tionships are modelled using a graph structure [56] denoted as G =
(V, E). Such graphs are constructed using the following procedure.

• The user-item relationship can be represented as an edge,
denoted as e = (u, i), which indicates that user u has rated

item i. Mathematically, this can be defined as:
𝑒 = (𝑢, 𝑖) ∈ 𝐸, if 𝑟𝑢𝑖 is not null or zero (22)

• Item-item relationships are also represented as edges, de-
noted as e = (i, j), which indicates the similarity between
items i and j. Mathematically, this can be defined as:

𝑒 = (𝑖, 𝑗) ∈ 𝐸, if 𝑠𝑖𝑚(𝑖, 𝑗) > 𝜏 (23)
where 𝑠𝑖𝑚(𝑖, 𝑗) represents a similarity measure between
items 𝑖 and 𝑗 , while the threshold 𝜏 determines the mini-
mum required similarity for an edge to be established.

Using the graph structure, recommendations can be generated by
leveraging the relationships between users and items, as well as
item-item relationships. The specific recommendation algorithms
and techniques can vary depending on the goals and characteristics
of the recommender system [65].

A.3 Neighbourhood-based RecSys
In neighbourhood-based recommender systems, the selection of
neighbours holds significant importance. Neighbours are typically
chosen based on their similarity to the target user or item [97].
Several similarity metrics, such as Pearson correlation coefficient
or cosine similarity, can be used to quantify the similarity between
users or items. After selecting the neighbourhood, the recommender
system predicts the rating for a target user-item pair by considering
the ratings of the neighbours. One common approach is weighted
average rating prediction, where the predicted rating 𝑟𝑢𝑖 for a target
user 𝑢 and item 𝑖 can be calculated using:

𝑟𝑢𝑖 =

∑(𝑠𝑖𝑚(𝑢, 𝑣) ∗ 𝑟𝑢𝑖 )∑
𝑠𝑖𝑚(𝑢, 𝑣) (24)

where 𝑠𝑖𝑚(𝑢, 𝑣) denotes the similarity between users 𝑢 and 𝑣 , 𝑟𝑢𝑖
represents the rating of user 𝑣 for item 𝑖 , and the summation is
performed over the selected neighbourhood of user 𝑢 [107].

A.4 Deep-learning-based RecSys
Deep-learning-based recommender systems rely on neural network
architectures to capture intricate patterns and representations from
the data encompassing user-item interactions [88]. Suppose we
examine a deep learning model characterised by the parameters
𝜃 . This model accepts user (𝑧𝑢 ) and item (𝑧𝑖 ) embeddings as its
input and generates predictions for ratings or the probabilities of
any interactions between the users and items [163]. The forward
propagation in the deep learning model can be expressed as:

R̃ = 𝑓𝜃 (𝑧𝑢 , 𝑧𝑖 ) (25)
where the function 𝑓𝜃 represents the mapping function, which is
parameterised by 𝜃 and is responsible for calculating the predicted
rating or the probability of interaction between the user embedding
(𝑧𝑢 ) and the item embedding (𝑧𝑖 ) [9].

A.5 Federated Recommender Systems
The main distinction between a federated recommender system and
a traditional recommender system lies in the approach to data shar-
ing [164]. Unlike a traditional recommender system, a federated
recommender system does not share the complete rating matrix
with any external entity [135]. Instead, users, items, and ratings
are dispersed across various local data sources. The global model
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represents a comprehensive collection of knowledge, and recom-
mendations are generated by combining insights from various local
models. The collaborative learning process involves aggregating
information from these local models:

• Local Training: This step involves training an ML model
using a subset of the rating matrix R without the need to
share the entire rating matrix with any other party.

• Global Aggregation: In this step, the global model param-
eters 𝜃 are obtained by aggregating the local model parame-
ters {𝜃1, 𝜃2, ..., 𝜃𝑘 } from individual data sources {𝐿1, 𝐿2, ..., 𝐿𝑘 }.
The aggregation combines these parameters using tech-
niques such as averaging or weighted aggregation. For in-
stance, the globalmodel can be calculated as𝑀 = 1

𝑁

∑𝑁
𝑖=1𝑀𝑖 ,

where 𝑁 represents the number of participating nodes and
𝑀𝑖 corresponds to the local model at node 𝑖 .

Federated recommender systems leverage a collaborative global
model to generate recommendations by using aggregated knowl-
edge from local data sources. This innovative approach to recom-
mender systems shows great promise in tackling many challenges
related to privacy and security [105].

B EVALUATION PROTOCOLS FOR
COUNTERMEASURES

Table 7: Metrics used in countermeasures.
Abbrv Name Abbrv Name

RDMA Rating Deviation from
Mean Agreement MSEP Mean Similarity-based

Expected Profit
ASM Average Similarity Metric Hit Hit Rate Ratio
Spe Specificity CS Classification Error
Sen Sensitivity DR Detection Rate
FPR False Positive Rate FAR False Alarm Rate
Pre Precision Hv-Score Information Gain
Rec Recall MAS Mean Absolute Shift
Acc Accuracy RMSS Root Mean Square Shift
F1 F1-measure MTP Mean of Total Profit

F2 F2-measure–recall has
twice weight of precision PANT Predicted Anomalous is not

the Target Items
AUC Area under the ROC Curve MDD Mean Detection Delay
MAE Mean Absolute Error Time Timeliness
PS Prediction Shift

The following section presents a comprehensive overview of
the evaluation protocols, datasets, and domains used in various
methods to counter poison attacks. Tab. 7 presents a summary
of the evaluation protocols while Tab. 8 lists the most commonly
used datasets. And Tab. 9 provides a summary of countermeasures,
including their evaluation metrics, domains, and datasets adopted.

Table 8: Datasets used in countermeasures.
Abbrv Term

SYN Synthetic datasets
ML MovieLens
NF Netflix
AMB Amazon Book
AMM Amazon Movie
AMP Amazon Product
CI Ciao DVD
EP Epinions
EM Eachmovie
BC Book-Crossing
Trip TripAdvisor
GOW Gowalla
YE Yelp

Evaluation metrics. When evaluating poison attack detection
methods in recommender systems, it is crucial to establish accept-
able ranges for evaluation metrics. The ranges for metrics like
accuracy, precision, recall, and F1-score vary depending on the

context of poison attack detection [150]. Factors such as the rec-
ommender system’s nature, the potential consequences of false
positives, and the prevalence of poison attacks in the dataset impact
these ranges. Simply achieving high accuracy may not suffice due
to imbalanced datasets leading to misleading results [81]. Precision
holds particular significance in poison attack detection, especially
in scenarios where false positives can promote harmful or malicious
content [59]. Although specific benchmarks for poison attack de-
tection in recommender systems may not be explicitly defined, it is
reasonable to consider models with performance scores around 0.8
to 0.9 as acceptable[120]. This range suggests the method correctly
identifies poison attacks approximately 80% to 90% of the time. An
excellent performance would be indicated by a score exceeding
0.9, indicating a robust defence against poison attacks [103]. In
future research, we aim to conduct comparative evaluations and
establish concrete acceptable ranges for poison attack detection
metrics in recommender systems. These findings will be presented
in a technical report.

Domains of application. Countermeasures for poison attacks
in recommender systems reveals a primary focus on the movie
domain and this emphasis highlights the significance of safeguard-
ing movie recommender systems against manipulation [7, 59, 171].
However, researchers have also recognised the broader implica-
tions of poison attacks and have developed countermeasures that
address multiple domains, including products [59], books [28], ho-
tels [146], and synthetic data [26]. Moreover, the inclusion of POI
and location [150] as domains of interest reflects the concern for
protecting location-based recommender systems. By covering these
diverse domains, the reviewed countermeasures aim to enhance
the security and reliability of recommender systems, preserving
user trust and satisfaction in their recommendations across a wide
range of applications.
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Table 9: Domain and Evaluation Comparison.

Name Authors Year Evaluation Metric Domain Dataset

RD
M
A

A
SM

Sp
e

Se
n

FP
R

Pr
e

Re
c

A
cc

F1 F2 A
U
C

M
A
E

M
SE

P

H
it

PS CS D
R

FA
R

H
v-
Sc
or
e

M
A
S

RM
SS

M
TP

M
D
D

PA
N
T

Ti
m
e

Supervised
CM-01 Chirita et al. [36] 2005 ✓ ✓ movie ML
CM-02 Burke et al. [24] 2006 ✓ ✓ movie ML
CM-03 Mobasher et al. [25] 2006 ✓ ✓ ✓ ✓ movie ML
CM-04 Williams et al. [87, 132] 2007 ✓ ✓ ✓ ✓ movie ML
CM-05 Zhang et al. [155] 2012 ✓ ✓ movie ML
CM-06 Zhang et al. [156] 2014 ✓ ✓ ✓ ✓ movie ML
CM-07 Zhou et al. [176] 2016 ✓ ✓ ✓ movie ML
CM-08 Yang et al. [147] 2016 ✓ ✓ ✓ movie ML
CM-09 Hao et al. [60] 2019 ✓ ✓ movie, product NF, ML, AMM
CM-10 Xu et al. [141] 2019 ✓ ✓ ✓ product CI, EP
CM-11 Zhou et al. [171] 2020 ✓ ✓ ✓ ✓ movie ML

Semi Supervised
CM-12 Wu et al. [137] 2012 ✓ ✓ ✓ ✓ movie NF, ML
CM-13 Cao et al. [30] 2013 ✓ ✓ movie ML

Unsupervised
CM-14 Zhang et al. [162] 2006 ✓ ✓ movie ML
CM-15 Mehta et al. [81] 2007 ✓ ✓ movie ML
CM-16 Bryan et al. [23] 2008 ✓ movie ML
CM-17 Meta et al. [84] 2009 ✓ ✓ ✓ movie ML
CM-18 Bhaumik et al. [19] 2011 ✓ ✓ ✓ movie ML
CM-19 Chung et al. [38] 2013 ✓ ✓ movie ML
CM-20 Bilge et al. [20] 2014 ✓ ✓ ✓ movie ML
CM-21 Zhou et al. [172] 2014 ✓ ✓ movie NF, ML
CM-22 Zhang et al. [166] 2015 ✓ ✓ ✓ product AMM
CM-23 Zhou et al. [174] 2015 ✓ ✓ ✓ movie ML, NF, EM
CM-24 Xia et al. [139] 2015 ✓ ✓ ✓ movie ML
CM-25 Yang et al. [144] 2016 ✓ ✓ movie ML
CM-26 Yang et al. [145] 2017 ✓ ✓ movie, product ML, AMP
CM-27 Zhang et al. [154] 2018 ✓ ✓ ✓ movie, product ML, NF, AMP
CM-28 Zhou et al. [175] 2018 ✓ ✓ movie ML
CM-29 Cai et al. [26] 2019 ✓ ✓ ✓ synthetic, product SYN, AMP
CM-30 Cai et al. [27] 2019 ✓ ✓ ✓ movie, product NF, ML, AMP
CM-31 Cai et al. [28] 2019 ✓ ✓ ✓ book BC, AMB
CM-32 Aktukmak et al. [7] 2019 ✓ ✓ movie ML
CM-33 Yang et al. [146] 2020 ✓ ✓ ✓ movie, book, hotel ML, AMB, LT, Trip
CM-34 Hao et al. [59] 2021 ✓ ✓ movie, product NF, AMM
CM-35 You et al. [150] 2023 ✓ ✓ ✓ POI, Location GOW, YE
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