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ABSTRACT

While acoustic expressiveness has long been studied in expressive
text-to-speech (ETTS), the inherent expressiveness in text lacks suf-
ficient attention, especially for ETTS of artistic works. In this pa-
per, we introduce StoryTTS, a highly ETTS dataset that contains
rich expressiveness both in acoustic and textual perspective, from the
recording of a Mandarin storytelling show. A systematic and com-
prehensive labeling framework is proposed for textual expressive-
ness. We analyze and define speech-related textual expressiveness
in StoryTTS to include five distinct dimensions through linguistics,
rhetoric, etc. Then we employ large language models and prompt
them with a few manual annotation examples for batch annotation.
The resulting corpus contains 61 hours of consecutive and highly
prosodic speech equipped with accurate text transcriptions and rich
textual expressiveness annotations. Therefore, StoryTTS can aid fu-
ture ETTS research to fully mine the abundant intrinsic textual and
acoustic features. Experiments are conducted to validate that TTS
models can generate speech with improved expressiveness when in-
tegrating with the annotated textual labels in StoryTTS.

Index Terms— expressive text-to-speech, TTS dataset, textual
expressiveness, large language models

1. INTRODUCTION

The advancement of deep learning has significantly enhanced the
quality of text-to-speech (TTS), enabling TTS models [1, 2, 3, 4, 5,
6] to produce speech that closely resembles human speech. How-
ever, these models tend to excel in synthesizing speech with rela-
tively simple emotional characteristics. When it comes to expressive
performance genres such as novels, poems, talk shows, and others,
these methods still fall short of delivering the desired level of ex-
pressiveness. Such performances are usually rich in expressive text.
This form of text influences the cadence and rhythm of the speaker’s
delivery and refers to a form of written language that can bring to
life the meaning and feeling of the subject matter to be conveyed. A
common approach is mine semantic and syntactic features from the
expressive text. [7] introduced a TTS model that explicitly incorpo-
rates text-context semantic information extracted from a pre-trained
BERT [8] model. This approach effectively enhances the expressive-
ness of the synthesized speech. In [9], a syntax graph is constructed
for each input sentence based on its dependency tree. Following this,
they employed a graph encoder to extract syntactic features, result-
ing in improved duration and pitch prediction.

†Kai Yu is the corresponding author.

However, these studies often rely on the coarse-grained seman-
tic representations of pre-trained language models or basic syntactic
structures, and they have not conducted a comprehensive and thor-
ough exploration of textual expressiveness, especially speech-related
expressiveness. To achieve natural and expressive TTS synthesis,
it’s essential to convey the emotional stance of the text, which re-
quires identifying speech-related textual expressive features in the
text. This is also supported by literature [10], where a thorough in-
vestigation was conducted into the relationship between prosody and
linguistics. This study underscored that elements like the emotional
content of the text, sentence patterns, and syntax have a direct impact
on reading expressiveness. Hence, understanding how to generalize,
summarize, and characterize speech-related expressive features from
expressive text might be crucial for expressive TTS.

In this paper, we introduce StoryTTS, a highly expressive TTS
dataset with rich expressiveness from both acoustic and textual per-
spectives. We initially construct the dataset from the recording of a
Mandarin storytelling show with careful revision of transcripts and
punctuations. Then we establish a systematic and comprehensive
labeling framework for textual expressiveness. Specifically, we ana-
lyze and define speech-related textual expressiveness in StoryTTS to
include five distinct dimensions through linguistics, rhetoric, and lit-
erary studies. These dimensions include rhetorical devices, sentence
patterns, scenes, imitated characters, and emotional colors. Then
we employ large language models (LLMs) and prompt them with a
few manual annotation examples for batch annotation. The resulting
corpus contains 61 hours of consecutive and highly prosodic speech
equipped with accurate text transcriptions and rich textual expres-
siveness annotations. We further conduct experiments to validate
that TTS models can produce speech with enhanced expressiveness
when integrating the annotations from StoryTTS. Our contributions
can be summarized as follows:

• We construct StoryTTS, the first TTS dataset that contains rich
expressiveness in both speech and texts and is also equipped with
comprehensive annotations for speech-related textual expressive-
ness. This dataset is also of high acoustic quality, organized by
consecutive chapters, and of sufficient size. We release the Sto-
ryTTS dataset online1.

• We establish a framework powered by LLMs to annotate textual
expressiveness in five distinct dimensions.

• We conduct experiments to validate that TTS models can produce
speech with enhanced expressiveness when integrating the anno-
tated textual expressiveness labels.

1https://goarsenal.github.io/StoryTTS
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2. STORYTTS

The construction of StoryTTS is introduced in detail in this sec-
tion, including data selection and retrieval, audio quality analysis,
speech segmentation and automatic recognition, manual correction
of recognition errors, and the enhancement of punctuation. The de-
tailed statistics of StoryTTS are shown in Table 1.

Table 1. Detailed statistics of StoryTTS.

Domain Feature Statistics

Speech

Number of speakers 1
Total duration (hours) 60.9

Mean duration per utterance (seconds) 6.8
Sampling rate (kHz) 16
Estimated SNR (dB) 32

Text Chapters 160
Sentences 33108

Table 2. Comparison of often used publicly available TTS datasets.
Here, ‘Lang’ refers to the respective language, ‘Num of spks’
means the number of speakers, ‘Hours / spk’ indicates the average
hours per speaker, ‘Pitch Std. / spk’ represents the average standard
deviation of pitch per speaker, and ‘Expr. Annots.’ denotes whether
expressiveness annotations are available.

Dataset Lang Num of Hours Pitch Std. Expr.
spks / spk / spk Annots.

LJSpeech [11] EN 1 24 49.93 N
Blizzard-2013 [12] EN 1 319 49.32 N
HiFi-TTS [13] EN 10 29.2 55.09 N
LibriTTS [14] EN 2456 4.2 48.51 N
Aishell3 [15] ZH 218 0.39 39.63 N
Biaobei [16] ZH 1 12 58.57 N

StoryTTS ZH 1 60.9 98.22 Y

2.1. Data selecting and retrieval
Storytelling, also known as “Pingshu”, is a traditional Chinese oral
art form where performers narrate stories, imitate various voices,
and portray characters to enthrall audiences. This form of oral art
is usually based on historical novels, which makes storytelling not
only rich in speech prosody but also diverse in textual expressive-
ness, such as linguistic structures, figures of speech, role-playing,
etc. Hence, storytelling shows satisfy our goal to a great extent.
We selected a storytelling show titled “Zhi Sheng Dongfang Shuo”,
recounting the legend of Dongfang Shuo, a key figure in the devel-
opment of the Han Dynasty in ancient China. This performance is
skillfully delivered by a female artist, Lian Liru. To construct the
dataset, we retrieved the recorded speech data from a public website,
which is organized into 160 consecutive chapters. These chapters
have an approximate duration of 24 minutes each, hence amounting
to 64 hours in total, including interval breaks.

2.2. Audio quality analysis
We also estimated the signal-to-noise ratio (SNR) of the speech data,
where the noise power was computed using the silence segments pre-
dicted by a voice activity detection (VAD) tool. As can be seen in
Table 1, the SNR is estimated to be 32dB, indicating the high au-
dio quality of the waveforms. Subsequently, we conducted statisti-
cal analysis on multiple common Mandarin (ZH) and English (EN)
datasets, as shown in Table 2. The results reveal that StoryTTS
exhibits a significantly higher pitch standard deviation than other
datasets, providing compelling evidence of its substantial acoustic
expressiveness. Furthermore, StoryTTS includes expressiveness an-
notations, which will be further explained in the next section.

2.3. Speech segmentation and automatic recognition
To process the originally coarsely segmented speech data, we im-
plemented a three-step approach. We first employed a VAD tool to
segment the chapter-level speech into utterances based on the dura-
tion of silence segments. Long silences were also removed in this
step, resulting in 60.9 hours of speech. Subsequently, given the ab-
sence of matching text transcripts, we obtained text transcripts using
Whisper [17], a popular speech recognition model. We observed that
there still exist speech segments that remained excessively long after
the VAD process. To address this issue, we identified these speech
segments and their corresponding texts. We manually divided the
prolonged text into smaller sentences and then utilized the Aeneas2

tool for synchronizing text fragments with speech. This alignment
allowed us to accurately cut the speech, producing a final dataset of
33108 pairs of speech and text.

2.4. Manual correction of recognition errors
Given the extremely variable pitch and speaking rate in the sto-
rytelling performances, the speech recognition results exhibited a
higher error rate compared to standard speech. In response to this
challenge, we meticulously reviewed every speech segment line by
line and rectified the recognition errors. Furthermore, we have made
diligent efforts to replace onomatopoeic elements in the speech with
appropriate words from the corresponding text.

2.5. Punctuation enhancement
Punctuation plays a vital role in text presentation, conveying emo-
tions like surprise or shock through exclamation points and indicat-
ing character dialogue or inner thoughts through double quotes. Al-
though Whisper can identify some punctuation marks, it still falls
far short of expectations. Thus, during our text review process, we
made careful punctuation corrections and additions to ensure precise
punctuation usage whenever possible. This attention to punctuation
accuracy also significantly benefited our subsequent work on textual
sentiment analysis.

3. LLM-DRIVEN EXPRESSIVENESS ANNOTATION

The expressive texts within StoryTTS exhibit a high degree of col-
loquialism and are rich in role-playing, psychological, action, and
environmental descriptions. Inspired and guided by [10], we intro-
duced a systematic and comprehensive labeling framework that har-
nesses the power of LLMs.

3.1. Exploring textual expressiveness
In our investigation of speech-related textual expressiveness, we
classify it into five dimensions drawn from the fields of literary
studies, linguistics, and rhetoric. These dimensions include rhetor-
ical devices, sentence patterns, scenes, imitated characters, and
emotional colors.

Rhetorical devices, like hyperbole, and sentence patterns,
such as declarative sentences, are commonly employed textual ex-
pressive devices. For instance, using an exclamatory sentence or
incorporating rhetorical devices like hyperbole can evoke emotions
of excitement or surprise. We also employed scenes such as role-
playing, taking into account the characteristics of StoryTTS. For
example, a role-playing scene often carries strong emotional con-
tent, while an aside typically lacks emotional elements. The specific
categorization regarding sentence patterns, scenes, and rhetorical
devices is shown in Table 3.

2https://github.com/readbeyond/aeneas
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Prompt:
I want you to act 
as a linguist …

Chinese text:                张汤心说：“我上哪儿要粮食去呀？我怎么跟皇上交代呀？”
English translation:      Zhang Tang thought to himself, “Where am I going to get the grain? How am I going to explain this to the Emperor?” 

Manual Annotation:       

Chinese text:                 就在这时候，突然间由打东门外吱扭扭,吱扭扭走进两辆牛车来。
English translation:       Just at that moment, suddenly, two ox carts came creaking 

and groaning from outside the east gate.

LLM Annotation:           

LLMs

Output

Instruction

Sentence Pattern Rhetorical Device Scene Emotional Color Imitated Character

Interrogative Rhetorical question Inner monologue Worry and anxiety Zhang Tang

Sentence Pattern Rhetorical Device Scene Emotional Color Imitated Character

Declarative Onomatopoeia Aside Emotionless color Aside

Input

Fig. 1. An Illustration of Expressiveness Annotation Using LLMs.

Table 3. Specific categories of Sentence Pattern, Scene, and
Rhetoric Device in StoryTTS. Here, ‘Num’ denotes the number of
categories.

Dimension Num Category

Sentence Pattern 4 Declarative, Interrogative
Imperative, Exclamatory

Scene 3 Role-playing, Aside
Inner monologue

Rhetoric Device 11

Hyperbole, Antithesis, Onomatopoeia
Simile, Personification, Quotation

Irony, Rhetorical question, Hypophora
Rhetorical repetition, Transition

Emotional colors often have a direct impact on the performer’s
expression. Instead of categorizing them into various polarities or
predefined categories, we have chosen a more precise approach:
summarizing the emotional color of a sentence using several words.
This method can provide a more accurate description of the text’s
emotion compared to traditional categorization.

In the case of imitated characters in StoryTTS, the performer
often mimics the speech patterns of characters when delivering their
lines. For example, she deliberately lowers the pitch and slows down
when portraying an old man while raising the pitch and speeding
up when mimicking a villain. We categorized the characters into 19
role types based on characteristics like age, gender, and status, which
also served as the basis for the performer’s mimicry. The six most
frequent role types are shown in Figure 2.

Fig. 2. Top 6 role types in StoryTTS.

3.2. Batch annotation via LLMs

LLMs have found applications in a wide range of studies. [18]
demonstrated that GPT3 [19] performs well in data annotation tasks
at a relatively low cost, making it a viable choice for individuals and
organizations with limited budgets. To expedite the labeling process
and reduce costs, we utilized GPT4 [20] and Claude2 [21], both of
which are more powerful than GPT3, for batch annotation. Dur-
ing our annotation process, Claude2 was used for annotating sen-
tence patterns, rhetorical devices, scenes, and imitated characters.
However, when it came to summarizing emotional colors in the text,
we found Claude2’s performance to be suboptimal. Consequently,
we turned to GPT4, which proved to be more proficient in this as-
pect. In our prompt, we initiated the persona of a linguist for the
LLMs. We then proceeded to guide the model, informing it that the
input texts were consecutive and required labeling with contextual
information. For instance, two consecutive sentences might belong
to the same role-play scenario. Subsequently, we provided details
about the sources and features of the text, emphasizing their rich-
ness in elements such as onomatopoeia, inner monologue, and role-
plays. Finally, we instructed the model to annotate each sentence in
a prescribed format, adhering to the prompts and requirements out-
lined. These annotations align with the guidelines detailed in Section
3, where sentence patterns, scenes, rhetorical devices and imitated
characters must be assigned specific categories, and each emotional
color should be summarized in several words.

Initially, we attempted labeling in the zero-shot setting, but the
results exhibited low accuracy. Consequently, we transitioned to the
few-shot setting, where we provided the model with comprehensive
and diverse labeled text and explained the rationale behind each la-
beling decision. In this setting, the model demonstrates improved
accuracy and meets our labeling requirements. An illustration of an-
notation using LLMs is shown in Figure 1.

4. EXPERIMENTS AND RESULTS

In this section, we build TTS models to analyze the impact of anno-
tated textual expressiveness labels on synthetic speech.

4.1. Model Architecture

4.1.1. Baseline Model

Our baseline model is implemented based on VQTTS [22], which
utilizes self-supervised vector-quantized (VQ) [23, 24, 25, 26],
acoustic features rather than traditional mel-spectrogram. Specifi-
cally, it consists of an acoustic model, t2v, and a vocoder, v2w. T2v
accepts the phoneme sequence and then outputs the VQ Acoustic



feature and Auxiliary feature, which consist of pitch, energy, and
probability of voice [27], and v2w receives them and thus synthe-
sizes the waveform.
4.1.2. Expressiveness Encoder

To fully leverage our expressiveness annotations, we developed an
expressiveness encoder. We employed four separate learnable em-
bedding tables to supply information to the model for the four la-
bels: sentence pattern, scene, rhetorical method, and imitated char-
acter. For each sentence, we assigned four category numbers based
on these four expressive labels. We then inputted these numbers into
the corresponding embedding tables, with vector dimensions of 32,
32, 64, and 256, respectively.

Regarding the modeling of emotional color, we employed dis-
tinct model structures. Given that emotion descriptions typically
condense into several words, representing the overall sentiment of
a sentence, while emotions may change within a single sentence.
For instance, in an exclamatory sentence, emotion often intensifies
towards the end. We initially extracted word-level embeddings for
the entire sentence using a pre-trained BERT. Subsequently, we ex-
tracted the embedding of emotional color using a Sentence BERT.
Through cross-attention [28] between these embeddings, we aimed
to capture the distribution of emotions at different locations within
the text, enhancing their expressive accuracy. Following this, we
up-sampled the results to the phoneme level based on the word-
to-phoneme correspondence and added them to the encoder output,
along with the previous four embeddings.
4.2. Experimental setup
We conducted experiments to evaluate the impact of each of the five
textual expressiveness labels on the expressiveness of the synthe-
sized speech. Additionally, we assessed the cumulative effect of uti-
lizing all these labels together. For these experiments, we trained an
acoustic model separately for 300 epochs using a batch size equal
to 8. The vocoder was shared, and we trained 100 epochs on Sto-
ryTTS using a batch size of 8. The remaining model configurations
and parameters remained consistent with those in [29]. Each exper-
iment was performed on a single 2080 Ti GPU. To preprocess the
text data, we utilized our internal Grapheme-to-Phoneme (G2P) tool
for text-to-phoneme conversion. We also set aside 5% of the text for
test and validation sets, where the test set consists of 3 consecutive
chapters. To obtain ground truth phoneme duration, we employed
the Montreal Forced Aligner [30], which conducts forced alignment
using Kaldi [31].

4.3. Speech Synthesis Evaluation

4.3.1. Metrics

We performed a mean opinion score (MOS) listening test involving
20 native listeners who were asked to rate each sample. MOS ratings
were based on a 1-5 scale with 0.5-point increments and 95% con-
fidence intervals. During our tests, we instructed listeners to specif-
ically assess the level of expressiveness in the synthesized speech,
all while evaluating speech quality. For objective evaluations, we
computed Mel-cepstral distortion (MCD) using dynamic time warp-
ing (DTW). Additionally, we analyzed the log F0 root mean square
error (log-F0 RMSE), also computed with DTW. MCD measures
general speech quality, while log-F0 RMSE assesses performance
in terms of speech prosody. Lower values for both of these metrics
indicate better sound quality and rhythm in speech performance.
4.3.2. Results

Table 4 presents the evaluation results. It can be seen that when
incorporating the expressiveness labels into the model, both the sub-

Table 4. Results of evaluation for different setups. Here, ‘GT(Voc.)
denotes the vocoded ground truth speech, and ‘+ALL’ means we
utilized all the expressiveness labels together.

Model MCD ↓ log-F0 RMSE ↓ MOS ↑

GT(Voc.) 3.765 0.322 4.29± 0.06

Baseline 6.904 0.437 3.88± 0.07
+Sentence Pattern 6.746 0.432 3.90± 0.08
+Scene 6.692 0.431 3.90± 0.07
+Rhetoric Device 6.633 0.421 3.93± 0.07
+Emotional Color 6.271 0.412 3.92± 0.08
+Imitated Character 6.508 0.411 3.96± 0.07
+ALL 6.181 0.402 4.09± 0.07

jective and objective scores outperform the baseline model. Specif-
ically, sentence patterns and scene boosts were relatively minimal.
This might be attributed to the prevalence of declarative sentences in
the dataset, resulting in limited information acquired by the model.
Additionally, while scene types are distributed fairly evenly, their
diversity is insufficient to furnish the model with adequate informa-
tion, owing to the different character imitations found in role-playing
and inner monologue scenes. Rhetorical devices and emotional col-
ors bring more obvious enhancements. Among the individual ex-
pressiveness labels, the imitated characters stand out as the most ef-
fective, as they directly provide information about the characters cur-
rently being mimicked, enabling the model to efficiently learn how
the mimicked characters speak and thus synthesize speech close to
that of the original data.

Finally, the fusion of all expressive labels provides the most
significant enhancement. It outperforms other setups significantly
in both objective and subjective metrics, supplying the model with
increasingly accurate information about imitated characters and
scenes. This fusion also benefits from the complementary nature of
sentence patterns, rhetorical devices, and emotional colors.

5. CONCLUSIONS

This paper presented StoryTTS, the first TTS dataset that encom-
passes rich expressiveness from both acoustic and textual perspec-
tives. Derived from a high-quality recording of a Mandarin story-
telling show, this dataset serves as a valuable resource for researchers
aiming to investigate acoustic expressiveness on the one hand. Ad-
ditionally, we conducted a comprehensive analysis of expressive text
and categorized speech-related textual expressiveness into five dis-
tinct dimensions. Then we employed LLMs and provided them with
a few manual annotation examples for batch annotation. The effec-
tive labeling of LLMs also offers insights for similar data labeling
endeavors. The dataset is thus equipped with abundant textual ex-
pressiveness annotations. Experimental results demonstrated that
TTS models can generate speech with significantly improved ex-
pressiveness when incorporated with the annotated textual expres-
siveness labels. Future work may focus on integrating these expres-
siveness annotations with acoustic expressiveness to further enhance
expressive speech synthesis.
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