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SHARP QUASI-INVARIANCE THRESHOLD FOR THE CUBIC SZEGŐ

EQUATION

JAMES COE AND LEONARDO TOLOMEO

Abstract. We consider the 1-dimensional cubic Szegő equation with data distributed
according to the Gaussian measure with inverse covariance operator (1 − ∂2

x)
s, where

s > 1
2
. We show that, for s > 1, this measure is quasi-invariant under the flow of the

equation, while for s < 1, s 6= 3
4
, the transported measure and the initial Gaussian measure

are mutually singular for almost every time. This is the first observation of a transition
from quasi-invariance to singularity in the context of the transport of Gaussian measures
under the flow of Hamiltonian PDEs.
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1. Introduction

1.1. Main result. In this work, we consider the Cauchy problem for the cubic Szegő

equation on the 1-dimensional torus T = R/(2πZ),
{
i∂tu = Π(|u|2u), (t, x) ∈ R× T,

u(0) = u0 = Π(u0),
(1.1)
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2 J. COE AND L. TOLOMEO

where Π is the Szegő projection onto non-negative Fourier frequencies:

Π
(∑

n∈Z

û(n)einx
)
=
∑

n≥0

û(n)einx,

and the condition u0 = Π(u0) simply means that we restrict our attention to initial data

which has Fourier support on nonnegative frequencies. Our goal is to study certain statis-

tical properties of the evolution of (1.1), when its initial data u0 is randomly distributed,

according to a particular family of Gaussian measures µs.

More precisely, we concern ourselves with the following question: denoting with Φt(u0)

the solution of (1.1) at time t, does it hold that

(Φt)#µs ≪ µs?

When this phenomenon happens, we say that the measure is quasi-invariant under the flow

of (1.1).

The study of quasi-invariance for the flow of Hamiltonian PDEs has been initiated by

Tzvetkov in [32]. In particular, in this pioneering work, Tzvetkov showed that in the

particular case of the regularized long wave (BBM) equation, and of Gaussian probability

measures of the form

µs ∼ exp
(
− ‖u‖2Hs

)
du, 1 (1.2)

quasi-invariance holds in regime that is much wider than what one would expect from

the classical results of Cameron-Martin [7] and Ramer [30]. Throughout the years, the

technology to show quasi-invariance has been greatly developed, especially in the context

of dispersive PDEs. In particular, we signal quasi-invariance results for the BBM and

Benjamin-Ono equations [15, 16, 32], KdV type equations [29], wave equations [20, 27, 31],

and Schrödinger equations [9, 12–15,23–26,28].

In the results above, the dispersive nature of the equation plays a significant role in the

proof, and indeed, if one considers the ODE

i∂tu = |u|2u,

it is possible to show that quasi-invariance fails in a dramatic fashion, and (Φt)#µs 6≪ µs,

see [24].

However, the relationship between the dispersive nature of the equation and quasi-

invariance is not fully understood. In particular, when the regularity of the initial data

(distributed according to the measure µs) becomes low enough, it is unclear if quasi-

invariance is preserved or not. On the one hand, from the study of invariant measures, one

could expect that the evolution eventually becomes singular with respect to the underlying

1For a rigorous definition of these measures in the setting of this paper, see Section 2.
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Gaussian measure.2 On the other hand, no such example is available in the literature, and

only positive results are known.

Here lies our interest into (1.1). This equation was introduced by Gérard-Grellier in [17],

as a toy model for non-dispersive Hamiltonian dynamics. More precisely, this equation

informally serves as a toy model for the “0-dispersion” limit of fractional NLS/ half-wave

equation

i∂tu− (−∆)
1
2u = |u|2u,

and similar dispersionless models. Indeed, equation (1.1) shares many features with such

models. To begin with, it is formally a Hamiltionian equation on the phase space L2
+ =

Π(L2(T)),3 with Hamiltonian given by

E(u) = ‖u‖4L4(T).

Moreover, it has a number of conserved quantities, including the L2-norm and the Ḣ
1
2 norm

of the solutions, i.e.

M(u) = ‖u‖2L2(T), P (u) = ‖u‖2
Ḣ

1
2
=:

ˆ

T

u(−∆)
1
2u.

In [17], Gérard and Grellier showed that this equation admits a Lax pair, which in particular

implies that the equation is completely integrable and the existence of infinitely many

conservation laws. Exploiting these conservation laws, in [18], Gérard and Koch showed

that equation (1.1) is globally well-posed in the space BMO+ = Π(L∞(T)).

From a statistical point of view, the conservation of M and P above suggest that the

white-noise measure µ0 and (a variant of) the measure µ 1
2
should be invariant (and hence

quasi-invariant) for the flow of (1.1). While these measures are concentrated on distribu-

tions of too low regularity to be able to show strong invariance statements, a weak form of

invariance for µ 1
2
has been proven in [6]. For s > 1

2 , one has that µs(BMO+) = 1, and so

the flow map Φt and the push-forward measure (Φt)#µs are well-defined for every t ∈ R.

In view of the conservation laws for the Szegő equation and of the analogous results for

dispersive equations, one might conjecture that (Φt)#µs ≪ µs.

On the other hand, as discussed, equation (1.1) enjoys no dispersion nor multilinear

smoothing, even in the probabilistic setting [22]. Consequently, one could expect its be-

haviour to be similar to the one of the ODE

i∂tu = |u|2u,

for which we recall that no measure µs (for s > 1
2) is quasi-invariant, see [24].

2Famously, the Φ4
3 measure of quantum field theory

Φ4
3 ∼ exp

(

−
1

4

ˆ

u
4 −

1

2

ˆ

u
2 −

1

2

ˆ

|∇u|2
)

is singular with respect to the underlying Gaussian measure, and it is (formally) an invariant measure for
the Schrödinger equation on T

3

i∂tu−∆u− u
3 = 0,

and in [5], it has been shown to be invariant for the wave equation on T
3 (up to renormalisation)

∂
2
t u−∆u− u

3 = 0.

3Hence our choice u0 = Π(u0).
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The main goal of this paper is to provide a clear picture of quasi-invariance and lack

thereof for equation (1.1), and develop a better understanding of when one should expect

quasi-invariance to hold/fail (respectively). In particular, our main result is the following.

Theorem 1.1. Let s > 1
2 , and let Φt be the flow map of equation (1.1) on the space BMO+.

We have the following.

(i) If s > 1, then the measure µs is quasi-invariant. More precisely, for every t ∈ R,

we have that (Φt)#µs ≪ µs.

(ii) If 1
2 < s < 1 and s 6= 3

4 , then the transported measure (Φt)#µs is singular with

respect to µs for almost every time t ∈ R. More precisely, there exists a countable

set Ns ⊂ R, such that for every t ∈ R \ Ns, (Φt)#µs ⊥ µs.

To the authors’ knowledge, this is the first time that such a transition from quasi-

invariance to singularity has been observed.

1.2. A heuristic for quasi-invariance and a strategy for singularity. In order to

understand the numerology of our result in Theorem 1.1, consider (as a toy model) the

dynamical system on Rd
{
ẏ = b(y),

y(0) = x,
(1.3)

where b : Rd → Rd is a smooth vector field. For the purpose of this subsection, denote

by Φt(x) the solution of (1.3). For every probability measure ν0 on Rd, the transported

measure νt := (Φt(x))#ν0 will satisfy the Liouville’s equation

∂tνt = − div (b νt). (1.4)

When ν0 is a probability measure of the form

ν0 =
1

Z
exp(−E(y))dy

for some smooth function E : Rd → R with exp(−E) ∈ L1(Rd), then we can solve (1.4) for

ft := log
dνt
dx

− log
dν0
dx

explicitly with the method of characteristics, and obtain that

ft = E(x) − E(Φ−t(x)) +

ˆ t

0
div (b)

(
Φ−t′(x)

)
dt′.

For convenience, define

Q(x) =
d

dt
E(y(t))

∣∣∣∣
t=0

+ div (b), (1.5)

from which we obtain

νt = exp
(ˆ t

0
Q(Φ−t′(x))dx

)
ν0. (1.6)

One can now apply (formally) this formula to equation (1.1) and ν0 = µs in (1.2), for which

E(u) = ‖u‖2Hs , obtaining that

(Φt)#µs(u0) = exp
(ˆ t

0
Q
(
Φ−t′(u0)

)
dt′
)
µs(u0),
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where

Q(u) := 2 Im
(ˆ

Π(|u|2u)〈∇〉2su
)

=
i

2

∑

n1−n2+n3−n4=0,nj≥0

(
〈n1〉

2s − 〈n2〉
2s + 〈n3〉

2s − 〈n4〉
2s
)
û(n1)û(n2)û(n3)û(n4),

(1.7)

and the last equality is obtained by exploiting Plancherel and the symmetry between the

Fourier coefficients of u and u. Then, a natural benchmark to test quasi-invariance is the

following: denoting by S(t) the propagator for the linear flow for (1.1), is it true that

Eµs

∣∣∣
ˆ t

0
Q
(
S(−t′)(u0)

)
dt′
∣∣∣
2
< ∞ ?

In the case of equation (1.1), one has that S(t) is the identity, and this condition translates

to

Eµs

∣∣Q(u0)
∣∣2 < ∞.

Exploiting the cancellations of the symbol
(
〈n1〉

2s−〈n2〉
2s+ 〈n3〉

2s−〈n4〉
2s
)
, one can check

that for s > 1
2 , this is the case if and only if s > 1, which is exactly the regime in which

we prove quasi-invariance in Theorem 1.1. Actually, the finiteness of this quantity is what

allows us to perform the proof of quasi-invariance in this regime. We essentially rely on

the strategy of [28] adapted to the Szegő equation, together with some recent technology

(namely, the variational formula (3.7)) in order to estimate
ˆ

exp(TQ(u0))dµs(u0).

In this paper, we re-introduce the strategy of [28] starting from a different point of view, that

relies on the formula (1.6) in a more crucial way, see the proof of Proposition 3.6.4 While

in the particular case of equation (1.1), the results we obtain are completely equivalent, we

believe that the argument presented in this paper is far more flexible, and indeed it was

necessary to exploit some of this flexibility in the work by Forlano and the second author

[13].

We now move to discussing the case s < 1, where instead we have Eµs

∣∣Q(u0)
∣∣2 = ∞. As

it turns out, the heuristic above not only suggests that singularity should hold, but also a

strategy for its proof. Indeed, if two probability measures ν, ν ′ are mutually singular, there

exists a set E such that ν(E) = 1, ν ′(Ec) = 1. Therefore, if we formally write

f =
dν ′

dν
,

we must have that
ˆ

E
fdν = ν ′(E) = 0,

which implies that f = 0 ν-almost surely. By flipping the roles of ν, ν ′, we also get

1

f
= 0 ν ′ − a.s. ⇔ f = +∞ ν ′ − a.s.

4A similar argument appeared also in [1].
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In the case of the Szegő equation, since (formally) div(b) = 0, we can rewrite (1.6) as

(Φt)#µs(u0) = exp
(
‖u0‖

2
Hs − ‖Φ−t(u0)‖

2
Hs

)
µ0(u0).

Therefore, the conditions above can be rewritten as

‖u0‖
2
Hs − ‖Φ−t(u0)‖

2
Hs = −∞ µs − a.s. ,

and

‖u0‖
2
Hs − ‖Φ−t(u0)‖

2
Hs = +∞ (Φt)#µs − a.s. ⇔ ‖Φt(u0)‖

2
Hs − ‖u0‖

2
Hs = +∞ µs − a.s.

In other words, singularity should correspond exactly to the fact that for a generic u0
distributed according to µs, then t = 0 is a (local) minimum for the (infinite) quantity

‖Φt(u0)‖
2
Hs . This suggests the following strategy for showing singularity.

(1) Pick a well-defined approximation RN (u0) of ‖u0‖
2
Hs .

(2) Show that for some c > 0, α > 0,

d2

dt2
RN (Φt(u0))

∣∣∣∣
t=0

= cNα(1 + o(1))

for µs-a.e. u0, and that

d

dt
RN (Φt(u0))

∣∣∣∣
t=0

= o(Nα).

(3) Exploiting the local theory for equation (1.1), show that for t ≪ 1,

RN (Φt(u0))− t
d

dt
RN (Φt(u0))

∣∣∣∣
t=0

−
t2

2

d2

dt2
RN (Φt(u0))

∣∣∣∣
t=0

≪ t2Nα,

which formally corresponds to the fact that t = 0 is a local minimum for

lim
N→∞

N−αRN (Φt(u0)).

(4) Since functions on R can have at most countably many local minimum points,

deduce that for up to countably many times, (Φt)#µs ⊥ µs.

This list of steps is essentially the strategy that we perform in Section 4 in order to show

Theorem 1.1, (ii).

More precisely, we first show an abstract formulation of (4) in Proposition 4.1.

In Section 4.2, we then consider an approximation RN of the square of the H1 norm,5 and

proceed to estimating
∣∣∣∣∣
d

dt
RN (Φt(u0))

∣∣∣∣
t=0

∣∣∣∣∣ . N2−2s

d2

dt2
RN (Φt(u0))

∣∣∣∣
t=0

∼ N4−4s

This is where our restrictions on s, namely s 6= 1, 34 , originate from. Indeed, we have that

• For s = 1, both d
dtRN (Φt(u0))

∣∣
t=0

and d
dt2

RN (Φt(u0))
∣∣
t=0

are O(1), and similarly

the error terms coming from (3) are also of the same size,

5Choosing the H1 norm instead of the Hs norm makes no difference in the subsequent steps, but some
of the formulas become slightly easier.



SHARP QUASI-INVARIANCE FOR CUBIC SZEGÖ 7

• When s = 3
4 , the quantity

d2

dt2
RN (Φt(u0))

∣∣∣∣
t=0

transitions from being positive when 3
4 < s < 1, to being negative when 1

2 < s < 3
4 .

When s = 3
4 , the sign of this quantity is unclear, but in any case it is of smaller

order than N4−4s, which is the minimum of what the rest of the argument can

handle.

We then proceed to estimate the error of the term

RN (Φt(u0))− t
d

dt
RN (Φt(u0))

∣∣∣∣
t=0

−
t2

2

d2

dt2
RN (Φt(u0))

∣∣∣∣
t=0

.

This requires a very precise decomposition of the solution as u(t) = X(t) + Y (t), where

X(t) is a semi-explicit, pseudo-Gaussian term of regularity s − 1
2 (the same as a typical

data sampled according to µs), and Y (t) has regularity 2s− 1. We perform this in Section

4.3. This decomposition is closely related to the ones used by Bringmann in [4] and Deng,

Nahmod and Yue in [10,11]. However, we point out that the main properties that we need

to exploit are completely determinstic, and are not improved by the random structure of

the initial data u0.

Finally, in Section 4.4, we use this decomposition in order to show a series of (sharp)

error bounds. We note that the only term that does not have a satisfactory deterministic

bound is (4.29), for which a random estimate is necessary.

Remark 1.2. It might be possible that, in the case s = 1, performing sharper estimates

and choosing a better approximation RN of ‖u0‖
2
H1 , would allows us to conclude singularity

also in this case. Similarly, it might be possible to show that for s = 3
4 ,

d4

dt4
RN (Φt(u0))

∣∣∣∣
t=0

∼ cN4−4s

for some c 6= 0. However, this would require substantial more work and ideas in Section

4.4 and 4.2 respectively, and at this stage, it is unclear if such results are true.

Remark 1.3. As a sanity check, we can also test the heuristic above for the ODE

i∂tu = |u|2u,

for which we know that quasi-invariance fails for every s > 1
2 , see [24]. In this case, the

condition above for quasi-invariance translates into

Eµs

∣∣∣
∑

n1−n2+n3−n4=0

(
〈n1〉

2s − 〈n2〉
2s + 〈n3〉

2s − 〈n4〉
2s
)
û(n1)û(n2)û(n3)û(n4)

∣∣∣
2
< ∞,
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where the only difference with respect to (1.1) is that we dropped the condition nj ≥ 0

from the sum. For this sum, we have that

Eµs

∣∣∣
∑

n1−n2+n3−n4=0

(
〈n1〉

2s − 〈n2〉
2s + 〈n3〉

2s − 〈n4〉
2s
)
û(n1)û(n2)û(n3)û(n4)

∣∣∣
2

∼
∑

n1−n2+n3−n4=0

(
〈n1〉

2s − 〈n2〉
2s + 〈n3〉

2s − 〈n4〉
2s
)2

〈n1〉2s〈n2〉2s〈n3〉2s〈n4〉2s

&
∑

n1=−n3,n2=n4=0

1

= ∞.

Therefore, according to our heuristic, we do not expect quasi-invariance to hold for any

s > 1
2 , which is indeed the case.

1.3. Some reductions. In practice, while working with the Szegő equation, we will need

to keep track of the regularity of solutions emanating from an initial data sampled according

to µs. Consequently, we will not be able to work in the full space BMO+, where the global

flow for (1.1) is defined, but we will rather have to consider some space Xs ⊆ BMO+.

Recall from [17] that (1.1) is globally well-posed in the space Hσ
+ for every σ > 1

2 . In

view of Lemma 2.3, we have that for µs-a.e. initial data u0, we have u0 ∈ Hσ
+ for every

σ < s− 1
2 . Therefore, when s > 1, one recovers a good global well-posedness statement by

referring to well known results.

When s ≤ 1, the situation is a bit more complicated. Indeed, while global well-posedness

in L2
+ has recently been shown in [21], it is still unclear if the equation (1.1) is well-posed

in Hσ
+ for any 0 < σ < 1

2 . It is indeed possible (in principle) that for a general initial data

in Hσ ∩ BMO+, the solution will belong to a space H
σ(t)
+ for some σ(t) which is strictly

decreasing in time, see [18]. On the other hand, for the purpose of Section 4, we need to

keep track of the optimal regularity of the solution. The considerations above lead to the

following choice for Xs.

Xs =




Hσ

+ for any 1
2 < σ < s− 1

2 , when s > 1,

B
s− 1

2
,+

p,∞ for any p > min
(
100, 1

s− 1
2

)
, when 1

2 < s ≤ 1,
(1.8)

where B
s− 1

2
,+

p,∞ is a Besov space for functions supported on non-negative frequencies, defined

in Section 2. In view of Lemma 2.3, this space is well-adapted to the Gaussian measure µs.

Moreover, it satisfies the following.

Proposition 1.4. Let s > 1
2 , then the Banach space Xs ⊂ BMO+ defined above satisfies

µs(Xs) = 1 and the equation (1.1) is locally well posed in Xs.

Unfortunately, the restriction to the space Xs makes it unclear if a generic Xs ⊂ BMO+

solution Φt(u0) actually belongs to Xs for infinite time. What is worse, is that in principle

it is possible that the set of times in which the solution belongs to Xs, i.e.

G(u0) := {t ∈ R : Φt(u0) ∈ Xs}

can be disconnected.
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To deal with these (potential) issues, we need to introduce some notation. For t ∈ R, we

denote by WP(t) the set of “good” initial data for which the solution to (1.1) exists in Xs

for every time τ between 0 and t, or more precisely

WP(t) := {u0 ∈ Xs : the equation (1.1) admits a solution u ∈ C([0, t],Xs) with u(0) = u0}

when t ≥ 0, and

WP(t) := {u0 ∈ Xs : the equation (1.1) admits a solution u ∈ C([t, 0],Xs) with u(0) = u0}

when t ≤ 0. By the local well posedness in the space Xs, and the global well posedness in

the space BMO+ ⊇ Xs, we must have that for u0 ∈ WP(t), the (local) solution in Xs must

coincide with Φt(u0) . Moreover, by Proposition 1.4, we obtain that

Φt : Xs ⊇ WP(t) → Xs

is a continuous map, and that WP(t) ⊆ Xs is an open set for every t ∈ R.

Then, the main results of Sections 3, 4 are the following (respectively).

Proposition 1.5. Let s > 1. Then for every t ∈ R, we have that WP(t) = Xs. Moreover,

we have that

(Φt)#µs ≪ µs

for every t ∈ R.

Proposition 1.6. Let 1
2 < s < 1, with s 6= 3

4 . Then there exists a countable set N ⊆ R

such that for every t ∈ R \ N with µs(WP(t)) > 0,

(Φt)#(1WP(t)µs) ⊥ µs.

It is clear that Proposition 1.5 immediately implies Theorem 1.1, (i). The situation in

the singular case is more unclear, but it can be proven via a soft argument that Proposition

1.6 automatically implies Theorem 1.1, (ii). We will show this at the end of Section 4.

2. Preliminaries

2.1. Notation. To fix notation, we will always interpret N,M and Nj as dyadic integers

(and sums over such as just sums over dyadic integers), and given a family N1, ..., Nk of

dyadic integers, we denote N (1) ≥ N (2) ≥ ... ≥ N (k) to be a decreasing arrangement of the

Nj . We take as notation M ≪ N to mean M < 2−20N , M & N to mean M ≥ 2−20N , M ∼

N to mean M & N & M , and N ≈ M to mean M/4 ≤ N ≤ 4M . This (unconventional)

choice of symbols will help with probabilistic decoupling of different frequency scales.

When A,B are not dyadic numbers, we will instead use the notation A . B to denote

that there exists a constant C ∈ (0,+∞) such that A ≤ CB.

We also take the convention T = R/(2πZ) with normalized integral
ˆ

T

f(x)dx :=
1

2π

ˆ 2π

0
f(x)dx,

and we define the Fourier transform of a function f to be

f̂(n) := F [f ](n) :=

ˆ

T

f(x)e−inxdx,

where n ∈ Z.
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2.2. Function spaces. Let s ∈ R and 1 ≤ p ≤ ∞. We define the L2-based Sobolev space

Hs(T) by the norm:

‖f‖Hs = ‖〈n〉sf̂(n)‖ℓ2n ,

and the space restricted to non-negative frequencies

Hs
+ = Π(Hs(T)).

Let ϕ : R → [0, 1] be a smooth bump function supported on [−8
5 ,

8
5 ] and ϕ ≡ 1 on[

− 5
4 ,

5
4

]
. We set φ1(ξ) = ϕ(|ξ|) and

φN (ξ) = ϕ
( ξ
2j

)
− ϕ

( ξ
2j−1

)
(2.1)

where N = 2j , and j ∈ N. Then, for N = 2j for j ∈ N0 := N ∪ {0}, we define the

Littlewood-Paley projector PN as the Fourier multiplier operator with a symbol φN . Note

that we have
∑

N∈2N0

φN (ξ) = 1

for each ξ ∈ R. Thus, we have

f =
∑

N∈2N0

PNf.

We will also denote by φ≪N , φ.N , φ∼N , φ≈N , φ&N , φ≫N the multipliers

φ≪N =
∑

M≪N

φM , φ.N =
∑

M.N

φM , φ∼N =
∑

M∼N

φM ,

φ≈N =
∑

M≈N

φM , φ&N =
∑

M&N

φM , φ≫N =
∑

M≫N

φM ,

and P≪N , P.N , P∼N , P≈N , P&N , P≫N will denote the corresponding Fourier multiplier op-

erators.

Next, we recall the basic properties of the Besov spaces Bs
p,q(T) defined by the norm:

‖u‖Bσ
p,q

=
∥∥∥Nσ‖PNu‖Lp

x

∥∥∥
ℓqN (2N0 )

.

Essentially, σ denotes the regularity of a function u ∈ Bσ
p,q, and p the integrability of such

a function, with the extra parameter q allowing for some extra flexibility at a “logarithmic”

scale.

We shall also denote

Bσ,+
p,q := Π

(
Bσ

p,q(T)
)
,

i.e. the Besov space on non-negative frequencies. Note that, from the boundedness of

the Hilbert transform of Lp(T) for 1 < p < ∞, we also have that Bσ,+
p,q ⊂ Bσ

p,q whenever

p 6= 1,∞.

We recall the basic estimates in Besov spaces. See [2,20] for example, for (i) – (iii), while

(iv) is a simple consequence of the well-known boundedness of the Hilbert transform on Lp

for p ∈ (1,∞).

Lemma 2.1. The following estimates hold.
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(i) Let s1, s2 ∈ R and p1, p2, q1, q2 ∈ [1,∞]. Then, we have

‖u‖Bs1
p1,q1

. ‖u‖Bs2
p2,q2

for s1 ≤ s2, p1 ≤ p2, and q1 ≥ q2,

‖u‖Bs1
p1,q1

. ‖u‖Bs2
p1,∞

for s1 < s2,

‖u‖B0
p1,∞

. ‖u‖Lp1 . ‖u‖B0
p1,1

.

(2.2)

(ii) Let 1 ≤ p2 ≤ p1 ≤ ∞, q ∈ [1,∞], and s2 ≥ s1 +
(

1
p2

− 1
p1

)
. Then, we have

‖u‖Bs1
p1,q

. ‖u‖Bs2
p2,q

. (2.3)

(iii) Let p, p1, p2, p3, p4 ∈ [1,∞] such that 1
p1

+ 1
p2

= 1
p3

+ 1
p4

= 1
p . Then, for every σ > 0,

we have

‖uv‖Bσ
p,q

. ‖u‖Bσ
p1,q

‖v‖Lp2 + ‖u‖Lp3‖v‖Bσ
p4,q

. (2.4)

(iv) For p ∈ (1,∞),

‖Π(u)‖Lp . ‖u‖Lp . (2.5)

In particular, in view of (2.4), (2.3) and (2.2) we have that whenever p > 1
σ , the space

Bσ
p,q has the algebra property, i.e.

‖fg‖Bσ
p,q

. ‖f‖Bσ
p,q
‖g‖Bσ

p,q
. (2.6)

Combining with (2.5), we have for max(1, 1
σ ) < p < ∞, the space Bσ,+

p,q has the following

algebra property:

‖Π(fg)‖Bσ,+
p,q

. ‖f‖Bσ,+
p,q

‖g‖Bσ,+
p,q

. (2.7)

Next we recall the Coifman-Meyer multiplier theorem, which we shall use extensively. See

[8, Theorem 3.3].

Proposition 2.2. Let R ≥ 1 and let m : Rd → C be smooth away from the origin such that

‖m‖CM,d := sup
|α|≤d(d+3)

sup
x∈Rd

‖x‖|α||∂αm(x)| ≤ R < ∞.

Consider the multilinear map given by

F [Tm(f1, ..., fd)](n) =
∑

n1,...,nd∈Z
n1+...nd=n

m(n1, ..., nd)
d∏

j=1

f̂j(nj).

Then for all p ∈ [1,∞) and p1, ..., pd ∈ (1,∞] with 1
p = 1

p1
+...+ 1

pd
, there is a C(R, p, pi) < ∞

such that

‖Tm(f1, ..., fd)‖Lp ≤ C(R, p, pi)
d∏

j=1

‖fj‖Lpj .

for all f1, ..., fd.

We refer to ‖m‖CM,d as the Coifman-Meyer norm of m. A key feature of this result is for

any family of smooth multipliers {mN}N with uniformly bounded Coifman-Meyer norms,

we may choose a uniform operator bound C(R, p, pi) for the family {TmN
}N .



12 J. COE AND L. TOLOMEO

2.3. On the Gaussian measures µs. We now define the Gaussian measures µs that we

are going to consider throughout the paper, conditioned to be concentrated on spaces of

functions which only have nonnegative frequencies.

To this goal, for s > 1
2 we consider random initial data of the form

u0(x) =
∑

n≥0

gn
〈n〉s

einx, (2.8)

where {gn}n≥0 are independent standard complex Gaussian random variables6, and 〈n〉 =

(1 + n2)1/2. We denote

µs := Law(u0),

which is the unique centred Gaussian measure on L2
+ with covariance operator (1 −∆)−s

(restricted to non-negative frequencies). This measure may be written formally as

dµs =
1

Zs
e
−‖u‖2

Hs
+Π(u)du,

where du is the formal Lebesgue measure on L2(T). We recall for σ < s− 1
2 ,

µs

(
Hσ \Hs− 1

2

)
= 1,

and so one may view u0 as random initial data of regularity s− 1
2− (in Sobolev norm).

We now verify that µs is concentrated on a Besov space with critical regularity s− 1
2 .

Lemma 2.3. Let s > 1
2 , and let p ∈ [1,∞). Then µs(B

s− 1
2
,+

p,∞ ) = 1.

Proof. We shall show the result for p = 2k for k ∈ N, and the general case follows by

interpolation. We note that

‖u‖
B

s− 1
2 ,+

p,∞

= sup
N∈2N0

N s− 1
2 ‖PNu‖Lp ,

and so we define the random variable XN for N ∈ 2N0 as

XN = N2k
(
s− 1

2

)
‖PNu‖2kL2k ,

where u = u0 is given by (2.8). We see that

XN = Nk(2s−1)

ˆ

T

∣∣∣
∑

n∈N0

φN (n)gn
〈n〉s

einx
∣∣∣
2k
dx

= Nk(2s−1)

ˆ

T

∑

n,m∈Nk
0

k∏

j=1

φN (nj)φN (mj)gnjgmj

〈nj〉s〈mj〉s
ei(nj−mj)xdx

= Nk(2s−1)
∑

n,m∈Nk
0

n1+...+nk=m1+...+mk

Cn,m

k∏

j=1

gnjgmj ,

where n = (n1, . . . , nk), m = (m1, . . . ,mk), and

Cn,m =

k∏

j=1

φN (nj)φN (mj)

〈nj〉s〈mj〉s
.

6i.e. Re(gn) ∼ Im(gn) ∼ N(0, 1
2
), and Re(gn), Im(gn) are independent.
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We note that

Cn,m = 0, for (n,m) /∈ [N/2, 2N ]2k ,

Cn,m .
1

N2ks
for (n,m) ∈ [N/2, 2N ]2k .

Now, for j = 0, ..., k, let Ej denote the set of (n,m) such that n and m have exactly j

entries in common, i.e.

Ej =
{
(n,m) ∈ [N/2, 2N ]2k : max

σ∈Sk

[
#{l s.t. nl = mσ(l)}

]
= j
}
,

where Sk denotes the set of permutations of {1, . . . , k}. We define

YN,j = Nk(2s−1)
∑

(n,m)∈Ej
n1+...+nk=m1+...+mk

Cn,m

k∏

j=1

gnjgmj .

Since [N/2, 2N ]2k =
⊔k

j=0Ej , we have that

XN =

k∑

j=0

YN,j. (2.9)

Since the {gj} are independent standard complex Gaussians, we observe that

E

[ k∏

j=1

gnjgmj

]
= 0, whenever (n,m) 6∈ Ek. (2.10)

Therefore, for 0 ≤ j < k,

E[YN,j] = 0.

For convenience of notation, denote

∆ =
{
(n,m) ∈ [N/2, 2N ]2k : n1 + ...+ nk = m1 + ...+mk

}
.

For 0 ≤ j < k, we have that

E[Y 2
N,j] = N2k(2s−1)

∑

(n,m)∈Ej∩∆
(l,p)∈Ej∩∆

Cn,mCl,pE

[ k∏

j=1

gnjgljgmjgpj

]
.

By similar considerations to the ones leading to (2.10), we have that

E

[ k∏

j=1

gnjgljgmjgpj

]
= 0 unless (m,p) = σ(n, l) for some σ ∈ S2k,

and by Hölder,

E

[ k∏

j=1

gnjgljgmjgpj

]
≤ E|gnj |

4k .k 1.

For σ ∈ S2k, denote

σ1(n, l) := (σ(n, l)1, . . . , σ(n, l)k), σ2(n, l) := (σ(n, l)k+1, . . . , σ(n, l)2k).
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We then obtain

E[Y 2
N,j] = N2k(2s−1)

∑

(n,m)∈Ej∩∆
(l,p)∈Ej∩∆

Cn,mCl,pE

[ k∏

j=1

gnjgljgmjgpj

]

≤ N2k(2s−1)
∑

σ∈S2k

∑

(n,m)∈Ej∩∆
(l,p)∈Ej∩∆
(m,p)=σ(n,l)

Cn,mCl,p

∣∣∣E
[ k∏

j=1

gnjgljgmjgpj

]∣∣∣

. N−2k
∑

σ∈S2k

∑

(n,σ1(n,l))∈Ej∩∆
(l,σ2(n,l))∈Ej∩∆

1

= N−2k
∣∣∣{(σ,n, l) ∈ S2k × [N/2, 2N ]k × [N/2, 2N ]k :

(n, σ1(n, l)) ∈ Ej ∩∆, (l, σ2(n, l)) ∈ Ej ∩∆}
∣∣∣

We now bound the size of this set.

Firstly, we note that since (n, σ1(n, l)) ∈ Ej, (l, σ2(n, l)) ∈ Ej , there exist permutations

τn, τl, τ1, τ2 ∈ Sk such that

τn(n)1 = τ1(σ1(n, l))1, . . . , τn(n)j = τ1(σ1(n, l))j ,

τl(l)1 = τ2(σ2(n, l))1, . . . , τl(l)j = τ2(σ2(n, l))j ,

τn(n)j+1 = τ2(σ2(n, l))j+1, . . . , τn(n)k = τ2(σ2(n, l))k,

τl(l)j+1 = τ1(σ1(n, l))j+1, . . . , τl(l)k = τ(σ1(n, l))k.

Namely, the permutations τn, τl, τ1, τ2 ∈ Sk put the common terms between n and σ1(n, l)

and between m and σ2(n, l) in corresponding positions 1, . . . , j, and the common terms

between n and σ2(n, l) and between m and σ1(n, l) in corresponding positions j+1, . . . , k.

Since |Sk|
4 = (k!)4 .k 1, we obtain that

∣∣∣{(σ,n, l) ∈ S2k × [N/2, 2N ]k × [N/2, 2N ]k : (n, σ1(n, l)) ∈ Ej ∩∆, (l, σ2(n, l)) ∈ Ej ∩∆}
∣∣∣

.k

∣∣∣{n, l ∈ [N/2, 2N ]k × [N/2, 2N ]k : nj+1 + · · ·+ nk = lj+1 + · · · + lk}
∣∣∣

.k N2k−1.

Therefore, we deduce that

E[Y 2
N,j] . N−2kN2k−1 =

1

N
.

Summing over N ∈ 2N0 , we obtain that for every ε > 0, and every j < k,

|YN,j| ≤ CεN
−( 1

2
−ε) (2.11)

holds µ-a.s., for a (random) constant Cε < ∞.
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It remains to consider the j = k case. Noting that Ek is the set of (n,m) ∈ [N/2, 2N ]2k

such that m is a permutation of n, we see that

YN,k = k!Nk(2s−1)
∑

n∈Zk

Cn,n

k∏

j=1

|gnj |
2

. N−k
∑

n∈[N/2,2N ]k

k∏

j=1

|gnj |
2

=
(
N−1

∑

n∈[N/2,2N ]

|gn|
2
)k

=: (ỸN )k.

We have that

E[ỸN ] = E

[
N−1

∑

n∈[N/2,2N ]

|gn|
2
]
. 1,

and, by independence of the Gaussians gn, gm for n 6= m,

E

[∣∣ỸN − E[ỸN ]
∣∣2
]
= N−2

E

[∣∣∣
∑

n∈[N/2,2N ]

|gn|
2 − 1

∣∣∣
2
]

= N−2
E

[ ∑

n∈[N/2,2N ]

(
|gn|

2 − 1
)2]

. N−1.

Therefore, we obtain that µs-a.s.,

lim
N→∞

ỸN − E[ỸN ] = 0,

and so for some deterministic C = C(k) > 0, we have that

lim sup
N→∞

YN,k ≤ lim sup
N→∞

(ỸN )k = lim sup
N→∞

(E[ỸN ])k ≤ C.

Therefore, together with (2.9) and (2.11), we obtain that µs-a.s.,

sup
N

XN < ∞,

which implies that u0 ∈ B
s− 1

2
,+

p,∞ µs-a.s. �

2.4. Local well posedness. Recalling our choice of Xs:

Xs =




Hσ

+ for any 1
2 < σ < s− 1

2 , when s > 1,

B
s− 1

2
,+

p,∞ for any p > min
(
100, 1

s− 1
2

)
, when 1

2 < s ≤ 1.
(2.12)

We have the following local well-posedness statement.

Proposition 2.4. Let s > 1
2 . Then the equation (1.1) is locally well-posed in Xs. More

precisely, for every u0 ∈ Xs, there exists T∗ = T∗(‖u0‖Xs) > 0 such that the (1.1) admits a

unique solution u belonging to the space u ∈ C([0, T∗],Xs). Moreover, this solution satisfies

u ∈ C∞([0, T∗],Xs).
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Proof. The proof is a standard application of Banach fixed-point theorem, where we only

need the algebra property, i.e. the boundedness of the maps

Hσ ×Hσ ∋ (f, g) 7→ fg ∈ Hs B
s− 1

2
p,∞ ×B

s− 1
2

p,∞ ∋ (f, g) 7→ fg ∈ B
s− 1

2
p,∞

respectively (for our choice of parameters), together with boundedness of

Π : Hσ → Hσ
+, Π : B

s− 1
2

p,∞ → B
s− 1

2
,+

p,∞ .

Note that the fact that the solution is going to be infinitely smooth in time follows from

the (formal) identity

ik∂k
t u = Π(|u|2Π(|u|2 . . .Π(|u2|u) . . . )),

and the fact that the right-hand-side of this expression is bounded in Xs due to the algebra

property again. �

3. Quasi-invariance: s > 1

For N ∈ N, we introduce the sharp Fourier truncation πN on L2
+ by

πN


∑

n≥0

û(n)


 =

∑

0≤n<N

û(n),

and the truncated flow {
i∂tuN = πN

(
Π
(
|uN |2uN

))
,

u(0) = u0 ∈ πN (L2
+).

(3.1)

We recall from [17] that on the space πN (L2
+)

∼= R2N endowed with the symplectic form

ω(u, v) = 4Im(u, v)L2 ,

this truncated flow is the equation for a Hamiltonian equation associated with the Hamil-

tonian

EN (u) = ‖πN (u)‖4L4 .

The Hamiltonian vector field XEN
(u) = πN

(
Π
(
|u|2u

))
on πN (L2

+) is smooth, and by the

conservation of the Hamiltonian, we can define a global flow map Φt,N for (3.1) on this space.

Moreover, using standard arguments, one can easily show the following approximation

statement.

Proposition 3.1. Let σ > 1
2 , and let u0 ∈ Hσ. Let T ≥ 0. Then for every σ′ < σ,

lim
N→∞

‖Φt,N (u0)− Φt(u0)‖C([−T,T ],Hσ′) = 0,

and for every R > 0, convergence is uniform on the Hσ ball

BR := {u0 ∈ Hσ : ‖u0‖Hσ ≤ R}.

We next define the truncated measure

µs,N := (πN )#µs,

which is a Gaussian measure on πN (L2
+), given by

dµs,N =
1

Zs,N
e
−‖πN (u)‖2

Hs
+dudu,
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where dudu is the natural Lebesgue measure on πN (L2
+)

∼= CN ∼= R2N . By Liouville’s

theorem, the Lebesgue measure is invariant under the flow map, and so we see that for all

t ∈ R:

d(Φt,N )#µs,N = exp
(
−‖Φ−t,N (u)‖2Hs

+
+ ‖u‖2Hs

+

)
dµs,N ,

and so we define ft,N to be the density in the expression above, i.e.

ft,N :=
dΦt,N#µs,N

dµs,N
= exp

(
−‖Φ−t,N (u)‖2Hs

+
+ ‖u‖2Hs

+

)
. (3.2)

By the fundamental theorem of calculus, we can write for u ∈ πN (L2
+):

−‖Φ−t,N (u)‖2Hs
+
+ ‖u‖2Hs

+
= −

ˆ −t

0
QπN

(Φτ,N (u))dτ, (3.3)

where (with an abuse of notation) we denote

QπN
(u) = QπN

(u, u, u, u),

and QπN
is the multi-linear map

QπN
(u1, u2, u3, u4) :=

∑

n1−n2+n3−n4=0
0≤ni<N

i

2
Ψs(n)û1(n1)û2(n2)û3(n3)û4(n4),

with Ψs being the multiplier

Ψs(n) = 〈n1〉
2s − 〈n2〉

2s + 〈n3〉
2s − 〈n4〉

2s.

We have the following bound on Ψs.

Lemma 3.2. Let nj ∈ N0 with nj ∼ Nj and n1 − n2 + n3 − n4 = 0. We have

|Ψs(n)| . (N (1))2s−1N (3). (3.4)

Proof. Without loss of generality, we can assume N1 ∼ N2 ∼ N (1). Indeed, if otherwise we

had (say) N1 ∼ N3 ∼ N (1) ≫ N2, N4, then the condition nj ≥ 0 prevents us from having

n1 − n2 + n3 − n4 = 0. Therefore, from the mean value theorem, we obtain that

|Ψs(n)| ≤
∣∣〈n1〉

2s − 〈n2〉
2s
∣∣+ 〈n3〉

2s + 〈n4〉
2s

. (N (1))2s−1|n1 − n2|+ (N (3))2s + (N (4))2s

= (N (1))2s−1|n3 − n4|+ (N (3))2s + (N (4))2s

. (N (1))2s−1N (3).

�

Remark 3.3. Recalling the calculations of Remark 1.3 for the ODE setting, we see the

diverging term of Q(u) is given by the interaction of |n1|, |n3| ≫ |n2|, |n4|. By restricting to

non-negative frequencies no such interaction can exist, from which we deduce this improved

bound on Ψs which we use to prove integrability of Q.

We wish to show (local) exponential integrability (with respect to µs,N) ofQπN
, uniformly

in N . To do this we first need a deterministic multi-linear bound on QπN
.
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Lemma 3.4. For all p1, p2, p3, p4 ∈ (1,∞] with 1
p1

+ 1
p2

+ 1
p3

+ 1
p4

= 1, there is a constant

C(pi, s) > 0, such that for all N ∈ N and Ni dyadic,

|QπN
(PN1u1, PN2u2, PN3u3, PN4u4)| ≤ C(pi, s)

(
N (1)

)2s−1
N (3)

4∏

j=1

‖PNjuj‖Lpj , (3.5)

for all uj ∈ πN (L2
+).

Proof. Without loss of generality it suffices to consider the case N1 = N (1) and N1 ≈ N2.

For M ≥ 1 dyadic, we let

ΨM,s(n) =
(
φ.M (n1)〈n1〉

2s−φ.M (n2)〈n2〉
2s+φ.M (n3)〈n3〉

2s−φ.M (n4)〈n4〉
2s
) 4∏

j=1

φ.M (nj),

and we write

ΨM,s(n) = (n4 − n3)(n2 − n3)mM (n1, n2, n3, n4).

By the double mean-value theorem, mM corresponds to the multiplier

mM (n1, n2, n3, n4) =
4∏

j=1

φ.M (nj)

ˆ 1

0

ˆ 1

0
(〈·〉2sφM )′′(n3 + s(n2 − n3) + t(n4 − n3))dsdt.

We easily see that the Coifman-Meyer norm of mM is bounded by M2s−2. Denote by TmM

the quadrilinear operator given by the multiplier mM , i.e.

TmM
(u1, u2, u3, u4) =

∑

n1−n2+n3−n4=0

mM (n1, n2, n3, n4)û1(n1)û2(n2)û3(n3)û4(n4).

We calculate

QπN
(PN1u1, PN2u2, PN3u3, PN4u4)

=
∑

M.N1

∑

n1−n2+n3−n4=0
0≤ni<N

i

2
ΨM,s(n)P̂N1u1(n1)P̂N2u2(n2)P̂N3u3(n3)P̂N4u4(n4)

=
∑

M.N1

i

2
TmM

(PN1u1, i∂xPN2u2, PN3u3, i∂xPN4u4) + similar terms,

where each of the similar terms is obtained by writing each of the terms of (n4 − n3)(n2 −
n3) = n2n4 − n2n3 − n3n4 + n2

3 as derivatives. Applying the Coifman-Meyer multiplier

theorem on mM and using Bernstein’s inequality yields (with a constant C(pi, s) that

changes line-by-line):

|QπN
(PN1u1, PN2u2, PN3u3, PN4u4)| ≤ C(pi, s)

∑

M.N1

M2s−2N1N
(3)

4∏

j=1

‖PNjuj‖Lpj

≤ C(pi, s)N
2s−1
1 N (3)

4∏

j=1

‖PNjuj‖Lpj .

�
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From now on, we fix s > 1, and 1
2 < σ < s− 1

2 as in the definition (1.8) of Xs, with the

understanding that σ is sufficiently close to s− 1
2 . Also, we let

BR := {u0 ∈ Hσ : ‖u0‖Hσ ≤ R}.

Proposition 3.5. There exist constants A(s, σ), B(s, σ), C(s, σ) > 0 such that for every

M > 0, R ≥ 1, and N ∈ N we have
ˆ

exp (M |QπN
(u)|) 1BR(0)(u)dµs,N (u) ≤ exp(CM max{1,MA}(1 +R)B).

Proof. We recall from [13, Lemma 2.4] the simplified Boué-Dupuis variational formula,

which in this context reads

log

ˆ

exp (M |QπN
(u)|)1BR(0)(u)dµs,N (u)

≤ E

[
sup
V ∈Hs

M |QπN
(u0 + V )|1BR(0)(πN (u0 + V ))−

1

2
‖V ‖2Hs

]
,

(3.6)

where u0 is a random variable distributed according to µs. By symmetry we may expand

|QπN
(u0 + V )|

≤
∑

N1,N2,N3,N4.N

N2=N(1),N4∼N(4),N1∼N2

C0|QπN
(PN1(u0 + V ), PN2(u0 + V ), PN3(u0 + V ), PN4(u0 + V ))|

for some combinatorial constant C0. For ease of notation, we write

QN (f1, f2, f3, f4) = QπN
(PN1(f1), PN2(f2), PN3(f3), PN4(f4)),

and again denote QN (f) = QN (f, f, f, f).

Fix ε > 0 to be chosen later, then pick δ > 0 so that
∑

N1,N2,N3,N4.N

N2∼N(1),N4=N(4),N1∼N2

6δN−ε
2 < 1.

For some universal constant C0 > 0, from (3.6) we then have that

log

ˆ

exp (M |QπN
(u)|) 1BR(0)(u)dµs,N (u)

≤
∑

N1,N2,N3,N4.N

N2∼N(1),N4=N(4),N1∼N2

E

[
sup
V ∈Hs

C0M |QN (u0 + V )|1BR(0)(πN (u0 + V ))−
6δN−ε

2

2
‖V ‖2Hs

]
.

(3.7)

We now expand QN (u0 + V ):

QN (u0 + V, u0 + V, u0 + V, u0 + V )

= QN (u0, u0, u0, u0 + V ) (I)

+QN (u0, u0, V, u0 + V ) +QN (u0, V, u0, u0 + V ) +QN (V, u0, u0, u0 + V ) (II)

+QN (V, V, u0 + V, u0 + V ) (III)

+QN (V, u0, V, u0 + V ) +QN (u0, V, V, u0 + V ). (IV)

We now bound each term.
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(I): We express (I) as a random kernel acting on the low-frequency function PN4(u0+V ),

namely

QN (u0, u0, u0, u0 + V ) =
∑

0≤n4<N

KN (n4)
(
PN4(u0 + V )

) ̂ (n4),

where

KN (n4) =
∑

n1−n2+n3=n4
0≤n1,n2,n3<N

iΨs(n)φN1(n1)φN2(n2)φN3(n3)gn1gn2gn3

2〈n1〉s〈n2〉s〈n3〉s
φ∼N4(n4).

We see that

|QN (u0, u0, u0, u0 + V )|1BR(0)(πN (u0 + V ))

≤ ‖KN (n4)‖ℓ2n4
‖PN4πN (u0 + V )‖L21BR(0)(πN (u0 + V ))

≤ RN−σ
4 ‖KN (n4)‖ℓ2n4

,

which is a quantity independent of V . Now using (3.4), we have

E

[
sup
V ∈Hs

C0M |QN (u0, u0, u0, u0 + V )|1BR(0)(πN (u0 + V ))

]

. MR
(
N−2σ

4 E

[∑

n4

|KN (n4)|
2

]) 1
2

. MR

(
N−2σ

4

∑

n1−n2+n3−n4=0
ni∼Ni

0≤ni<N

|Ψs(n)|
2

〈n1〉2s〈n2〉2s〈n3〉2s

) 1
2

. MR
(
N−2σ

4 N2N3N4N
4s−2
2 N2

3N
−4s
2 N−2s

3

) 1
2 ,

so

E
[
sup
V ∈Hs

|(I)|1BR(0)(πN(u0 +V))
]
. MR

(
N−1

2 N3−2s
3 N1−2σ

4

) 1
2 , (3.8)

which is summable in Ni.

(II): We again use a random kernel representation. Note that each of the terms in (II)

can be written as

∑

0≤n3,n4<N

KN (n3, n4)〈n3〉
s〈n4〉

σ ̂PNα(3)
(V )(n3) ̂PN4(u0 + V )(n4),

where

KN (n3, n4) =
∑

nα(1)−nα(2)+nα(3)−n4=0
0≤n1,n2<N

iΨs(n)φNα(1)
(n1)φNα(2)

(n2)g̃n1 g̃n2

2〈n1〉s〈n2〉s〈n3〉s〈n4〉σ
φ∼Nα(3)

(n3)φ∼N4(n4),

α is a permutation of {1, 2, 3}, and g̃n1 , g̃n2 are normal Gaussian random variables that

satisfy E[g̃n1 g̃n2 ] = 0 unless n1 = n2 and α(2) = 2, in which case g̃n1 = g̃n1 . Note that in
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this case, we must also have Ψs(n) = 0. Therefore,

KN (n3, n4) =
∑

nα(1)−nα(2)+nα(3)−n4=0
0≤n1,n2<N
E[g̃n1 g̃n2 ] 6=0

iΨs(n)φNα(1)
(n1)φNα(2)

(n2)g̃n1 g̃n2

2〈n1〉s〈n2〉s〈n3〉s〈n4〉σ
φ∼Nα(3)

(n3)φ∼N4(n4).

We denote by ‖K‖op the optimal constant C such that the inequality
∑

0≤n3,n4<N

K(n3, n4)a(n3)b(n4) ≤ C‖a‖l2‖b‖l2

holds. Then it follows that

|(II)|1BR(0)(πN(u0 +V)) . max
α

‖KN‖op‖V ‖Hs‖πN (u0 + V )‖Hσ
1BR(0)(πN (u0 + V ))

. Rmax
α

‖KN‖op‖V ‖Hs .

Taking Hilbert-Schmidt norms, and using (3.4) again, we see that

E[‖KN‖2op]

. E[‖KN‖2l2(n3,n4)
]

≤
∑

nα(1)−nα(2)+nα(3)−n4=0
n1 6=n2

|Ψs(n)|
2φNα(1)

(n1)
2φ2

Nα(2)
(n2)

〈n1〉2s〈n2〉2s〈n3〉2s〈n4〉2σ
φ∼Nα(3)

(n3)
2φ∼N4(n4)

2

. N−1
2 N3−2s

3 N1−2σ
4 .

Therefore, for some universal constant C > 0, by Young’s inequality, we have

E

[
sup
V ∈Hs

C0M |(II)|1BR(0)(πN(u0 +V)) −
δN−ε

2

2
‖V‖2Hs

]

≤ E

[
sup
V ∈Hs

CMR‖KN‖op‖V ‖Hs −
δN−ε

2

2
‖V ‖2Hs

]

≤
2C2M2R2N ε

2

δ
E[‖KN‖2op]

≤ δ−1C2M2R2N ε−1
2 N3−2s

3 N1−2σ
4 ,

(3.9)

which is summable in Ni (for ε small enough).

(III): To bound this term, we use (3.5) and Bernstein’s inequality, and obtain (on the

set πN (u0 + V ) ∈ BR(0)):

|(III)| . N2s−1
2 N3‖PN1πNV ‖L2‖PN2πNV ‖L2‖PN3πN (u0 + V )‖L∞‖PN4πN (u0 + V )‖L∞

. N−1
2 N

3
2
−σ

3 ‖P.N2
πNV ‖2Hs‖πN (u0 + V )‖2Hσ

. R2N
−min(1,σ− 1

2
)

2 ‖P.N2
πNV ‖2Hs .

Therefore, for some universal constant C, we have

|(III)| ≤ CR2N
−min(1,σ− 1

2
)

2 ‖P.N2
πNV‖2Hs .
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Let N0 = N0(R,M, δ, σ, ε) be such that for every N ′ ≥ N0,

CR2(N ′)−min(1,σ− 1
2
) ≤

δ

2M
(N ′)−ε.

Note that this exists as long as ε < min(1, σ − 1
2), and for some b1, b2 > 0, we can choose

N0 such that

N0 . M b1Rb2 .

Then, for a constant C ′ = C ′(δ, σ, ε) that can change line to line, distinguishing the cases

N2 < N0 and N2 ≥ N0, we obtain that for some a1, a2 > 0,

C0M |(III)|1BR(0)(πN(u0 +V)) ≤ N−ε
2 C ′Ma1Ra2‖πNV ‖2Hσ +

δ

2
N−ε

2 ‖V ‖2Hs

≤ N−ε
2 Ma1Ra2C ′(R+ ‖u0‖Hσ)2 +

δ

2
N−ε

2 ‖V ‖2Hs .

Therefore, by taking expectations, we get for some universal constant C > 0,

E

[
sup
V ∈Hs

C0M |(III)|1BR(0)(πN(u0 +V))−
δN−ε

2

2
‖V‖2Hs

]
≤ CMA(1 +RA)N−ε

2 , (3.10)

which is summable in Ni.

(IV): We use once again (3.5), and obtain (on the set πN (u0 + V ) ∈ BR(0)):

|(IV)| . N2s−1
2 N3N

−s
2 N−s

3 ‖P.N2
πNV ‖2Hs‖P≈N2u0‖L∞‖PN4πN (u0 + V )‖L∞

. RN s−1
2 N1−s

3 N
3
4
−s

2 ‖P.N2
πNV ‖2Hs‖u0‖

B
s− 1

2 ,+

4,∞

. RN
− 1

4
2 ‖P.N2

πNV ‖2Hs‖u0‖
B

s− 1
2 ,+

4,∞

.

Proceeding as for (III), we pick N0 = N0(R, δ, u0,M, ε) such that for all N ′ ≥ N0

CR(N ′)−
1
4‖u0‖

B
s− 1

2 ,+

4,∞

≤
δ

2M
(N ′)−ε,

where C is the implicit constant in the inequality above. Moreover we may pick

N0 ∼ Ma1Ra2 ||u0||
a3

B
s− 1

2 ,+

4,∞

δ−a4 ,

for some ai > 0 depending only on ε. Therefore, for 0 < θ < 1 such that

θs+ (1− θ)σ ≥ s−
1

8
,

and for constants C = C(s, σ, θ, δ) > 0 and A1 = A1(ε, θ) > 0, A2 = A2(ε, θ) > 0 (that can

change line to line), distinguishing the cases N2 ≥ N0 and N2 < N0,

C0M |(IV)|1BR(0)(πN(u0 +V)) ≤ N−ε
2 CMA1RA2‖u0‖

A2

B
s− 1

2 ,+

4,∞

‖P.N2
πNV ‖2

Hs− 1
8
+

δ

2
N−ε

2 ‖V ‖2Hs

≤ N−ε
2 CMA1RA2‖u0‖

A2

B
s− 1

2 ,+

4,∞

‖V ‖2θHs‖πNV ‖
2(1−θ)
Hσ +

δ

2
N−ε

2 ‖V ‖2Hs

≤ N−ε
2 CMA1RA2‖u0‖

A2

B
s− 1

2 ,+

4,∞

‖πNV ‖2Hσ + δN−ε
2 ‖V ‖2Hs

≤ N−ε
2 CMA1RA2‖u0‖

A2

B
s− 1

2 ,+

4,∞

(R + ‖u0‖Hσ )2 + δN−ε
2 ‖V ‖2Hs .
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In particular, we have that for a (different) constant C > 0,

E

[
sup
V ∈Hs

C0M |(IV)|1BR(0)(πN(u0 +V))− δN−ε
2 ‖V‖2Hs

]
≤ N−ε′

2 CMA1RA2 , (3.11)

which is summable in Ni. Finally, from (3.7), (3.8), (3.9), (3.10), (3.11), we get that, for

some constant K > 0, and some A,B > 0,

log

ˆ

exp (M |QπN
(u)|) 1BR(0)(u)dµs,N (u) ≤ KM max{1,MA}(1 +R)B.

�

We now introduce the sets EN,R,t ⊂ πN (Hσ) for R ≥ 1 and t ∈ R

EN,R,t =
⋂

τ∈It

Φτ,N (πN (BR(0))) =

{
u ∈ πN (Hσ)

∣∣∣∣ sup
τ∈It

‖Φ−τ,N (u)‖Hσ ≤ R

}
, (3.12)

where It = [0, t] for t ≥ 0 and It = [t, 0] for t < 0. These sets will allow us to obtain a-priori

estimates on the Lp norm of ft,N1EN,R,t
, in a manner not too dissimilar from the arguments

in [1, 13].

Proposition 3.6. For s > 1 and 1
2 < σ < s− 1

2 with s− 1
2 − σ sufficiently small, there are

constants 0 < A,B,C < ∞ such that for all t ∈ R, N ∈ N, R ≥ 1, and p ∈ (1,∞), we have

‖ft,N1EN,R,t
‖Lp(Hσ ,dµs,N ) ≤

∥∥exp
(
|tQπN

(u)|
)
1BR(0)(u)

∥∥
Lp(Hσ ,dµs,N )

≤ exp(C|1 + pt|ARB).

(3.13)

Proof. From (3.2), (3.3), and by Jensen’s inequality together with convexity of the expo-

nential, we have

‖ft,N1EN,R,t
‖pLp(Hσ ,dµs,N )

=

ˆ

(ft,N (u))p−1
1EN,R,t

(u)ft,N (u)dµs,N (u)

=

ˆ

(ft,N (Φt,N (u)))p−1
1EN,R,t

(Φt,N (u))dµs,N (u)

=

ˆ

exp

(
−(p− 1)

ˆ −t

0
QπN

(Φt+τ,N (u))dτ

)
1EN,R,t

(Φt,N (u))dµs,N (u)

=

ˆ

exp

(
t

|t|
(p− 1)

ˆ

It

QπN
(Φτ,N (u))dτ

)
1EN,R,t

(Φt,N (u))dµs,N (u)

≤

ˆ

1

|t|

ˆ

It

exp (t(p− 1)QπN
(Φτ,N (u)))1EN,R,t

(Φt,N (u))dτdµs,N (u)

=

ˆ

1

|t|

ˆ

It

exp (t(p− 1)QπN
(u))1EN,R,t

(ΦN,t−τ (u))fτ,N (u)dτdµs,N (u).

For τ ∈ It we note

ΦN,t−τ (u) ∈ EN,R,t =⇒ sup
r∈It−τ

‖ΦN,r(u)‖Hσ ≤ R =⇒ u ∈ EN,R,τ .
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Combining this with the fact EN,R,τ ⊂ BR(0), we see

‖ft,N1EN,R,t
‖pLp(Hσ ,dµs,N )

≤

ˆ

1

|t|

ˆ

It

exp [t(p− 1)QπN
(u)]1BR(0)(u)1EN,R,τ

(u)fτ,N (u)dτdµs,N (u)

≤
∥∥exp [t(p− 1)|QπN

(u)|]1BR(0)(u)
∥∥
Lp′ (Hσ ,dµs,N )

sup
τ∈It

‖fτ,N1EN,R,τ
‖Lp(Hσ ,dµs,N ).

Taking the supremum over t in some interval IT and using p′(p − 1) = p yields the first

inequality in (3.13). The second inequality then follows from Proposition 3.5. �

Remark 3.7. If one were able to obtain a similar result with a H
1
2 -cutoff instead of

a Hσ-cutoff, due to conservation of the H
1
2 norm, one could then apply Bourgain’s

(quasi-)invariant measure argument ([3], see [13, Theorem 6.1] for a precise statement),

and obtain polynomial-in-time bounds on solutions for µs-a.e. initial data, due to the con-

servation of the Ḣ
1
2 norm. However, these estimates appear out of reach. We point out

that in [19], a dense sets of turbulent solutions for (1.1) has been constructed, but it is

unclear if such solutions are typical or not. It would be interesting to either show good

bounds on the growth of Sobolev norms for a.e. initial data distributed according to µs, or

in alternative to exhibit a set of turbulent solutions with positive probability under such a

Gaussian measure.

With this uniform Lp bound on the truncated densities, we are ready to prove Proposition

1.5.

Proof of Proposition 1.5. We first fix 1
2 < σ < s− 1

2 satisfying the conditions of Proposition

3.6, and we recall that Xs = Hσ where we have global well-posedness. By Proposition 3.1,

we have that for all u ∈ Hσ and T > 0, for every σ′ < σ,

Φt,N (πNu) → Φt(u) in C([−T, T ],Hσ′

) as N → ∞,

and this convergence is uniform on BR(0) for every R ≥ 0. We now fix 1
2 < σ′ < σ that also

satisfies the hypoteses of Proposition 3.6. By global well-posedness for (1.1) (see [17]) and

this uniform convergence, we have that for any R ≥ 1 and t ∈ R, there exists C(R, t) > 0

such that for all N big enough (depending on R, t),

Φt,N

(
πN (BR(0))

)
⊂ E′

N,C(R,t),t,

where the latter set corresponds to (3.12) with σ′ replacing σ.

From the estimate (3.13), for any t ∈ R and R ≥ 1, there exists ft,R ∈ L2(Hσ, dµs) such

that (up to a subsequence) ft,N1EN,C(R,t),t
◦ πN → ft,R weakly in L2(Hσ, dµs). With this,

we consider any non-negative, continuous and bounded function F : Hσ′

→ [0,∞). By



SHARP QUASI-INVARIANCE FOR CUBIC SZEGÖ 25

dominated convergence, we have
ˆ

F (u0)d(Φt)#(1BR(0)µs)(u0)

=

ˆ

F (Φt(u0))d(1BR(0)µs)(u0)

= lim
N→∞

ˆ

F (Φt,N (πNu0))1BR(0)(u0)dµs(u0)

≤ lim sup
N→∞

ˆ

F (Φt,N (πNu0))1πN (BR(0))(πNu0)dµs(u0)

= lim sup
N→∞

ˆ

F (πNu0)1Φt,N (πN (BR(0)))(πNu0)ft,N (πNu0)dµs(u0)

≤ lim sup
N→∞

ˆ

F (πNu0)1EN,C(R,t),t
(πNu0)ft,N (πNu0)dµs(u0).

We note by the dominated convergence theorem and the uniform L2 bound on

ft,N1EN,C(R,t),t
◦ πN :

lim
N→∞

ˆ

|F (πNu0)− F (u0)|1Φt,NπN (BR(0))(πNu0)ft,N (πNu0)dµs(u0) = 0,

and so
ˆ

F (u0)d(Φt)#(1BR(0)µs)(u0) ≤ lim sup
N→∞

ˆ

F (u0)1EN,C(R,t),t
(πNu0)ft,N (πNu0)dµs(u0)

=

ˆ

F (u0)ft,R(u0)dµs(u0).

Therefore (Φt)#(1BR(0)µs) ≪ µs for any R ≥ 1. Since R is arbitrary, we deduce that

(Φt)#µs ≪ µs as well. �

4. Singularity: s < 1

4.1. An abstract singularity result. We start this section by showing a condition that

guarantees singularity for up to countably many times. Most of the remaining of the paper

will be dedicated to showing that this condition is indeed satisfied by the flow of (1.1)

whenever 1
2 < s < 1 and s 6= 3

4 .

Proposition 4.1. Let g : Xs ×Xs → R∪ {−∞,∞} be a measurable function that satisfies

g(x, y) > 0 ⇒ g(y, x) < 0.

Suppose that there exists τ = τ(u0) ≥ 0 such that u0 ∈ WP(τ) ∩ WP(−τ), and for every

0 < |t| < τ ,

g(Φt(u0), u0) > 0,

and τ > 0 for µs-a.e. u0.
7 Then there exists a countable set N ⊆ R such that for every

t ∈ R \ N ,

(Φt)#(1WP(t)µs) ⊥ µs.

7Note that τ (u0) = 0 always (vacuously) satisfies the previous properties, so one just needs to check the
existence of such a map on a set of full measure for µs.
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Proof. First of all, we note that without loss of generality, we can assume that the function

τ is measurable. Indeed, if it is not, we can simply redefine τ to be

τ(u0) = sup
{ 1

n
: n ∈ N, u0 ∈ WP

( 1
n

)
, {t : |t| ≤

1

n
, g(Φt(u0), u0) > 0} =

[
−

1

n
,
1

n

]}
,

where we define τ(u0) = 0 if the family on which we take the sup is empty. Note that this is

measurable since WP(t) is an open set for every t ∈ R, and the map (t, u0) 7→ g(Φt(u0), u0)

is measurable due to continuity of the map (t, u0) 7→ Φt(u0) (for u0 ∈ WP(n−1)).

Suppose by contradiction that the set

N := R \
(
{t : µs(WP(t)) > 0, (Φt)#(1WP(t)µs) ⊥ µs} ∪ {t : µs(WP(t)) = 0}

)

is uncountable. Since τ > 0 µs-a.s., for every t ∈ N , there must exist m1,m2 ∈ N such

that

(Φt)#(1WP(t)µs)({τ > 1/m1}) > 1/m2.

Since N is uncountable, we deduce that there exist τ0, ε0 > 0 such that the set

Nτ0,ε0 = {t : (Φt)#(1WP(t)µs)({τ > 2τ0}) > ε0}

is uncountable as well. Since Nτ0,ε0 ⊆ R is uncountable, it must have at least one accumu-

lation point, i.e. there exist distinct t1, t2, . . . , tn, . . . such that tj ∈ Nτ0,ε0 for every j ∈ N,

and t∗ ∈ R such that

lim
j→∞

tj = t∗.

Therefore, up to extracting a subsequence, we can assume that |tj − t∗| < τ0 for every

j ∈ N. Now consider the sets

Ej := Φ−1
tj

({u0 : τ(u0) > 2τ0} ∩WP(−tj))

Recalling that tj ∈ Nτ0,ε0 and that by definition Φ−1
tj

(WP(−tj)) = WP(tj), we obtain that

µs(Ej) = (Φtj )#µs({τ > 2τ0} ∩WP(−tj)) = (Φtj )#(1WP(tj )µs)({τ > 2τ0}) > ε0.

Therefore, there must exist j1, j2 such that Ej1 ∩ Ej2 6= ∅, otherwise we would have

1 ≥ µs

(⋃

j

Ej

)
=
∑

j

µs(Ej) ≥
∑

j

ε0 = ∞.

Let u0 ∈ Ej1 ∩ Ej2 . By definition of Ej, we have that τ(Φtjk
(u0)) > 2τ0 for k = 1, 2.

Therefore, by definition of τ , since |tj1 − tj2 | ≤ |tj1 − t∗|+ |t∗ − tj2 | < 2τ0, we have that

g(Φtj1
(u0),Φtj2

(u0)) = g(Φtj1−tj2
(Φtj2

(u0)),Φtj2
(u0)) > 0.

Therefore, by hypothesis on g, we have that g(Φtj2
(u0),Φtj1

(u0)) < 0. However, proceeding

similarly,

g(Φtj2
(u0),Φtj1

(u0)) = g(Φtj2−tj1
(Φtj1

(u0)),Φtj1
(u0)) > 0,

which is a contradiction. �

Our main goal for this section will be showing the following.
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Proposition 4.2. Let 1
2 < s < 1 with s 6= 3

4 , and for x, y ∈ Xs, let

g(x, y) := lim inf
N→∞

‖PNx‖2
Ḣ1 − ‖PNy‖2

Ḣ1

(4s − 3)N4−4s
. (4.1)

Then g satisfies the hypotheses of Proposition 4.1. More precisely, for every x, y ∈ Xs, we

have that g(x, y) > 0 implies that g(y, x) < 0, and for µs-a.e. u0, there exists τ(u0) > 0

such that for all 0 < |t| < τ(u0) we have

lim inf
N→∞

‖PNΦt(u0)‖
2
Ḣ1 − ‖PNu0‖

2
Ḣ1

(4s − 3)N4−4s
> 0.

We discuss briefly the main ideas that go into Proposition 4.2. It is not unreasonable to

expect that, for small times t, we have

‖PNΦt(u0))‖
2
Ḣ1−‖PNu0‖

2
Ḣ1 ≈ t

d

dt
‖PNΦt(u0))‖

2
Ḣ1

∣∣
t=0

+
t2

2

d2

dt2
‖PNu0‖

2
Ḣ1

∣∣
t=0

+O(t3). (4.2)

We then exploit the equation (1.1) to compute

d

dt
‖PNΦt(u0))‖

2
Ḣ1

∣∣
t=0

,
d2

dt2
‖PNΦt(u0))‖

2
Ḣ1

∣∣
t=0

,

as polynomial objects in the frequencies of u0. By taking expectations, we obtain that

E

[ d
dt
‖PNΦt(u0))‖

2
Ḣ1

∣∣
t=0

] = 0,

E

[ d2
dt2

‖PNΦt(u0))‖
2
Ḣ1

∣∣
t=0

]
∼ (4s − 3)N4−4s.

This suggests that for small times, ‖PNΦt(u0))‖
2
Ḣ1−‖PNu0‖

2
Ḣ1 has a definite sign asN → ∞

(depending on the sign of 4s − 3), which in turn leads us to the choice of g in (4.1). In

particular, Theorem 4.2 follows once we show that this heuristic is correct, and once we

bound the various error terms that will appear in the O(t3) term with the correct power

on N . It actually turns out that the expansion in (4.2) is not fully correct, and we will

need to allow for extra error terms of the form o(N4−4s) (that disappear in the limit in the

definition of (4.1)).

Note that estimating the remainder in (4.2) deterministically, i.e. using only the fact that

the solution map t 7→ Φt(u0) is smooth in time with values in Xs, we are only able bound

the error term as O(N2s+1t3) ≫ N4−4s. Therefore, in order to conclude, we will need to

show appropriate multilinear random estimates for the solution of (1.1) at time t.

4.2. Time derivatives of the norm of the solution. Define the random objects

FN (u0) = N4s−4 d

dt
‖PNu(t)‖2

Ḣ1

∣∣∣
t=0

, (4.3)

GN (u0) = N4s−4 d
2

dt2
‖PNu(t)‖2

Ḣ1

∣∣∣
t=0

. (4.4)

Let u(t) be a (local) solution of (1.1) on Xs. By a direct computation, we have that

d

dt
‖PNu(t)‖2

Ḣ1 = QN (u, u, u, u)(t),
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where QN is the quadrilinear map given by

QN (u1, u2, u3, u4) =
∑

n1−n2+n3−n4=0
ni≥0

i

2
ΨN (n)û1(n1)û2(n2)û3(n3)û4(n4), (4.5)

where we define the multiplier ΨN (n) for n = (n1, n2, n3, n4) as

ΨN (n) =

4∏

i=1

1N0(ni)
(
n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2 − n2
4φN (n4)

2
)
. (4.6)

We note that (by construction) ΨN is anti-symmetric, so if n1 − n2 + n3 − n4 = 0 with

{n1, n3} ∩ {n2, n4} 6= ∅, then ΨN (n) = 0. We start by showing a simple bound on ΨN .

Lemma 4.3. For ni ∈ N0 with n1 − n2 + n3 − n4 = 0 and ni ∼ Ni, we have

|ΨN (n)| . 1N(1)&NN min{N,N (3)}.

Proof. It is clear that if N (1) ≪ N , we then have ΨN (n = 0, so it is enough to show the

bound. Similarly, from n2ΦN (n) . N2, the bound

|ΨN (n)| . N2

is immediate, so we focus on showing that |ΨN (n)| . NN (3). Since ni ≥ 0, in order to

have n1 − n2 + n3 − n4 = 0, we cannot have that the biggest two frequencies are {n1, n3}
or {n2, n4}. Therefore, up to swapping n1 with n3 and n2 with n4, we have that

min(n1, n2) ≥ max(n3, n4).

Up to further swapping n1 with n2 and n3 with n4 (which does not change |ΨN (n)|, we
can put ourselves in the case

n1 ≥ n2 ≥ n4 ≥ n3.

By the mean value theorem, noting that ‖φ′
N‖L∞ ≤ 1

N , we obtain that

|ΨN (n)| ≤ |n2
1φN (n1)

2 − n2
2φN (n2)

2|+ |n2
4φN (n4)

2 − n2
3φN (n3)

2|

. N |n1 − n2|+N |n4 − n3|

= 2N |n4 − n3|

. N4N

= N (3)N,

and so the bound follows. �

We are now ready to estimate FN and GN in (4.3), (4.4).

Proposition 4.4. For 1
2 < s < 1, we have that

E[FN (u0)] = 0, E[|FN (u0)|
2] . N2s−2.

In particular, we have that

lim
N→∞

FN (u0) = 0 µs-almost surely,
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Proof. For N dyadic we have

N4−4sFN (u0) = QN (u0, u0, u0, u0) =
∑

n1−n2+n3−n4=0
ni≥0

i

2
ΨN (n)û0(n1)û0(n2)û0(n3)û0(n4)

(4.7)

Note that FN is antisymmetric under conjugation, so we have that

FN (u0) = −FN (u0).

However, since Law(û0(n)) = Law(û0(n)), we obtain

E[FN (u0)] = −E[FN (u0)] = −E[FN (u0)],

so we must have that

E[FN (u0)] = 0.

We now move to computing the variance of FN (u0). Recalling that whenever n1 = n2 or

n1 = n4 we have ΨN (n) = 0, and by Lemma 4.3, we get that

E

[
|FN (u0)|

2
]
= N8s−8

∑

n1−n2+n3−n4=0

|ΨN (n)|2
4∏

j=1

1

〈nj〉2s

. N8s−8
∑

N1,N2,N3,N4

∑

n1−n2+n3−n4=0
nj∼Nj

N2min{N2, (N (3))2}

N2s
1 N2s

2 N2s
3 N2s

4

. N8s−8
∑

N1,N2,N3,N4

N2min{N2, (N (3))2}N (2)N (3)N (4)

N2s
1 N2s

2 N2s
3 N2s

4

. N8s−8N6−6s = N2s−2.

In particular, this implies that E
[∑

N |FN (u0)|
2
]
< ∞, so we must have

lim
N→∞

FN (u0) = 0

µs-almost surely. �

Proposition 4.5. For 1
2 < s < 1, define

Is := (4s − 2)
( ˆ ∞

0

(
xφ(x)

)2
x1−4sdx

)(ˆ 1

0

ˆ 1

0

ˆ 1

0
y2−2s(1− y + (σ + τ)y)4s−4dσdτdy

)
.

(4.8)

Then Is > 0, and we have

lim
N→∞

GN (u0) = 8(4s − 3)Is‖u0‖
2
L2(T) (4.9)

for µs-almost every u0.
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Proof. We use the symmetry of FN to compute

d2

dt2
‖PNu(t)‖2

Ḣ1 = 2Re
( ∑

n1−n2+n3−n4=0

ΨN (n)î∂tu(n1)û(n2)û(n3)û(n4)
)

= 2
∑

n1−n2+n3−n4+n5−n6=0
n1−n2+n3≥0

ni≥0

ΨN (n4 − n5 + n6, n4, n5, n6)û(n1)û(n2)û(n3)û(n4)û(n5)û(n6).

Note that the the coefficients ΨN are real, and the real part of

∏

j=1,3,5

û(nj)
∏

j=2,4,6

û(nj)

is invariant under permutations in the set

σ ∈ S :=
{
σ ∈ S6 : σ({1, 3, 5}) = {1, 3, 5} or σ({1, 3, 5}) = {2, 4, 6}

}
∼= (S3 × S3)⋊ Z2.

Therefore, we obtain that

d2

dt2
‖PNu(t)‖2

Ḣ1 = 2
∑

n1−n2+n3−n4+n5−n6=0
n1−n2+n3≥0

ni≥0

fN (n1, n2, n3, n4, n5, n6)û(n1)û(n2)û(n3)û(n4)û(n5)û(n6),

where fN is the symmetrisation of ΨN under the action of S, i.e.

fN (n1, n2, n3, n4, n4, n6) =
1

72

∑

σ∈S

ΨN (nσ(1) − nσ(2) + nσ(3), nσ(4), nσ(5), nσ(6)). (4.10)

We now show a bound on fN analogous to the one in Lemma 4.3, i.e.

|fN (n)| . 1N(1)&NN min(N,N (3)), (4.11)

under the condition n1−n2+n3−n4+n5−n6 = 0. To see this, by symmetry it suffices to

bound ΨN(nσ(4) − nσ(5) + nσ(6), nσ(4), nσ(5), nσ(6)) by this quantity. This bound follows by

Lemma 4.3, in combination with the observation that we cannot have three of the values

n4, n5, n6 and n4 − n5 + n6 being bigger than 100N (3). Indeed, by definition of N (j), we

must have min(n4, n5, n6) . N (3), and if n1 − n2 + n3 = n4 − n5 + n6 ≥ 100N (3), then

max(n1, n2, n3) ≥ 6N (3), and so at most one of n4, n5, n6 can be bigger that 6N (3) as well.

We see that

GN = 2N4s−4
∑

n1−n2+n3−n4+n5−n6=0
ni≥0

fN (n)
6∏

j=1

〈nj〉
−sgn1gn2gn3gn4gn5gn6 ,

which we decompose based on the number of pairings:

GN = GN,0 +GN,1 +GN,3,
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where

GN,0 = 2N4s−4
∑

n1−n2+n3−n4+n5−n6=0
ni≥0

{n1,n3,n5}∩{n2,n4,n6}=∅

fN (n)û(n1)û(n2)û(n3)û(n4)û(n5)û(n6),

GN,1 = 18N4s−4
∑

n1−n2+n3−n4=0
ni≥0

{n1,n3}∩{n2,n4}=∅
n5=n6

fN(n)û(n1)û(n2)û(n3)û(n4)|û(n5)|
2,

GN,3 = 12N4s−4
∑

n1,n2,n3≥0

fN (n1, n1, n2, n2, n3, n3)

3∏

j=1

|û(nj)|
2.

The fact that GN = GN,0 + GN,1 + GN,3 can be easily verified using the symmetry of fN
under the action of S. For the 0-pairing term, by independence of different frequencies we

have that E[GN,0(u0)] = 0, and we use (4.11) to bound its variance:

E[|GN,0(u0)|
2] . N8s−8

∑

n1−n2+n3−n4+n5−n6=0
ni≥0

fN(n)2
6∏

j=1

〈nj〉
−2s

. N8s−8
∑

N1≥N2≥N3≥N4≥N5≥N6
N1&N,N1∼N2

N2min(N2, N2
3 )N

−2s
1

6∏

j=2

N1−2s
j

. N8s−8
∑

N1≥N2≥N3
N3&N

N4N−2s
1 N1−2s

2 N1−2s
3

+N8s−8
∑

N1≥N2≥N3
N1&N≫N3

N2N−2s
1 N1−2s

2 N3−2s
3

. N2s−2 +N6s−6

. N2s−2,

which is summable in N . Hence we obtain that

lim
N→∞

GN,0(u0) = 0

for µs-a.e. u0.

We now move to estimating GN,1(u0). We further decompose it as

GN,1(u0) = GN,1,0(u0) +GN,1,2(u0),
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defined respectively by8

GN,1,0 = 18N4s−4
∑

n1−n2+n3−n4+n5−n6=0
ni≥0

{n1,n3}∩{n2,n4}=∅
n5=n6

fN (n)

6∏

j=1

〈nj〉
−sgn1gn2gn3gn4 ,

GN,1,2 = 18N4s−4
∑

n1−n2+n3−n4+n5−n6=0
ni≥0

{n1,n3}∩{n2,n4}=∅
n5=n6

fN (n)
6∏

j=1

〈nj〉
−sgn1gn2gn3gn4(|gn5 |

2 − 1),

where we fixed the representation

u0 =
∑

n≥0

〈n〉−sgne
inx.

Similarly to the situation for GN,0, we have that E[GN,1,2(u0)] = 0 and

E[|GN,1,2(u0)|
2] . N8s−8

∑

n1−n2+n3−n4+n5−n6=0
ni≥0,n5=n6

fN (n)2
6∏

j=1

〈nj〉
−2s

. N2s−2,

so limN→∞GN,0(u0) = 0 for µs-a.e. u0. We now move to estimating GN,1,0. It is again

easy to check that E[GN,1,0] = 0. Using again (4.11), note that for n1 ∼ N1, . . . , n4 ∼ N4

with n1 − n2 + n3 − n4 = 0, letting N (1) ≥ . . . ≥ N (4) be a decreasing rearrangement of

N1 . . . N4, recalling that this implies N (1) ∼ N (2), we get that

∑

m≥0

|fN (n1, n2, n3, n4,m,m)|〈m〉−2s

.
∑

m.N(3),N(1)&N

N min(N,N (3))〈m〉−2s +
∑

N(2)≫m≫N(3),N(1)&N

N min(N, 〈m〉)〈m〉−2s

+
∑

m&N(2)&N,max(〈m〉,N(1))&N

N min(N,N (2))〈m〉−2s

∼ N min(N,N (3))1N(1)&N +N3−2s
1N(1)&N +N min(N,N (1))(max(N,N (1)))1−2s.

8The attentive reader would notice that GN,1,0 and GN,1,2 are the projection to homogenous Wiener
chaos of order 0 and order 2 (respectively), hence the choice of notation.
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Therefore,

E[|GN,1,0(u0)|
2]

. N8s−8
∑

n1,n2,n3,n4,n5,n6≥0
n1−n2+n3−n4=0

|fN (n1, n2, n3, n4, n5, n5)| · |fN (n1, n2, n3, n4, n6, n6)|
6∏

j=1

〈nj〉
−2s

= N8s−8
∑

n1,n2,n3,n4≥0
n1−n2+n3−n4=0

4∏

j=1

〈nj〉
−2s
(∑

m≥0

|fN (n1, n2, n3, n4,m,m)|〈m〉−2s
)2

. N8s−8
∑

N1∼N2≥N3≥N4

(
N2min(N,N3)

2
1N1&N +N6−4s

1N(1)&N

+N2 min(N,N1)
2 max(N,N1)

2−4s
)
N−1

1

4∏

j=1

N1−2s
j

. N2s−2 +N−1 +N8s−8
∑

N1

N2min(N,N1)
2 max(N,N1)

2−4sN1−4s
1

. N2s−2 +N−1N4s−4max(N3−4s, 1),

which is again summable in N . Therefore, we get that limN→∞GN,0,2(u0) = 0 for µs-a.e.

u0, and so

lim
N→∞

(GN (u0)−GN,3(u0)) = 0

for µs-a.e. u0.

In order to evaluate the behaviour of GN,3 in the limit N → ∞, it is convenient to work

with the non-symmetric form ΨN instead of fN , and so we write

GN,3(u) = 2N4s−4
∑

n1,n2,n3≥0

(2− 1{n1=n3})ΨN (n1 − n2 + n3, n1, n2, n3)

3∏

j=1

|û(nj)|
2.

Indeed, note that all the pairing in (4.10) that have nσ(5) = nσ(4) or nσ(5) = nσ(6) result in

ΨN = 0, and so one must have that nσ(5) = nσ(2), which becomes n5 = n2 after we undo

the symmetrisation procedure.

First of all, we note that in the case n1 = n3, the third highest frequency between

2n1 − n2, n1, n2, n1 has size . N1. Therefore,

N4s−4
∣∣∣
∑

n1,n2≥0

ΨN (2n1 − n2, n1, n2, n1)|û0(n1)|
4|û0(n2)|

2
∣∣∣

. N4s−4
∑

n1,n2≥0,max(〈n1〉,〈n2〉)&N

N min(N, 〈n1〉)
|gn1 |

4

〈n1〉4s
|gn2 |

2

〈n2〉2s
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By taking expectations, we obtain

N4s−4
E

∣∣∣
∑

n1,n2≥0

ΨN (2n1 − n2, n1, n2, n1)|û0(n1)|
4|û0(n2)|

2
∣∣∣

. N4s−4
∑

n1,n2≥0,max(〈n1〉,〈n2〉)&N

N min(N, 〈n1〉)
1

〈n1〉4s
1

〈n2〉2s

. N4s−4
∑

N1,N2:max(N1,N2)&N

N min(N,N1)N
1−4s
1 N1−2s

2

. N4s−4
∑

M&N

N3−4sM1−2s +N2M1−4s

. N−1,

which is again summable. When n2 = n3, we simply get that ΨN (n1−n2+n3, n1, n2, n3) =

0. Therefore, for µs-a.e. u0, we deduce that

GN,3(u0) = 4N4s−4
∑

n1,n2,n3≥0: nj are distinct

ΨN (n1 − n2 + n3, n1, n2, n3)

3∏

j=1

|û(nj)|
2 + o(1).

Therefore, we can anti-symmetrise further and order the nj . We obtain

GN + o(1)

= 8N4s−4
∑

n1>n2>n3≥0

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s
|gn1 |

2|gn2 |
2|gn3 |

2.

Note that here we neglected the term with ΨN (n2 − n1 + n3, n2, n1, n3), because in that

case we must either have that n3 & N , and so

E

∣∣∣8N4s−4
∑

n1>n2>n3&N

ΨN (n2 − n1 + n3, n2, n1, n3)

〈n1〉2s〈n2〉2s〈n3〉2s
|gn1 |

2|gn2 |
2|gn3 |

2
∣∣∣

. N4s−4
∑

N1,N2,N3&N

N2(N1N2N3)
1−2s

. N4s−4N2+3−6s . N1−2s,

which is summable in N . Otherwise, we have n3 ≪ N , so in order to have ΨN 6= 0 we

must have n2 < n1 ≤ n2 + n3 and ΨN (n2 − n1 + n3, n2, n1, n3) = φN (n1)
2n2

1 − φN (n2)
2n2

2,

in which case

E

∣∣∣8N4s−4
∑

n1>n2≫n3≥0

ΨN (n2 − n1 + n3, n2, n1, n3)

〈n1〉2s〈n2〉2s〈n3〉2s
|gn1 |

2|gn2 |
2|gn3 |

2
∣∣∣

. N4s−4
∑

N1,N2≈N≫N3

NN3N
1−2s
1 (N2N3)

1−2s

. N1−2s,
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which is again summable in N . We now apply a further decomposition to the expression

of GN,3. We write

GN,3,≤2 = 8N4s−4
∑

n1>n2>n3≥0

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s
|gn3 |

2,

GN,3,>2 = 8N4s−4
∑

n1>n2>n3≥0

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

×
(
|gn1 |

2|gn2 |
2 − 1

)
|gn3 |

2.

By the above, we have that

GN = GN,3,≤2 +GN,3,>2 + o(1)

as N → ∞. We now show that GN,3,>2 is a further error term. Recall that

E[
(
|gn1 |

2|gn2 |
2 − 1

)(
|gn′

1
|2|gn′

2
|2 − 1

)
] = 0

whenever n′
1 6= n1, n2 and n′

2 6= n1, n2. Therefore, from the inequality ab . a2 + b2, and

Lemma 4.3, we obtain

E[|GN,3,>2(u0)|
2]

. N8s−8
∑

n1

( ∑

n2,n3:
0<n3<n2<n1

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)2

+N8s−8
∑

n2

( ∑

n1,n3:
0<n3<n2<n1

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)2

+N8s−8
∑

n1

( ∑

n2,n3:
0<n3<n2<n1

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)

×
( ∑

n2,n3:
0<n3<n1<n2

ΨN (n2 − n1 + n3, n2, n1, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)

. N8s−8
∑

n1

( ∑

n2,n3:
0<n3<n2<n1

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)2

+N8s−8
∑

n2

( ∑

n1,n3:
0<n3<n2<n1

ΨN (n1 − n2 + n3, n1, n2, n3) + ΨN (n1 − n3 + n2, n1, n3, n2)

〈n1〉2s〈n2〉2s〈n3〉2s

)2

. N8s−8
∑

N1≥N2≥N3,N1&N

(
N1−4s

1 N1−4s
2 N2−4s

3 N2min(N,N2)
2
)
(N2 +N1)

. N8s−8
∑

N1≥N2≥N3,N1&N

N2−4s
1 N1−4s

2 N2−4s
3 N2 min(N,N2)

2

. N8s−8
∑

N2

N1−4s
2 N2max(N,N2)

2−4smin(N,N2)
2

. N8s−8N4−4s+max(3−4s,0) . N4s−4 +N−1,
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which is again summable in N . This shows that

GN = GN,3,≤2 + o(1)

as N → ∞. Therefore, in order to conclude (4.9), we just need to show that GN,3,≤2(u0) =

8(4s − 3)Is‖u0‖
2
L2 + o(1). For convenience, write

GN,3,≤2(u0) = 8
∑

n≥0

|û0(n)|
2AN (n), (4.12)

i.e.

AN (n) =
∑

n1>n2>n

[
N4s−4ΨN (n1 − n2 + n, n1, n2, n) + ΨN (n1 − n+ n2, n1, n, n2)

〈n1〉2s〈n2〉2s

]
.

Note that AN (n) is a quantity independent from u0. We first show that for every n ≥ 0,

lim
N→∞

AN (n) = (4s− 3)Is, (4.13)

and that Is > 0. We start by proving that, for every 0 < ε ≤ ε0(s) ≪ 1, as N → ∞ we

have

AN (n) = N4s−4
∑

N1+ε≥n1>n2≥N1−ε

ΨN (n1 + n2, n1, 0, n2) + ΨN (n1 − n2, n1, n2, 0)

n2s
1 n2s

2

+ oN (1).

(4.14)

Indeed, recalling the definition of ΨN in (4.6), by the mean value theorem, we have that

for N ≫ 〈n〉,

∣∣∣AN (n)−N4s−4
∑

N1+ε≥n1>n2≥N1−ε

ΨN (n1 + n2, n1, 0, n2) + ΨN (n1 − n2, n1, n2, 0)

n2s
1 n2s

2

∣∣∣

. N4s−4
∑

N1+ε≥n1>n2≥N1−ε

N
〈n〉

n2s
1 n2s

2

+N4s−4
∑

n1>N1+ε,n1>n2>n

N2
1|n2|&N

〈n1〉2s〈n2〉2s
+N4s−4

∑

n2<N1−ε,n1>n2>n

N〈n2〉1|n1|&N

〈n1〉2s〈n2〉2s

. 〈n〉N4s−3N (1−ε)(2−4s) +N2s−1N (1+ε)(1−2s) +N2s−2N (1−ε)(2−2s) = o(1)

as N → ∞, as long as 0 < ε ≪ 1. Now, let

h(x) = x2φ(x)2.

Recalling the definition of ΨN in (4.6), and by writing ΨN in terms of h, by (4.14) we have

AN (n) =
1

N2

∑

N1+ε≥n1>n2≥N1−ε

h
(
n1
N + n2

N

)
− 2h

(
n1
N

)
+ h
(
n1
N − n2

N

)

(n1
N )2s(n3

N )2s
+ oN (1),

which we can view as an (improper) Riemann sum, and so

lim
N→∞

AN (n) =

ˆ

x≥y≥0

h(x+ y)− 2h(x) + h(x− y)

x2sy2s
dxdy.
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Both the existence of the integral and convergence of the Riemann sums can be justified

by the fact h is smooth and compactly supported, and then using the double mean value

theorem:

|h(x+ y)− 2h(x) + h(x− y)|

x2sy2s

. ‖h′′‖L∞x−2sy2−2s
10≤y≤x≤4 + ‖h‖L∞x−2sy−2s

11≤y≤x,

which is integrable. Together with the analogous estimates for h′, one can easily show

convergence of the Riemann sum.

We now manipulate this integral in order to show its relationship with Is, and verify that

Is > 0. Using the fact h is supported away from the origin, by change of variable, we have

lim
ε↓0

(ˆ

x≥y≥εx

h(x+ y)− 2h(x) + h(x− y)

x2sy2s
dxdy

)

= lim
ε↓0

(ˆ
x≥0

1≥u≥ε

[h(x(1 + u))− 2h(x) + h(x(1 − u))]x1−4su−2sdxdu
)

= lim
ε↓0

(ˆ
x≥0

1≥u≥ε

h(x(1 + u))x1−4su−2sdxdu− 2

ˆ

x≥0
1≥u≥ε

h(x)x1−4su−2sdxdu

+

ˆ

x≥0
1≥u≥ε

h(x(1 − u))x1−4su−2sdxdu
)

=
( ˆ ∞

0
h(x)x1−4sdx

)
lim
ε↓0

(ˆ 1

ε
u−2s(1 + u)4s−2du− 2

ˆ 1

ε
u−2sdu+

ˆ 1

ε
u−2s(1− u)4s−2du

)

=
( ˆ ∞

0
h(x)x1−4sdx

)
lim
ε↓0

(ˆ 1

ε
u−2s

[
(1 + u)4s−2 − 2 + (1− u)4s−2

]
du
)
.

We note that the final integral converges since in a neighbourhood of 0,

u−2s(1 + u)4s−2 − 2 + (1− u)4s−2 . u2−2s,

which is integrable. Moreover, by using the fundamental theorem of calculus twice, we get

that
ˆ 1

0
u−2s

[
(1 + u)4s−2 − 2 + (1− u)4s−2

]
du

= (4s− 3)(4s − 2)
( ˆ 1

0

ˆ 1

0

ˆ 1

0
u2−2s(1 − u+ (σ + τ)u)4s−4dσdτdu

)
,

and so (4.13) follows. The fact that Is > 0 follows from the fact that on the interval [0, 1]3,

we have that 1− u+ (σ + τ)u ≥ 0, and h ≥ 0 as well.

In order to conclude the proof, we just need to show that we can swap limit and sum-

mation in (4.12). By Lemma 4.3, we have that

|A(n)| . N4s−4
∑

n1>n2

N min(N,n2)1n1&N

〈n1〉2s〈n2〉2s

. N4s−4N3−2sN1−2s . 1.
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Therefore, for µ-a.e. u0, by dominated convergence,

lim
N→∞

GN (u0) = lim
N→∞

GN,3,≤2(u0) = 8 lim
N→∞

∑

n≥0

|û0(n)|
2AN (n) = 8(4s − 3)Is‖u0‖

2
L2 .

�

4.3. Paralinear decomposition of the flow. We now need to justify the fact that (for

short times) we can approximate ‖PNΦt(u0)‖
2
Ḣ1 by its second order expansion in time. In

all of the following we let 1
2 < s < 1 and recall our choice of Xs as Xs = B

s− 1
2
,+

p,∞ with

p > min
{
100, 1

s− 1
2

}
. We also let

BR :=
{
u0 ∈ Xs

∣∣∣‖u0‖Xs ≤ R
}
.

The first step to showing the validity of the expansion (4.2) is to linearise (1.1) at high-

frequency. In particular, note the following (para-product) decomposition:

i∂tu = Π(|u|2u) =
∑

N1,N2,N3

Π(PN1uPN2uPN3u)

= 2
∑

N1,N2≪N3

Π(PN1uPN2uPN3u) + 2
∑

N1≪N3
N2∼N3

Π(PN1uPN2uPN3u)

+
∑

N1∼N3
N2≪N3

Π(PN1uPN2uPN3u) +
∑

N1,N2∼N3

Π(PN1uPN2uPN3u). (4.15)

This first term will serve as our linearisation around high-frequency. For ease of notation,

we introduce the trilinear para-product operator describing this Low-Low-High interaction:

ΠL,L,H(u, v, w) :=
∑

N1,N2≪N3

Π(PN1uPN2vPN3w).

Now, consider the system of equations




i∂tu = Π(|u|2u)

i∂tX = 2ΠL,L,H(u, u,X),

Y = u−X,

(u,X, Y )|t=0 = (u0, u0, 0).

(4.16)

Namely, u = X + Y represents the solution to (1.1), while X flows under the linearised

Low-Low-High interaction. The main advantage of this decomposition is that the term

X captures the main nonlinear obejct with regularity s − 1
2 , while Y will be a smoother

remainder. In particular, we have the following.

Proposition 4.6. For all R ≥ 1, there exists TR > 0 such that for all u0 ∈ BR, there exists

a unique triple

(u,X, Y ) ∈ C2
(
[−TR, TR];Xs ×Xs ×B2s−1,+

p/2,∞

)

that satisfies (4.16) with

‖(u,X, Y )‖
C2

(
[−TR,TR];B

s−1
2 ,+

p,∞ ×B
s− 1

2 ,+
p,∞ ×B2s−1,+

p/2,∞

) ≤ C(1 +R5) (4.17)

for some universal constant C > 0.
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Proof. First, consider the following multilinear bound, for N dyadic:

‖PN

(
ΠL,L,H(u, v, w)

)
‖Lq .

∑

N1,N2≪N3

‖PN

(
PN1uPN2vPN3w

)
‖Lq

.
∑

N1,N2≪N3
N3≈N

‖PN1u‖L∞‖PN2v‖L∞‖PN3w‖Lq

. ‖u‖
B

s− 1
2

p,∞

‖v‖
B

s− 1
2

p,∞

∑

N3≈N

‖PN3w‖Lq ,

where we just used Hölder’s inequality and the embedding B
s− 1

2
p,∞ →֒ B0

∞,1. In particular,

we obtain that for every σ ∈ R, q ≥ 1,

‖ΠL,L,H(u, v, w)‖Bσ,+
q,∞

. ‖u‖
B

s− 1
2

p,∞

‖v‖
B

s− 1
2

p,∞

‖w‖Bσ,+
q,∞

. (4.18)

Moreover, by (4.15), for every q > 1
2s−1 , we have

‖PN

(
Π(|u|2u)− 2ΠL,L,H(u, u, u)

)
‖Lq

=
∥∥∥PN

(
2
∑

N1≪N3
N2∼N3

Π(PN1uPN2uPN3u) +
∑

N1∼N3
N2≪N3

Π(PN1uPN2uPN3u) +
∑

N1,N2∼N3

Π(PN1uPN2uPN3u)
)∥∥∥

. ‖u‖2
B

s− 1
2 ,+

2q,∞

(∑

N1≪N3
N2∼N3&N

||PN1u||L∞(N2N3)
1
2
−s

+
∑

N1∼N3&N
N2≪N3

||PN2u||L∞(N1N3)
1
2
−s +

∑

N1∼N2∼N3&N

||PN1u||L∞(N2N3)
1
2
−s
)

. N1−2s‖u‖3
B

s− 1
2 ,+

2q,∞

,

where we used Hölder’s inequality ‖fgh‖Lq ≤ ‖f‖L∞‖g‖L2q‖h‖L2q , and the embedding

B
s− 1

2
,+

2q,∞ →֒ B0
∞,1. We obtain that

‖PN

(
Π(|u|2u)− 2ΠL,L,H(u, u, u)

)
‖B2s−1,+

q,∞
. ‖u‖3

B
s− 1

2 ,+

2q,∞

. (4.19)

Now, rewrite the equations for X,Y in (4.16) as

i∂tX = 2ΠL,L,H(u, u,X),

i∂tY = Π(|u|2u)− 2ΠL,L,H(u, u, u) + 2ΠL,L,H(u, u, Y ).

Then, by a standard Banach fixed point argument, from the estimates (4.18),(4.19), we

obtain that there exists a unique couple (X,Y ) ∈ C([−TR, TR], B
s− 1

2
,+

p,∞ ×B2s−1,+
p/2,∞ ), while the

existence of u follows from Proposition 2.4. The fact that (X,Y ) ∈ C2([−TR, TR], B
s− 1

2
,+

p,∞ ×

B2s−1,+
p/2,∞ ) follows from similar considerations to the ones in Proposition 2.4, together with

(4.18) and the analogous of (4.19) for the difference

∂2
t

(
Π(|u|2u)− 2ΠL,L,H(u, u, u)

)
.
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The reason of the power R5 in the RHS of (4.17) is the fact that ∂2
t u|t=0 is a quintic

expression in R. We omit the details. �

Recall that, in view of (4.2), Proposition 4.4 and Proposition 4.5, our goal is showing

that, in an appropriate sense,

‖PNΦt(u0))‖
2
Ḣ1 − ‖PNu0‖

2
Ḣ1

=
t2

2

d2

dt2
‖PNu0‖

2
Ḣ1

∣∣
t=0

+R(t, u0),

with

|R(t, u0)| ≤ εt2N4−4s + o(N4−4s)

for t small enough (depending both on ε and u0). Recalling the definition of QN in (4.5)

and of FN , GN in (4.3), (4.4) respectively, such a statement reduces to showing that, for

every fixed ε > 0, and for every t small enough (depending on u0, ε), we have

∣∣N4s−4QN (u(t), u(t), u(t), u(t)) − FN (u0)− tGN (u0)
∣∣ ≤ εt.

In order to see this, one can write u(t) as u(t) = X(t) + Y (t), and expand the terms in

the expression for QN by using quadrilinearity. The next lemma essentially states that the

estimate above holds whenever the expansion of Q contains at least one term in Y that

does not appear in the lowest frequency.

Lemma 4.7. Let N1, N2, N3, N4 be dyadic numbers, and let f1, . . . , f4 ∈ L4
+(T). We have

that

∣∣QN (PN1f1, PN2f2, PN3f3, PN4f4)
∣∣ . N min(N,N (3))

4∏

j=1

‖fj‖L4 , (4.20)

where we recall that N (1) ≥ N (2) ≥ N (3) ≥ N (4) is a reordering of N1, . . . , N4.

Proof. Recall the formula (4.6) for the multiplier ΨN (n) appearing in (4.5),

ΨN (n) = n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2 − n2
4φN (n4)

2,

where we omitted the indicator of nonnegative frequencies due to the assumption fj ∈ L4
+.

Exploiting the symmetries of ΨN , we can assume without loss of generality that N1 ∼

N2 & N , and N3, N4 . N1. Under the condition n1 − n2 + n3 − n4 = 0, and nj ∼ Nj , we

can decompose ΨN as

ΨN (n) = N(n4 − n3)
(n2

1φN (n1)
2 − n2

2φN (n2)
2

N(n1 − n2)

4∏

j=1

φ.N (nj)
)
+ n2

3φN (n3)
2 − n2

4φN (n4)
2

=: N(n4 − n3)hN (n1, n2, n3, n4) + n2
3φN (n3)

2 − n2
4φN (n4)

2.
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It is fairly easy to check that hN (x1, x2, x3, x4) = h(x1
N , x2

N , x3
N , x4

N ), and h is a smooth,

compactly supported function of x, y. Therefore, by Proposition 2.2, we obtain
∣∣QN (PN1f1, PN2f2, PN3f3, PN4f4)

∣∣

≤
∣∣∣

∑

n1−n2+n3−n4=0

NhN (n1, n2, n3, n4)(n4 − n3)P̂N1f1(n1)P̂N2f2(n2)P̂N3f3(n3)P̂N4f4(n4)
∣∣∣

+
∣∣∣

∑

n1−n2+n3−n4=0

n2
3φN (n3)

2P̂N1f1(n1)P̂N2f2(n2)P̂N3f3(n3)P̂N4f4(n4)
∣∣∣

+
∣∣∣

∑

n1−n2+n3−n4=0

n2
4φN (n4)

2P̂N1f1(n1)P̂N2f2(n2)P̂N3f3(n3)P̂N4f4(n4)
∣∣∣

.
(
N‖PN1f1‖L4‖PN2f2‖L4(‖(P.NPN3f3)

′‖L4‖PN4f4‖L4 + ‖PN3f3‖L4‖(P.NPN4f4)
′‖L4)

)

+ ‖PN1f1‖L4‖PN2f2‖L4‖(PNPN3f3)
′′‖L4‖PN4f4‖L4

+ ‖PN1f1‖L4‖PN2f2‖L4‖PN3f3‖L4‖(PNPN4f4)
′′‖L4

)

.

4∏

j=1

‖fj‖L4

(
N(min(N,N3) + min(N,N4)) + min(N,N3)

2 +min(N,N4)
2
)

. N min(N,N (3))

4∏

j=1

‖fj‖L4 .

�

In view of the previous lemma and of Proposition 4.4, we are left with estimating the

difference ∣∣N4s−4QN (X(t),X(t),X(t), u(t)) − tGN (u0)
∣∣

under the extra assumption that the terms in u(t) in the expression above appear at the

lowest frequency. However, one can check that for generic f1, . . . , f4 ∈ B
s− 1

2
,+

p,∞ , one cannot

expect an estimate which is any better than

QN (f1, f2, f3, f4) . N
7
2
−3s.

Therefore, in order to conclude, we need to exploit the random oscillations of X(t) in order

to show that the expression

QN (X(t),X(t),X(t), u(t))

has the correct growth in the parameter N (and that has the correct dependency in the

parameter t). In order to achieve this, we will need some further reductions. As it turns

out, it is actually convenient to treat Y (t) together with further error terms. In particular,

the goal of this subsection is to show the following.

Proposition 4.8. For u0 ∈ Xs and N dyadic, denote

u0,N =
∑

M≪N

PMu0 = P≪Nu0.

Let uN (t) = Φt(u0,N ). Then there exists T0 = T0(‖u0‖Xs) > 0 such that for every N dyadic,

PNu(t) = PNΠ(XN )(t) + vN (t),



42 J. COE AND L. TOLOMEO

where

XN (t) = exp
(
− 2i

ˆ t

0
|P≪NuN |2(τ)dτ

)
P≈Nu0, (4.21)

and u, vN satisfy:
‖u(t)‖

C2
(
[−T0,T0];Xs

) . 1 + ‖u0‖
5
Xs

,

‖vN (t)‖
C2
(
[−T0,T0];L

p
3

) . (1 + ‖u0‖
5
Xs

)N1−2s.
(4.22)

We defer the proof of this proposition to the end of this subsection, since we will need a

number of preliminary lemmas.

Firstly, we have the following bound on the difference of solutions u(t) and uN (t).

Lemma 4.9. For every u0 ∈ Xs, there exists T0 = T0(‖u0‖Xs) > 0 such that for every N

dyadic,

‖u(t)− uN (t)‖
C2

(
[−TR,TR];B0,+

p,1

) . N
1
2
−s‖u0‖Xs(1 + ‖u0‖

4
Xs

),

where p > max(100, 1
s− 1

2

) is the same parameter that appears in the definition (1.8) of Xs.

Proof. Let R = 1 + ‖u0‖Xs . Note that, by definition,

‖u0,N‖Xs . ‖u0‖Xs .

Therefore, by Proposition 2.4 we may pick C, T̃R > 0 such that ‖u(t)‖
C1

(
[−T̃R,T̃R];Xs

) ≤

CR5 and ‖uN (t)‖
C1

(
[−T̃R,T̃R];Xs

) ≤ CR5 for all N . We now show a product estimate on

Besov spaces (for functions not necessarily supported on non-negative frequencies). For

every 0 < ε ≪ s− 1
2 −

1
p , we have that

‖fgh‖B0
p,1

=
∑

M

‖PM (fgh)‖Lp

≤
∑

M

∑

N1,N2,N3

‖PM (PN1fPN2gPN3h)‖Lp

. ‖g‖Bε
∞,∞

‖h‖Bε
∞,∞

∑

M

( ∑

N1,N2,N3

N1.max(N2,N3)
M.max(N2,N3)

+
∑

N1,N2,N3

N1≫max(N2,N3)
N1∼M

)
‖PN1f‖LpN−ε

2 N−ε
3

. ‖g‖
B

s− 1
2

p,∞

‖h‖
B

s− 1
2

p,∞

(∑

M

M−ε‖f‖B0
p,1

+
∑

M

∑

N1∼M

‖PN1f‖Lp

)

. ‖f‖B0
p,1
‖g‖

B
s− 1

2
p,∞

‖h‖
B

s− 1
2

p,∞

.

With this, we see for |t| ≤ T̃R:

‖u(t)− uN (t)‖B0
p,1

≤ ‖u0 − u0,N‖B0
p,1

+

ˆ t

0
‖Π(|u|2u(τ)− |uN |2uN (τ))‖B0

p,1
dτ

. RN
1
2
−s +

ˆ t

0
‖(u− uN )(u+ uN )u‖B0

p,1
+ ‖(u− uN )u2N‖B0

p,1
dτ

. ‖u0‖XsN
1
2
−s +R5|t| sup

|τ |≤|t|
‖u(τ)− uN (τ)‖B0

p,1
,
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and so it follows that picking a T0 = T0(R) > 0 small enough, we obtain

‖u(t)− uN (t)‖
C0

(
[−T0,T0];B

0,+
p,1

) . N
1
2
−s‖u0‖Xs .

The analogous C2 bound follows by taking derivatives and a similar argument. �

Lemma 4.10 (Commutator estimates). For N dyadic, consider the following trilinear

maps

C1
N [f, g, h] = PNΠ(P≪N (f)P≪N (g)h)− P≪N (f)P≪N (g)PNΠ(h)

C2
N [f, g, h] = PNΠ

(
ΠL,L,H(f, g, h) − P≪N (f)P≪N (g)h

)

For j = 1, 2, we have the following estimate

‖Cj
N [f, g, h]‖

L
p
3
. N1−2s‖f‖

B
s− 1

2
p,∞

‖g‖
B

s− 1
2

p,∞

‖h‖
B

s− 1
2

p,∞

,

which holds for all f, g, h not-necessarily supported on non-negative frequencies.

Proof. We compute for n ∈ Z

(C1
N [f, g, h]) ̂ (n)

=
∑

n1,n2,n3∈Z
n1−n2+n3=n

[1N0(n)φN (n)− 1N0(n3)φN (n3)]P̂≪Nf(n1)P̂≪Ng(n2)ĥ(n3)

= 1N0(n)
∑

n1,n2,n3∈Z
n1−n2+n3=n

[φN (n)− φN (n3)]P̂≪Nf(n1)P̂≪Ng(n2)Π̂P≈Nh(n3)

=
1N0(n)

N

∑

n1,n2,n3∈Z
n1−n2+n3=n

(n1 − n2)

ˆ 1

0
φ′
(n3 + σ(n1 − n2)

N

)
dσP̂≪Nf(n1)P̂≪Ng(n2)Π̂P≈Nh(n3)

= − i
1N0(n)

N

∑

n1,n2,n3∈Z
n1−n2+n3=n

mN (n1, n2, n3) ̂(P≪Nf)′(n1)P̂≪Ng(n2)Π̂P≈Nh(n3)

+ i
1N0(n)

N

∑

n1,n2,n3∈Z
n1−n2+n3=n

mN (n1, n2, n3)P̂≪Nf(n1) ̂(P≪Ng)′(n2)Π̂P≈Nh(n3),

where mN is the Fourier multiplier given by

mN (ξ1, ξ2, ξ3) =

ˆ 1

0
φ′
(ξ3 + σ(ξ1 − ξ2)

N

)
dσ

3∏

j=1

( ∑

M≤100N

φM (ξj)
)
,

We note that themN are smooth and bounded on R3 (uniformly inN), and are supported on

frequencies |ξmax| . N . Using the fact
(∑

M≤100N φM (x)
)
is supported on (−200N, 200N),

we note that for all multi-indices α,

|∂αmN (ξ1, ξ2, ξ3)| . N−|α|
1{|ξmax|.N} . ‖(ξ1, ξ2, ξ3)‖

−α,
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and so the mN are Coifmann-Meyer multipliers, with norms uniform in N . So by Proposi-

tion 2.2, we have that uniform in N ,

‖C1
N [f, g, h]‖

L
p
3
.

1

N
(‖P≪Nf ′‖Lp‖P≪Ng‖Lp + ‖P≪Nf‖Lp‖P≪Ng′‖Lp)‖ΠP≈Nh‖Lp

. N
1
2
−sN−1

∑

N1≪N

N1N
1
2
−s

1 ‖f‖
B

s− 1
2

p,∞

‖g‖
B

s− 1
2

p,∞

‖h‖
B

s− 1
2

p,∞

. N1−2s‖f‖
B

s− 1
2

p,∞

‖g‖
B

s− 1
2

p,∞

‖h‖
B

s− 1
2

p,∞

.

The estimate for C2
N is simpler, noting that

C2
N (f, g, h) = PNΠ

( ∑

M≈N

(P≪M (f)P≪M (g)PMh)− P≪N (f)P≪N (g)h

)

= PNΠ

( ∑

M≈N

(
P≪M (f)P≪M (g)− P≪N (f)P≪N (g)

)
PMh

)

= PNΠ

( ∑

M≈N

(
(P≪M (f)− P≪N (f))P≪M (g)

+ P≪N (f)
(
P≪M (g) − P≪N (g)

))
PMh

)
,

from which the estimate follows. �

Proof of Proposition 4.8. Let R = 1+‖u0‖Xs . Recall the decomposition u = X+Y , where

(u,X, Y ) solve (4.16). By Proposition 4.6 and Lemma 4.9, we may pick a constant C > 0

and T0 = T0(R) > 0 such that

‖X(t)‖
C2

(
[−TR,TR];Xs

) ≤ CR5,

‖Y (t)‖
C2

(
[−TR,TR];B2s−1,+

p/2,∞

) ≤ CR5,

‖uN (t)‖
C2

(
[−TR,TR];Xs

) ≤ CR5,

‖u(t)− uN (t)‖
C2

(
[−TR,TR];B0,+

p,1

) ≤ CN
1
2
−sR5,

(4.23)

for all N dyadic. We also note that XN as defined in (4.21) solves the equation
{
i∂tXN = 2|P≪NuN |2XN ,

XN (0) = P≈Nu0,

for which one can easily prove the analogous of Proposition 2.4. Therefore, up to making

T0 smaller, we also have

‖XN (t)‖
C2

(
[−T0,T0];Xs

) ≤ CR5 (4.24)

for all N dyadic. Then we decompose

vN = PNΠ(X) − PNΠ(XN ) + PNY.
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From (4.23), we get

‖PNY (t)‖
C2

(
[−T0,T0];L

p
3

) . R5N1−2s.

and so it suffices to bound ṽN = PNΠ(X −XN ). We compute

ṽN

= −2i

ˆ t

0
PNΠ(ΠL,L,H(u, u,X))(τ) − PNΠ(|P≪NuN |2XN )(τ)dτ

= −2i

ˆ t

0
|P≪NuN |2ṽNdτ

− 2i

ˆ t

0
PNΠ(|P≪NuN |2(X −XN ))− |P≪NuN |2PNΠ(X −XN )dτ

− 2i

ˆ t

0
PNΠ(ΠL,L,H(u, u,X) − |P≪NuN |2X)dτ.

= −2i

ˆ t

0

(
|P≪NuN |2ṽNdτ + C1

N (uN , uN ,X −XN )

+ PNΠ(ΠL,L,H(u, u,X) − |P≪NuN |2X)
)
dτ.

First note that, by (4.23), for |t| ≤ T0,

∣∣∣
∣∣∣
ˆ t

0
|P≪NuN |2ṽNdτ

∣∣∣
∣∣∣
L

p
3
. R10T0‖ṽN‖

C0

(
[−T0,T0];L

p
3

).

From the commutator estimate in Lemma 4.10, and (4.23), (4.24), we see that

∣∣∣
∣∣∣
ˆ t

0
C1
N (uN , uN ,X −XN )dτ

∣∣∣
∣∣∣
C2

(
[−T0,T0];L

p
3

) . R15T0N
1−2s.

Next we compute

PNΠ(ΠL,L,H(u, u,X) − |P≪NuN |2X)

= PNΠ(ΠL,L,H(u, u,X) −ΠL,L,H(uN , uN ,X))

+ PNΠ(ΠL,L,H(uN , uN ,X)− |P≪NuN |2X)

= PNΠ(ΠL,L,H(u, u,X) −ΠL,L,H(uN , uN ,X)) + C2
N (uN , uN ,X).

Again from Lemma 4.10, (4.23), and (4.24), we have

∥∥∥
ˆ t

0
C2
N (uN , uN ,X)dτ‖

C2

(
[−T0,T0];L

p
3

) . R15T0N
1−2s
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By (4.23), and Lemma 4.9, we have that

‖PNΠ(ΠL,L,H(u, u,X) −ΠL,L,H(uN , uN ,X))‖
C1

(
[−T0,T0];L

p
3

)

.
∑

N1,N2≪N3
N3∼N

‖(PN1(u− uN )PN2(uN ) + PN2(u− uN )PN1u)PN3X‖
C1

(
[−T0,T0];L

p
3

)

. R10N
1
2
−s‖u(t)− uN (t)‖

C1

(
[−T0,T0];B0

p,1

)

. R10N1−2s.

Therefore
∣∣∣
∣∣∣
ˆ t

0
PNΠ(ΠL,L,H(u, u,X) − |P≪NuN |2X)dτ

∣∣∣
∣∣∣
C2

(
[−T0,T0];L

p
3

) . R15T0N
1−2s.

Putting all this together we can deduce that, up to making T0 even smaller (but depending

only on R),

‖ṽN‖
C2

(
[−T0,T0];L

p
3

) . R5N1−2s,

and so

‖vN‖
C2

(
[−T0,T0];L

p
3

) . R5N1−2s

as well. �

4.4. Estimates for QN . We now verify that the decomposition u(t) = PNΠ(XN )(t)+vN (t)

given by Proposition 4.8 allows us to estimate QN (u(t), u(t), u(t), u(t)) appropriately. For

ease of notation, let

EN (t) = exp
(
− 2i

ˆ t

0
|P≪NuN |2(τ)dτ

)
,

and

EN (t) = P≪N (EN (t)).

We will also define, for M,M ′ dyadic,

X+
M = PMΠ(XM ) = PMΠ

(
EM (t)P≈Mu0

)
,

XM,M ′ = EM ′(t)PMu0 = P≪M ′(EM ′(t))PMu0.

We have the following estimates.

Lemma 4.11. Let M ′ ≤ M dyadic, u0 ∈ Xs, and let T0 = T0(‖u0‖Xs) be as in Proposition

4.6. Then it holds

‖X+
M −XM,M ′‖C2([−T0,T0],L4) . M

1
2
−s(M ′)

1
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs . (4.25)

Proof. We write

X+
M −XM,M ′ = PMΠ

(
EM (t)P≈Mu0

)
− P≪M ′(EM ′(t))PMu0

= PMΠ
(
(EM (t)− EM ′(t))P≈Mu0

)
(I)

+ PMΠ
(
(EM ′(t)− P≪M ′EM ′(t))P≈Mu0

)
(II)

+ PM

(
P≪M ′EM ′(t)P≈Mu0

)
− P≪M ′EM ′(t)PMP≈Mu0, (III)
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where in the last line we used that Π(P≪MEM ′(t)P≈Mu0) = P≪MEM ′(t)P≈Mu0 and that

PMP≈M = PM .

To estimate (I), from Lemma 4.9, we deduce that

‖EM (t)− EM ′(t)‖C2([−T0,T0],L8) . (M ′)
1
2
−s(1 + ‖u0‖Xs)

4,

from which by Hölder’s inequality,

‖(I)‖C2([−T0,T0],L4) . ‖EM (t)− EM ′(t)‖C2([−T0,T0],L8)‖PMu0‖L8

. M
1
2
−s(M ′)

1
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs .

For (II), note that EM ′(t) solves the equation

i∂tEM ′(t) = 2|P≪M ′uM ′ |2EM ′(t),

from which we immediately deduce that

‖EM ′‖C2([−T0,T0],Xs) . 1 + ‖uM ′‖C0([−T0,T0],Xs)‖uM ′‖C1([−T0,T0],Xs)

. (1 + ‖u0‖
4
Xs

) (4.26)

Therefore, we obtain that

‖EM ′(t)− P≪M ′EM ′(t)‖C2([−T0,T0],L8) .
∑

L&M ′

‖PLEM ′‖C2([−T0,T0],L8)

.
∑

L&M ′

L
1
2
−s‖EM ′‖C2([−T0,T0],Xs)

. (M ′)
1
2
−s(1 + ‖u0‖Xs)

4.

Therefore,

‖(II)‖C2([−T0,T0],L4) . ‖EM ′(t)− P≪MEM ′(t)‖C2([−T0,T0],L8)‖PMu0‖L8

. M
1
2
−s(M ′)

1
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs .

To estimate (III), consider the multiplier

mM(n1, n2) = M
(φM (n1 + n2)− φM (n1))

n2
φ.M (n1)φ.M (n2).

It is easy to check that this is a Coifman-Meyer multiplier with ‖mM‖CM,2 . 1. In par-

ticular, we deduce that for every f, g : T → C supported on frequencies |n| . M , we

have

‖PM (fg)− fPM(g)‖L4 . M−1‖f ′‖L8‖g‖L8 .
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Therefore,

‖(III)‖C2([−T0,T0],L4) .
∑

L≪M ′

M−1‖∂xPLEM ′‖C2([−T0,T0],L8)‖P≈Mu0‖L8

.
∑

L≪M ′

L

M
‖PLEM ′‖C2([−T0,T0],L8)‖P≈Mu0‖L8

.
∑

L≪M ′

L

M
L

1
2
−sM

1
2
−s‖EM ′‖C2([−T0,T0],Xs)‖u0‖Xs

. (M ′)
3
2
−sM− 1

2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs

. M
1
2
−s(M ′)

1
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs .

�

Lemma 4.12. Let M ′ ≤ M dyadic, u0 ∈ Xs, and let T0 = T0(‖u0‖Xs) be as in Proposition

4.6. Then it holds

‖∂2
xP

2
N (XM,M ′)−EM ′(t)∂

2
xP

2
NPMu0‖C2([−T0,T0],L4) . N

3
2
−s(M ′)

3
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs .

(4.27)

Proof. Recall that

XM,M ′ = EM ′(t)PMu0 = P≪M ′(EM ′(t))PMu0.

Moreover, as in the previous proof, we have that (see (4.26))

‖EM ′‖C2([−T0,T0],Xs) . (1 + ‖u0‖
4
Xs

).

For f, g smooth, it is easy to check that the bilinear map

∂2
xP

2
N ((P≪4Mf)g)− P≪4Mf · ∂2

xP
2
N (g)

is given by the multiplier

cM (n1, n2) = (n2
1φN (n1)

2 − (n1 + n2)
2φN (n1 + n2)

2)φ≪4M (n2)

= Mn2 · φ≪4M (n2)
n2
1(φN (n1)

2 − φN (n1 + n2)
2)

Mn2

− (2n1n2 + n2
2)φN (n1 + n2)

2φ≪4M (n2).

Via a scaling argument, it is easy to check that for N ∼ M , we have

∥∥∥φ≪4M (n2)
n2
1(φN (n1)

2 − φN (n1 + n2)
2)

Mn2

∥∥∥
CM,2

. 1.

Therefore, by Coifman-Meyer’s theorem, we obtain that for M ∼ N ,

‖∂2
xP

2
N ((P≪4Mf)g)− P≪4Mf · ∂2

xP
2
N (g)‖L4

. M‖f ′‖L8‖g‖L8 + ‖P 2
N ((P≪4Mf ′)g′)‖L4 + ‖P 2

N ((P≪4Mf ′′)g)‖L4

. N‖f ′‖L8‖g‖L8 + ‖f ′‖L8‖g′‖L8 + ‖f ′′‖L8‖g‖L8 .

We now apply this to f = ∂k
t PLEM ′(t) for k ∈ {0, 1, 2} and L ≪ M ′, and g = PMu0. Note

that when M 6≈ N , the LHS of (4.27) is equal to 0. Therefore, we can assume that M ≈ N ,
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and obtain

‖∂2
xP

2
NXM,M ′ − EM ′(t)∂

2
xP

2
NPMu0‖C2([−T0,T0],L4)

.
∑

L≪M ′

(ML+ L2)‖PLEM ′(t)‖C2([−T0,T0],L4)‖PMu0‖L4

.
∑

L≪M ′

ML · L
1
2
−sM

1
2
−s‖EM ′(t)‖C2([−T0,T0],Xs)‖u0‖Xs

. N
3
2
−s(M ′)

3
2
−s(1 + ‖u0‖Xs)

4‖u0‖Xs

�

The previous deterministic estimates allow us to isolate the “diverging” part of QN for

general u0 ∈ Xs.
9 For ease of notation we introduce the conjugation relation

cj(z) =

{
z, for j even,

z, for j odd.

Lemma 4.13 (Decoupling of QN ). Let u0 ∈ Xs, and let T0 = T0(‖u0‖Xs) be as in Propo-

sition 4.6. For N1, N2, N3 dyadic, define

YN1,N2,N3(x)

:=
i

2

∑

n1,n2,n3∈Z

(n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2)

3∏

j=1

φNj (nj)cj(û0(nj))e
i(n1−n2+n3)x.

(4.28)

Then, for all N dyadic, we have

∣∣∣
∣∣∣QN (u, u, u, u)(t)

− 4
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)
∣∣∣
∣∣∣
C2([−T0,T0])

. N4−4s(1 + ‖u0‖
20
Xs

),

where we recall that N (1) ≥ N (2) ≥ N (3) ≥ N (4) is a reordering of N1, . . . , N4.
10

9As we will see soon, this is an improper name, since the “diverging” part of QN will actually be of
smaller order as a power of N . Nevertheless, for general functions u0 ∈ Xs, this is not the case, and the
“diverging” part can actually be much bigger than the other terms.

10It is actually possible to improve the power in the RHS to (1 + ‖u0‖
8
Xs

). However, this is inessential

to the argument of this paper.
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Proof. By symmetry, we decompose

QN (u, u, u, u)

= 4
∑

N1,N2,N3≫N4
N≫N4

QN (PN1u, PN2u, PN3u, PN4u)

+
∑

N1,N2,N3,N4

min(N,N(3)).N(4)

QN (PN1u, PN2u, PN3u, PN4u)

= 4
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)

+ 4
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

(
QN (XN1,N(3) ,XN2,N(3) ,XN3,N(3) , PN4umin(N,N(3)))

−

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)
)

(I)

+ 4
∑

N1,N2,N3≫N4
N≫N4

(
QN (X+

N1
,X+

N2
,X+

N3
, PN4umin(N,N(3)))

−QN (XN1,N(3) ,XN2,N(3) ,XN3,N(3) , PN4umin(N,N(3)))
)

(II)

+ 4
∑

N1,N2,N3≫N4
N≫N4

(
QN (PN1u, PN2u, PN3u, PN4u)

−QN (X+
N1

,X+
N2

,X+
N3

, PN4umin(N,N(3)))
)

(III)

+
∑

N1,N2,N3,N4

min(N,N(3)).N(4)

QN (PN1u, PN2u, PN3u, PN4u). (IV)

Let T0 = T0(R) be as in Proposition 4.8. From (4.20) and (4.22), we have that

‖IV‖C2([−T0,T0])

.
∑

N1,N2,N3,N4

min(N,N(3)).N(4)

N(1)∼N(2)&N

N min(N,N (3))
4∏

j=1

N
1
2
−s

j ‖u(t)‖4
C2([−T0,T0],B

s−1
2 ,+

4,∞ )

. N
∑

N1,N2,N3,N4

min(N,N(3)).N(4)

N(1)∼N(2)&N

min(N,N (3))(N (1))
1
2
−s(N (2))

1
2
−s(N (3))

1
2
−s(N (4))

1
2
−s(1 + ‖u0‖

20
Xs

)

. N
∑

N(3)≥N(4)

min(N,N(3)).N(4)

min(N,N (3))max(N,N (3))1−2s(N (3))
1
2
−s(N (4))

1
2
−s(1 + ‖u0‖

20
Xs

)

. ‖u0‖
4
Xs

(
N2−2s

∑

N(3)∼N(4).N

(N (3))
3
2
−s(N (4))

1
2
−s +N2

∑

N(3)&N(4)&N

(N (3))
3
2
−3s(N (4))

1
2
−s
)

. (N2−2s +N4−4s)(1 + ‖u0‖
20
Xs

) . N4−4s(1 + ‖u0‖
20
Xs

).
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In order to estimate (III), for j = 1, 2, 3, decompose PNju(t) = X+
Nj

+ vNj (t), as in Propo-

sition 4.8. Recalling that

‖vNj (t)‖C2([−T0,T0],L
p
3 )

. N1−2s‖u0‖Xs ,

and that p
3 ≥ 4, by (4.20) and Lemma 4.9 we obtain

‖(III)‖C2([−T0,T0])

.
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N min(N,N (3))
3
2
−s(N (1))

1
2
−s(N (2))

1
2
−s(N (3))

1
2
−s(N (4))

1
2
−s(1 + ‖u0‖

20
Xs

)

.
∑

N(1)∼N(2)&N

(N (1))
1
2
−s(N (2))

1
2
−sN3−2s(1 + ‖u0‖

20
Xs

)

. N4−4s(1 + ‖u0‖
20
Xs

).

For estimating (II), we proceed similarly, using (4.25) in lieu of the estimate on vN . Using

(4.20) once again, we obtain

‖(II)‖C2([−T0,T0])

= 4
∥∥∥

∑

N1,N2,N3≫N4
N≫N4

(
QN (X+

N1
,X+

N2
,X+

N3
, PN4umin(N,N(3)))

−QN (P≈N1XN1,N(3) , P≈N2XN2,N(3) , P≈N3XN3,N(3) , PN4umin(N,N(3)))
)∥∥∥

C2
t

.
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N min(N,N (3))(N (1))
1
2
−s(N (2))

1
2
−s(N (3))1−2s(N (4))

1
2
−s(1 + ‖u0‖

20
Xs

)

. N4−4s(1 + ‖u0‖
20
Xs

).

Finally, we move to the estimate of (I). Recall the definition of ΨN in (4.6), which we now

view as inducing a differential operator in spatial representation. Then, by definition of

XM,M ′ , we have that

QN (XN1,N(3) ,XN2,N(3) ,XN3,N(3) , PN4umin(N,N(3)))

−

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx

=
i

2

ˆ

T

PN4umin(N,N(3))

3∑

j=1

(−1)j
(
cj

(
∂2
xP

2
NXNj ,N(3)

) ∏

k∈{1,2,3}\{j}

ck

(
XNk ,N(3)

)

− cj

(
EN(3)(t)∂2

xP
2
NPNju0

) ∏

k∈{1,2,3}\{j}

ck

(
EN(3)(t)PNk

u0
))

dx

=
i

2

ˆ

T

PN4umin(N,N(3))

3∑

j=1

(−1)jcj
(
∂2
xP

2
NXNj ,N(3) − EN(3)(t)∂2

xP
2
NPNju0

)

×
∏

k∈{1,2,3}\{j}

ck

(
XNk,N(3)

)
dx.
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By (4.27), we obtain that
∥∥∥QN (XN1,N(3) ,XN2,N(3) ,XN3,N(3) , PN4umin(N,N(3)))

−

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx
∥∥∥
C2([−T0,T0])

. ‖PN4umin(N,N(3))‖C2([−T0,T0],L4)‖EN(3)‖2C2([−T0,T0],L∞)

×
3∑

j=1

∥∥∂2
xPNXNj ,N(3) − EN(3)(t)∂2

xPNPNju0)‖C2([−T0,T0],L4)

∏

k∈{1,2,3}\{j}

‖PNk
u0‖L4

. (1 + ‖u0‖
20
Xs

)(N (3))
3
2
−sN

3
2
−s(N (2)N (3))

1
2
−sN

1
2
−s

4

. N
3
2
−s(N (1))

1
2
−s(N (3))2−2sN

1
2
−s

4 .

Therefore,

|(I)| .
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

N
3
2
−s(N (1))

1
2
−s(N (3))2−2sN

1
2
−s

4

. N4−4s.

�

In view of this estimate, we are left with bounding the expression.

∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx.

In principle, if the various functions in the expression above are general elements of the

Besov space B
s− 1

2
,+

p,∞ , the best estimate that one could prove is

∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx . N
7
2
−3s,

which is not sufficient for our goals. However, exploiting the (random) structure of u0, we

can prove the following.

Lemma 4.14 (Random estimate for QN ). Fix R > 0, and let T0(R) be as in Proposition

4.8. For every 0 ≤ |t| ≤ T0(R), and for every k ∈ {0, 1, 2}, we have that

E

[∣∣∣ d
k

dtk

( ∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx
)∣∣∣1BR

(u0)

]

. (1 +R20)N3−3s.
(4.29)
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Proof. Note that, by definition, the function YN1,N2,N3 does not depend on time. Therefore,

when we take derivatives, we obtain that

dk

dtk

( ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx
)

=

ˆ

T

f1f2f3f4YN1,N2,N3dx

where f1, . . . f4 are functions of P≪N(3)u0 which satisfy

‖fj‖C2([−T0,T0],Xs) . 1 +R5

as long as ‖P≪N(3)u0‖Xs . R, and have Fourier support in {n : |n| ≪ 2N (3)}. In particular,

we have that
ˆ

T

f1f2f3f4YN1,N2,N3dx =

ˆ

T

f1f2f3f4P≪16N(3)YN1,N2,N3dx,

and that YN1,N2,N3 is independent from (f1, . . . , f4), since Y is a function of

PN1u0, PN2u0, PN3u0, which are independent from P≪N(3)u0.

For |k| ≪ 16N (3), we now estimate E|(YN1,N2,N3)
̂ (k)|2. By (4.28), we have

E|(YN1,N2,N3)
̂ (k)|2

= E

∣∣∣
∑

n1−n2+n3=k

(n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2)
3∏

j=1

φNj (nj)cj(û0(nj))
∣∣∣
2

.
∑

n1−n2+n3=k
n2 6=n1,n3

(n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2)2
∏3

j=1 φNj(nj)
2

〈n1〉2s〈n2〉2s〈n3〉2s

. N2 min(N,N (3))2(N1N2N3)
−2sN (1)N (3)

. N2 min(N,N (3))2(N (3))1−2s(N (1))1−4s.

Here we used that under the condition |n1 − n2 + n3| = |k| ≪ N (3), we have the bound

|n2
1φN (n1)

2 − n2
2φN (n2)

2 + n2
3φN (n3)

2| . N min(N,N (3)),

which follows from Lemma 4.3, where we put n4 = k.11

Moreover, for k 6= h we have that

E

[
(YN1,N2,N3)

̂ (k)(YN1,N2,N3)
̂ (h)

]
= 0.

Indeed, it is easy to check that k 6= h implies that we cannot pair the frequencies

û0(nj), û0(n′
j) so that {n1, n3} = {n′

1, n
′
3}, n2 = n′

2 and n1−n2+n3 = k, n′
1−n′

2+n′
3 = h,

and so the expectation must vanish.

11In principle, Lemma 4.3 does not hold when n4 < 0, while it is certainly possible for us to have k < 0.
However, one can check that in the the proof of Lemma 4.3, the lowest frequency is allowed to be negative
without any modification in the argument.
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Therefore, by Plancherel, recalling that YN1,N2,N3 is independent from P≪2N(3)u0 and

(fj)j=1,...,4 are functions of P≪N(3)u0, for a universal constant C > 0, we have

E

[∣∣∣
(ˆ

T

f1f2f3f4YN1,N2,N3dx
)
1BR

(u0)
∣∣∣
2]

. E

[∣∣∣
(ˆ

T

f1f2f3f4YN1,N2,N3dx
)
1BCR

(P≪N(3)u0)
∣∣∣
2]

. E

[∣∣∣
∑

|k|≪16N(3)

( 4∏

j=1

fj

)
̂ (k)(YN1,N2,N3)

̂ (k)
∣∣∣
2
1BCR

(P≪N(3)u0)
]

=
∑

|k|≪16N(3)

E

[∣∣∣
( 4∏

j=1

fj

)
̂ (k)

∣∣∣
2
1BCR

(P≪N(3)u0)
]
E|(YN1,N2,N3)

̂ (k)|2

.
∑

|k|≪16N(3)

E

[∣∣∣
( 4∏

j=1

fj

)
̂ (k)

∣∣∣
2
1BCR

(P≪N(3)u0)
]
N2 min(N,N (3))2(N (3))1−2s(N (1))1−4s

= E

[∥∥∥
4∏

j=1

fj

∥∥∥
2

L2
1BCR

(P≪N(3)u0)
]
N2min(N,N (3))2(N (3))1−2s(N (1))1−4s.

Therefore,

E

[∣∣∣ d
k

dtk

( ∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

ˆ

T

|EN(3) |2EN(3)(t, x)PN4umin(N,N(3))(t, x)YN1,N2,N3(x)dx
)∣∣∣1BR

(u0)

]

.
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

E

[∥∥∥|EN(3) |2EN(3)PN4umin(N,N(3))

∥∥∥
C2([−T0(R),T0(R),L2)

1BCR
(P≪N(3)u0)

]

×N min(N,N (3))(N (3))
1
2
−s(N (1))

1
2
−2s

. (1 +R20)
∑

N1,N2,N3≫N4

N(1)∼N(2)&N≫N4

N(3).N

N
1
2
−s

4 N min(N,N (3))(N (3))
1
2
−s(N (1))

1
2
−2s

. (1 +R20)N3−3s.

�

4.5. Singularity of the evolved measure. We are now ready to prove Proposition 4.2

and Proposition 1.6.
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Proof of Proposition 4.2. We first show that g(x, y) > 0 implies that g(y, x) < 0. Indeed,

by (4.1), we have that

g(y, x) = lim inf
N→∞

‖PNy‖2
Ḣ1 − ‖PNx‖2

Ḣ1

(4s− 3)N4−4s

≤ lim sup
N→∞

‖PNy‖2
Ḣ1 − ‖PNx‖2

Ḣ1

(4s − 3)N4−4s

= lim sup
N→∞

−
(‖PNx‖2

Ḣ1 − ‖PNy‖2
Ḣ1

(4s − 3)N4−4s

)

= − lim inf
N→∞

‖PNx‖2
Ḣ1 − ‖PNy‖2

Ḣ1

(4s − 3)N4−4s

= −g(x, y) < 0.

We now move to showing the existence of τ(u0) > 0 for µs-a.e. u0 ∈ Xs. We simply pick

τ(u0) = min(T0(‖u0‖Xs), δ(‖u0‖Xs , ‖u0‖
2
L2)),

where T0 is as in Proposition 4.6, and δ ≪ 1 is to be determined later in the proof. For

ease of notation, let

hN (t) =
‖PN (Φt(u0))‖

2
Ḣ1 − ‖PNu0‖

2
Ḣ1

N4−4s
.

By Proposition 2.4, we deduce that hN (t) ∈ C3([−T0, T0]). Therefore, by Taylor’s theorem

with integral remainder, we have that

hN (t) = hN (0) + th′N (0) +
t2

2
h′′N (0) +

ˆ t

0
h′′′N (σ)

σ3

6
dσ

= tFN (u0) +
t2

2
GN (u0) +N4s−4

ˆ t

0

( d2

dσ2
QN (u(σ), u(σ), u(σ), u(σ))

) σ3

6
dσ,

(4.30)

where FN , GN and QN are defined in (4.3), (4.4) and (4.5) respectively. By Lemma 4.13

and Lemma 4.14, we can write

N4s−4
( d2

dσ2
QN (u(σ), u(σ), u(σ), u(σ))

)
= a1(σ) + a2(σ),

with

‖a1(σ)‖L∞([−T0,T0]) . 1 + ‖u0‖
20
Xs

, E|a2(σ)1{u0∈BR}| . N s−1(1 +R20).

In particular, since N s−1 is summable, we deduce that

lim
N→∞

ˆ T0(u0)

−T0(u0)
|a2(σ)|

σ3

6
dσ = 0

for µs-a.e. u0 ∈ Xs, and for every |t| < τ(u0),
ˆ |t|

−|t|
|a1(σ)|

σ3

6
dσ . t3(1 + ‖u0‖Xs)

20 . t2δ(1 + ‖u0‖Xs)
20.

Therefore, we can pick δ ≪ |4s − 3|(1 + ‖u0‖Xs)
−20‖u0‖

2
L2 , so we can guarantee that

ˆ |t|

−|t|
|a1(σ)|

σ3

6
dσ ≤ |4s − 3|Is‖u0‖

2
L2t

2,
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where Is is defined in (4.8). Making this choice, we obtain

lim sup
N→∞

∣∣∣
ˆ t

0
h′′′N (σ)

σ3

6
dσ| ≤ |4s − 3|Is‖u0‖

2
L2t

2.

Therefore, from (4.30), Proposition 4.4, and (4.9), for every 0 < |t| ≤ τ(u0) we have that

g(Φt(u0), u0) = lim inf
N→∞

hN (t)

4s− 3

= lim
N→∞

FN (u0)

4s− 3
t+ lim

N→∞

GN (u0)

4s− 3
·
t2

2
+

1

4s− 3
lim inf
N→∞

ˆ t

0
h′′′N (σ)

σ3

6
dσ

≥ 8Is‖u0‖
2
L2t

2 − Is‖u0‖
2
L2t

2

≥ Is‖u0‖
2
L2t

2 > 0.

�

Proof of Proposition 1.6. This is an immediate corollary of Proposition 4.2 and Proposition

4.1. �

We now complete the paper by showing that Proposition 1.6 implies Theorem 1.1, (ii).

Proof of Theorem 1.1, (ii). Fix δ > 0, and define

Nδ :=
{
t ∈ R : (Φt)#µs 6⊥ 1WP(δ)∩WP(−δ)µs

}
.

We first show that Nδ is countable for every δ > 0. If µs(WP(δ) ∩WP(−δ)) = 0, then by

definition Nδ = ∅, so without loss of generality, we can assume that µs(WP(δ)∩WP(−δ)) >

0. For t ∈ Nδ, pick a representative for the Radon-Nykodim derivative
d(Φt)#µs

dµs
of (the

absolutely continuous part of) (Φt)#µs with respect to µs, such that the singular part of

(Φt)#µs with respect to µs is concentrated on the set

{d(Φt)#µs

dµs
= ∞

}
.

Define the set

Et := Φ−t

({
0 <

d(Φt)#µs

dµs
1WP(δ)∩WP(−δ) < ∞

})
.

Now fix an interval I ⊆ R with |I| ≤ δ, and define

1 ≥ aδ,I := sup
T ⊆Nδ∩I,

T countable

µs

( ⋃

t∈T

Et

)
.

It is fairly easy to check that the sup in the definition of aδ,I is a maximum, i.e. there exists

a countable set Tδ,I ⊆ Nδ ∩ I such that

aδ,I = µs

( ⋃

t∈Tδ,I

Et

)
.
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Call EI :=
⋃

t∈Tδ,I
Et. From the definition of aδ,I , we deduce that, for every t ∈ (Nδ ∩ I) \

Tδ,I ,

0 = µs(E
c
I ∩ Et)

= µs

(
Ec

I ∩ Φ−t

({
0 <

d(Φt)#µs

dµs
1WP(δ)∩WP(−δ) < ∞

}))

= (Φt)#(1Ec
I
µs)
({

0 <
d(Φt)#µs

dµs
1WP(δ)∩WP(−δ) < ∞

})
,

and so for every t ∈ (Nδ ∩ I) \Tδ,I , (Φt)#(1Ec
I
µs) ⊥ 1WP(δ)∩WP(−δ)µs. From the definition

Nδ, we deduce that

(Nδ ∩ I) \ Tδ,I ⊆ {τ ∈ I : (Φτ )#(1EI
µs) 6⊥ µs}

=
⋃

t∈Tδ,I

{τ ∈ I : (Φτ )#(1Etµs) 6⊥ µs}. (4.31)

Now let t ∈ Tδ,I , and τ ∈ I. By definition of Et, we have that

Φt(Et) ⊆ WP(δ) ∩WP(−δ) ⊆ WP(τ − t),

and

(Φt)#(1Etµs) ≪ µs.

Therefore, by Proposition 1.6, we deduce that

{τ ∈ I : (Φτ )#(1Etµs) 6⊥ µs} = {τ ∈ I : (Φτ−t)#((Φt)#(1Etµs)) 6⊥ µs}

= {τ ∈ I : (Φτ−t)#(1WP(τ−t)(Φt)#(1Etµs)) 6⊥ µs}

⊆ {τ ∈ I : (Φτ−t)#(1WP(τ−t)µs) 6⊥ µs}

is countable. By (4.31), recalling that the set Tδ,I is countable, we deduce that Nδ ∩ I

is countable as well. Since I was an arbitrary interval with |I| ≤ δ, taking unions over a

countable family of I, we obtain that Nδ is countable.

Now, define

N :=
{
t ∈ R : (Φt)#µs 6⊥ µs

}
.

By Proposition 4.6, we have that µs = limn→∞ 1WP( 1
n
)∩WP(− 1

n
)µs. Therefore,

N =
⋃

n∈N

N 1
n

is a countable union of countable sets, so it must be countable as well. �
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