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Abstract

When launching new products, firms face uncertainty about market reception. Online
reviews provide valuable information not only to consumers but also to firms, allowing
firms to adjust the product characteristics, including its selling price. In this paper,
we consider a pricing model with online reviews in which the quality of the product is
uncertain, and both the seller and the buyers Bayesianly update their beliefs to make
purchasing & pricing decisions. We model the seller’s pricing problem as a basic bandits’
problem and show a close connection with the celebrated Catalan numbers, allowing us
to efficiently compute the overall future discounted reward of the seller. With this tool,
we analyze and compare the optimal static and dynamic pricing strategies in terms of
the probability of effectively learning the quality of the product.

1 Introduction
As a key part of modern online platforms, online decision-making plays a crucial role in
a variety of settings, particularly related to the Internet. Two landmark examples that
have been widely studied are dynamic pricing and online reviews. Online review systems
constitute powerful platforms for users to get informed about the product and for the firm to
understand how a given market is receiving the product. The study of these systems has been
vast for the last two decades [6, 10], and more recently, modeling simple like/dislike reviews
as bandits problems have become standard [1, 2, 3, 13, 16, 18]. Dynamic pricing, on the other
hand, is an active area of research in economics, computer science, and operations research
[12, 14], and has become a common practice in several industries such as transportation and
retail.

There has been a growing interest in combining the two areas as a way to design more
effective pricing mechanisms that gather information from current reviews to update prices
and make the product more attractive [5, 11, 17]. In particular, [5] considers social learning
with non-Bayesian agents in a market with like & dislike reviews, and the resulting pricing
decision of a monopolist. [17] considers a setting when the volume of sales is large and

∗An extended abstract of a preliminary version of this paper has been presented in the NeurIPS Workshop
on ML for Economic Policy in 2020.
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optimizes revenue via fluid dynamics and ODEs. The general idea here is to use online
reviews to update the market’s belief about the quality of the product, thus influencing its
pricing. However, the complexity of many models limits their practicality as the Bayesian
updating of beliefs becomes intractable.

In this paper, we continue on this line of research. We consider a straightforward model
that precisely determines the optimal pricing strategies from information elicited by online
reviews. The main message of this paper is to show that online reviews not only influence
how successful a product is but also help find more effective dynamic pricing strategies.
These dynamic pricing strategies lead to more efficient allocations. Dynamic pricing with
online reviews gives a foundation for the common practice of temporarily pricing a product
below its production cost, leading to short-term revenue losses. These losses come with a
potential boost in future purchases, even at a higher price, and ultimately may lead to more
revenue.

2 Preliminaries

2.1 Our model.

We first give a general description of our model and then define its features precisely. We
defer a discussion of the most closely related models [4, 5, 11, 17] to Section 3.

Consider a seller marketing a new product. Neither the seller nor the buyers are informed
about the quality of the product but only receive a public signal, representing the prior
probability of the quality of the product. Based on this estimation and the product price,
buyers, that arrive in an online fashion, estimate their expected utility and decide to buy
the product or not. If no purchase occurs, the buying process terminates. Otherwise, after
buying, the buyer experiences the product and may like it or not; in both cases, he submits
an online review with either a like or dislike. These reviews allow following users to update
their priors on the quality of the product.

Product. As it is common in the literature [1, 11] we assume that the product may be
either good or bad. A good product will be liked by a user with probability p (so that roughly
a fraction p of the market is satisfied with the product), while a bad product will be liked
by a user with probability q < p. We also assume that the product has a fixed production
cost c per unit. To avoid trivial cases, we assume in the paper that q < c < p. Finally,
the product has a price π that may evolve along the process. The prior probability on the
quality of the product, denoted by x, is the probability that the product is good. All p, q,
and x are common knowledge.

Buyers. The market is composed of an infinite stream of users arriving at times t =
0, 1, 2, . . ., which are offered the product at a certain, possibly time-dependent, price π. Upon
receiving the offer, a user (which we assume risk-neutral) evaluates his expected utility for
buying the product. Initially, since the first buyer’s prior is x, his expected utility can be
evaluated as xp + (1 − x)q. If this quantity exceeds the current price π, then he decides to
buy the product.

Priors. After experiencing the product, the buyer submits an online review in the
like/dislike format. If the buyer likes (U) the product then, given a current prior x,

2



we update the prior to L(x) as follows:

L(x) := Px(good |U) = Px(U|good)Px(good)
Px(U) = x · p

x · p + (1 − x) · q
.

Similarly, given a dislike (d), we update the prior as follows:

D(x) : = Px(good |d) = Px(d|good)Px(good)
Px(d) = x · (1 − p)

x · (1 − p) + (1 − x) · (1 − q) .

In particular, the prior increases after a like, and decreases after a dislike: D(x) < x <
L(x). An interesting feature of our model is that the updated prior after a sequence of likes
and dislikes only depends on the number of reviews and not the sequence of reviews. This is
in contrast with most models of online reviews, and it allows both the seller and the users
to update their beliefs based solely on these figures.

Lemma 1. Given a prior x, the updated prior after a sequence of ℓ likes and d dislikes does
not depend on the order and this value is xℓ,d = xpℓ(1−p)d

xpℓ(1−p)d+(1−x)qℓ(1−q)d . Furthermore, the
probability of each such sequence only depends on ℓ and d.

Proof. Let us start by calculating D(L(x)), the value of the updated prior after seeing a
like and then a dislike:

D(L(x)) = (1 − p)L(x)
(1 − p)L(x) + (1 − q)(1 − L(x)) =

(1 − p) p·x
p·x+q·(1−x)

(1 − p) p·x
p·x+q·(1−x) + (1 − q)(1 − p·x

p·x+q·(1−x))

= p(1 − p) · x

p(1 − p) · x + q(1 − q) · (1 − x)

Clearly, this expression when swapping p (resp. q) with 1 − p (resp. 1 − q) is unchanged,
thus L(D(x)) = D(L(x)).

The proof of the formula for xℓ,d, with ℓ likes and d dislikes, uses induction and works
similarly.

We now show that the probability of observing a given sequence of likes and dislikes is
independent of the order. To see this, we calculate

PL(x)(d) · Px(U) = (L(x)(1 − p) + (1 − L(x))(1 − q)) · (xp + (1 − x)q)

=
(

xp

xp + (1 − x)q (1 − p) + (1 − xp

xp + (1 − x)q )(1 − q)
)

· (xp + (1 − x)q)

= xp(1 − p) + (1 − x)q(1 − q).

And we easily get the same expression for PD(x)(U) · Px(d). The result follows by
induction.

Seller’s problem. A basic problem faced by the seller is to find an optimal pricing
strategy. One alternative for the seller is to adopt a static price: the price π offered to each
consumer is fixed at the beginning and can not be changed. In this situation, users will buy
the product as long as the current prior x satisfies xp + (1 − x)q ≥ π and yields positive
expected value. Whenever xp + (1 − x)q < π, the process will stop forever. In other words,
the sales process will continue until the prior reaches xmin = π−q

p−q . The local reward for the
seller for each sale is R(x) = π − c. Given the prior x, the seller, who discounts the future
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at rate δ, can express her expected revenue or expected global reward recursively as V (x) = 0
if x < xmin, and otherwise

V (x) = R(x) + δ · Px(U) · V (L(x)) + δ · Px(d) · V (D(x)). (1)

Finally, the seller will optimize this function over the values of π ∈ (c, xp + (1 − x)q].1
On the other hand, the seller may opt for a dynamic pricing approach. In this setting

the price may be adjusted according to the current reviews the product has received. To
maximize revenue, the seller will just make the user indifferent to purchase whenever she
decides to continue selling the product, offering the product at time t with prior x at exactly
πt = xp + (1 − x)q. Thus, with dynamic prices, the local reward for the seller after each
sale depends on the prior with value R(x) = xp + (1 − x)q − c.2 The decision of when to
stop, however, becomes more involved. Although at times xp + (1 − x)q < c may hold, and
therefore in the next sale the seller will incur in a loss, it may still be worth to continue
selling. The reason for this relies on the information gain provided by one more sale and
the impact this information has on future purchases. In this scenario, given a prior x, to
express her expected revenue, the seller can either decide to stop selling, and her reward is
thus V (x) = 0; or can decide to continue selling, and then her revenue can be expressed as
in equation (1). To maximize her profit, she will pick the best of these two options, and
thus her expected global reward satisfies the following recursive equation:

V (x) = max
(
0, R(x) + δ · Px(U) · V (L(x)) + δ · Px(d) · V (D(x))

)
, (2)

where R(x) = xp + (1 − x)q − c.
Therefore, with dynamic prices, the seller stops selling when the current prior x satisfies

x < x∗, where x∗ is defined as the largest that V (x∗) = 0, (where V is the solution of (2)).
This value determines the stopping time of the seller under dynamic pricing.

Thus, the expected global reward in both pricing scenarios can be expressed with the
same recursion:

V (x) =
{

0, if x < xstop

R(x) + δ · Px(U) · V (L(x)) + δ · Px(d) · V (D(x)), otherwise.
(3)

Here, for static pricing we have xstop = xmin = π−q
p−q and R(x) = π − c, while for dynamic

pricing we have xstop = x∗ and R(x) = xp + (1 − x)q − c.

2.2 Our Results

In this paper we study dynamic and static pricing with online reviews in detail. We first
show that we can formulate the underlying dynamic process as a simple multi-armed bandit
problem. Perhaps surprisingly, this problem appears to be unexplored in the literature. The
core of the paper is devoted to the computation of the stopping prior x∗ in the dynamic
price setting and the computation of the global expected reward in both settings. For this,
we propose two approaches.

1Clearly π has to be at least c for the revenue to be positive. Also, if π > xp + (1 − x)q, then no user will
ever buy, and then the revenue is zero.

2Note that, slightly abusing notation, we always use R(x) for the local reward, although its value depends
on whether we are considering static or dynamic pricing.
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We first present a fast dynamic programming approach in Section 4 that computes an
approximation of x∗ and an approximation of the value of the global expected reward in
both pricing scenarios. The backside of this fast heuristic is that we are unable to provide a
good guarantee on the quality of the solutions produced.

To resolve this issue, in Section 5, we take a combinatorial approach using the classic
Gittins index [8], and we explicitly determine the optimal underlying stopping time and the
global excepted rewards. Specifically, we obtain a closed-form formula for these quantities.
To this end, we uncover a connection with the classic Catalan numbers. With this, we are
able to compute an arbitrarily good approximation for x∗ and the global expected reward in
both pricing scenarios.

In Section 6, we study, for each pricing strategy, the probability of achieving full efficiency.
Note that this fully efficient situation occurs when the product is good and is sold forever3,
i.e., the product is good, and the market learns this fact. To this end, we exploit that the
stochastic process governing the prior updates is a martingale, and we can thus use the
optional stopping theorem.

We finally discuss in Section 7 an extension of the model in which the quality of the
product is not restricted to be good or bad, but it can take arbitrary values in a set Q ⊆ [0, 1].
For this more general model we note that the history independence property still holds
and that, in essence, our dynamic programming approach can still be used to compute the
seller’s revenue. We additionally observe that when the set of possible product qualities
Q is a continuous set and the initial prior quality distribution is sufficiently smooth, the
dynamic program is very effective since already a short sequence of reviews gives a very
good estimate about the true quality of the product.

2.3 The Bandits Connection

We can model our dynamic pricing problem using a bandit framework. To the best of our
knowledge, an optimal strategy for that bandit problem was previously unknown. Imagine
there is a single slot machine (bandit), which could either be a good or bad machine. This
machine costs c to play and will yield a return of 1 with some probability and 0 with some
other probability.4 If the machine is good, it has a fixed, known probability of p of returning
1, while if it is bad it has known probability of q of returning 1. We have a prior x that the
machine is good, however we do not know for sure if the machine is good or not. Thus, given
a prior x, the expected earning of a single pull is xp + (1 − x)q − c. Finally, we discount
the future at rate δ, so that the value of earnings in time t is discounted by a factor of δt.
As we play, we update our prior using Bayes rule and the problem we consider is that of
determining the prior, x∗, under which we should stop playing.

The correspondence between the dynamic pricing problem and the bandits problem is
straightforward. The only apparent difference in the problems comes from the available
information. In bandit problems, we typically assume that we have the whole history of
pulls, whereas in the dynamic pricing problem, we only want to assume that the users get to
see the number of likes and dislikes the product has received so far. However, as observed in
Lemma 1 this is not an issue since the updated prior after a number of reviews only depends
on the number of likes and dislikes and not on the sequence itself.

3This is the best possible situation for the whole market, considering both the seller and the buyers.
4Again, to avoid trivial cases we assume that 0 ≤ q < c < p ≤ 1.
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3 Related models
Our model adds to the literature on pricing with online reviews. Most of these existing models
try to make simplifying assumptions, but even with these, they end up being extremely
difficult to solve and analyze. On the contrary, the model we consider is relatively simple
(though still realistic) and can be solved exactly. In what follows we present a more detailed
comparison between our model and the closest related work in the literature.

First, let us discuss the model of Crapis et al. [5]. As in our model, they consider an
infinite stream of buyers purchasing a product. The quality p of the product is also initially
unknown and can take values in an interval (so, in this sense, it is similar to our extended
model). As opposed to our model (and actually to most models in social learning) they
consider heterogeneous buyers. The utility of buyer i is given by ui = αiq − p, where p
is the price charged by the seller, and the αi are i.i.d. random variables drawn from a
known distribution F . They also consider that buyers arrive according to an independent
Poisson process, but this does not significantly affect the results. Initially, all buyers have
some common prior on the quality of the product, q0. Consumers report likes and dislikes
depending on whether their utility was nonnegative, taking into account the true quality of
the product (which was discovered upon buying it). The information available to the buyer
upon making his purchasing decision includes reviews made by all of his predecessors and
knowledge about the order in which they acted. The seller’s problem is to find the price
maximizing her discounted expected revenue. We remark that the information structure
here is quite involved, so, in order to tackle the seller’s problem, the authors make some
simplifying assumptions and resort to mean-field approximations.

In subsequent work, Ifrach et al. [11] further refine the latter model. In particular, they
reduce the possible qualities that the product can take to two possible values: high and
low. Accordingly they modify the form of the utility of buyers to take an additive form.
Namely, a buyer’s utility equals to the quality of the product, minus the price paid, plus
the buyer’s type which are represented by i.i.d. random variables. Again, a like/dislike
represents whether the buyer’s utility was positive/negative. With these assumptions, the
information structure gets somewhat simplified, although it is still quite complex. In this
paper, as in ours, the authors additionally assume that the product has a cost c and observe
that this cost plays an important role in the optimal dynamic pricing policy, and on whether
consumers ultimately learn the true quality of the product. Closely related to the model
of Ifrach et al., is that of Acemoglu et al., [1]. Similar to our work they consider static
and dynamic pricing strategies for the seller and give conditions under which asymptotic
learning occurs, and at which speed. A key distinction in Acemoglu et al.’s model refers to
whether buyers have access to summary statistics or to the full history. We note that in
our model setup (which is different) this distinction is unnecessary as we prove that both
settings coincide.

Very recently, Shin et al. [17] take a slightly different approach to the problem. They
consider a finite horizon model in which at each point in time a new buyer shows up. In
their model buyers are homogeneous and the utility of buyer i is given by ui = qi − pi,
where qi is the experienced quality of the product and pi the price paid. This paper takes a
different approach to modeling the quality of the product. This is assumed to be a Gaussian
random variable of mean µ and standard deviation 1. However, only the seller known the
mean while the buyers’ use online reviews to learn this parameter. Another different feature
of this paper is that online reviews may take numerical values beyond like/dislike (say star
rating). As the authors note, the resulting dynamic pricing problem is extremely hard to
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solve analytically so they end up looking at asymptotically optimal pricing policies.
Another related paper is the work of Chawla et al. [4]. This paper, however, follows a

different language that makes the comparison slightly more difficult. The authors consider
a buyer who repeatedly interacts with a seller. The buyer does not know his valuation,
and every time he purchases the product, he updates his valuation Vt. This value can be
thought of as the prior on the quality in our model. The evolution of Vt is assumed to follow
a martingale, which naturally holds in our Bayesian updating. However, Chawla et al. make
some assumptions about the variance and the step size of the random process (that then
affect the main results). Another difference is that this paper does not consider the cost of
the product, which plays an important role in our and other dynamic pricing models. The
main result of Chawla et al. is that, under suitable conditions, a simple pricing strategy in
which the product is given away for free up until some point, and then a fixed price is used,
recovers a good fraction of the optimal revenue.

4 A Dynamic Programming Approach
In this section, we propose a fast dynamic programming approach to compute an approx-
imation of the threshold prior x∗ and the global expected reward in the dynamic pricing
scenario. Then, we explain how to adapt this algorithm to compute an approximation of
the global expected reward in the static price scenario.

Let us denote the set of possible updated priors by P(x) := {xℓ,d | ℓ, d ≥ 0}. We say
that a set S ⊆ [0, 1] is discrete if all elements of S have a neighborhood that contains no
other elements of S. The next result characterizes when the set of possible updated priors is
discrete. We note that whenever it is not, then P(x) is dense in [0, 1].

Proposition 2. The space of possible updated priors P(x) is discrete if and only if

log(p
q )

log( 1−q
1−p)

∈ Q.

Furthermore, whenever P(x) is not a discrete set, it is dense in [0, 1].

Proof. First, assume that

γ :=
log(p

q )
log( 1−q

1−p)
= a

b
,

where a and b are two integers such that gcd(a, b) = 1. This is equivalent to
(

1−q
1−p

)a
=

(
p
q

)b
.

We show that P(x) is discrete, by arranging its elements as an infinite increasing sequence
(xi)i∈Z such that x0 = x and for all i ∈ Z we have L(xi) = xi+a and D(xi) = xi−b.

We first show that the updated prior after a sequence of b likes and a dislikes is unchanged,
i.e. xb,a = x0,0. Indeed, by Lemma 1, we have

xb,a = xpb(1 − p)a

xpb(1 − p)a + (1 − x)qb(1 − q)a
= x

x + (1 − x)( q
p)b( 1−q

1−p)a
= x.

Then, for any i ∈ Z, we can set xi := xℓ,d where ℓ, d is any pair of integers such that
ℓ · a − d · b = i. The sequence (xi)i∈Z is strictly increasing because aℓ − bd > aℓ′ − bd′ if and
only if ( q

p)ℓ( 1−q
1−p)d > ( q

p)ℓ′( 1−q
1−p)d′ , i.e., if and only if xℓ,d > xℓ′,d′ .
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Now, we show that P(x) is dense in [0, 1] when γ is irrational. Since xℓ,d can be re-written
as

xℓ,d = x

x + (1 − x) exp(log(p/q) · (dγ−1 − ℓ))

and y 7→ x

x + (1 − x) exp(log(p/q) · y) is a continuous one-to-one function from R to (0, 1)

of bounded derivative, it is enough to show that the set {dγ−1 − ℓ | ℓ, d ≥ 0} is dense in R.
To show that, it is in fact sufficient to show that the set H = {h(d), d ≥ 0} is dense in [0, 1],
where h(d) := dγ−1 − ⌊dγ−1⌋.

The first step to prove that H is dense in [0, 1] is to observe that it is infinite. Otherwise,
there would exist two distinct integers d and d′ such that h(d) = h(d′), which would contradict
our assumption that γ is irrational.

Next, let c ∈ [0, 1] and ϵ > 0. We show that that there exists h ∈ H such that |h − c| < ϵ.
Since H is infinite and compact, there exist two elements of H that are at a distance
less than ϵ from each other, i.e., there are two integers d and d′ with d > d′ such that
0 < |h(d) − h(d′)| < ϵ. First, suppose that h(d) > h(d′). Then, h(d − d′) = h(d) − h(d′) < ϵ
and the element

h

(⌊
c

h(d − d′)

⌋
(d − d′)

)
=

⌊
c

h(d − d′)

⌋
h(d − d′)

is in H and is at distance less than ϵ from c, what we wanted to find. In the other case we
have h(d) < h(d′) and then 1 − ϵ < h(d − d′) < 1. In that case, the element

h

(⌊ 1 − c

1 − h(d − d′)

⌋
(d − d′)

)
=

⌊ 1 − c

1 − h(d − d′)

⌋
h(d − d′)

is in H and is at distance ϵ from c. This completes the proof.

Corollary 3. Let a and b be two integers such that gcd(a, b) = 1 and assume that

log( 1−q
1−p)

log(p
q ) = a

b
.

Then there exists an infinite increasing sequence (xi)i∈Z such that for all i ∈ Z we have
L(xi) = xi+a and D(xi) = xi−b.

In this setting, we can re-write eq. (3) as V (xi) = 0 if x < xstop and otherwise:

V (xi) = R(xi) + δPxi(U)V (xi+a) + δPxi(d)V (xi−b)

The algorithm. To apply a dynamic programming approach, let us fix an ϵ > 0 that
corresponds to the threshold between the precision of the solution returned and the running
time: the smaller ϵ, the greater the precision and the running time. We note that this
approach is not mathematically rigorous since its validity requires smoothness conditions on
the function V (·) that do not follow from eq. (3). In the next section we derive a formal
approach while now we continue with this approach that is computationally tractable.

First, assuming that V is differentiable at x = 1 we get from eq. (3) that V (1) = p−c
1−δ

and V ′(1) = p−q
1−δ , as the following proposition shows.

Proposition 4. Assume that the solution V of eq. (2) is differentiable at x = 1, then we
have V (1) = p−c

1−δ and V ′(1) = p−q
1−δ .
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Proof. If x = 1, then the product must be good; therefore the expected global reward is

V (1) =
∑
t≥0

(p − c)δt = p − c

1 − δ
.

Now fix a small ϵ > 0. Assume that the function V (x) admits a derivative in x = 1, we can
write V (1 − ϵ) = V (1) − ϵV ′(1) + o(ϵ). With eq. (2) we have for x = 1 − ϵ close to 1:

V (1 − ϵ) = R(1 − ϵ) + δ · Px(U) · V (L(1 − ϵ))δ · Px(d) · V (D(1 − ϵ))

= R(1 − ϵ) + δ(p − ϵ(p − q))(V (1 − q

p
ϵ + o(ϵ)))

+ δ((1 − p) + ϵ(p − q))(V (1 − 1 − q

1 − p
ϵ + o(ϵ)))

= R(1 − ϵ) + δ(p − ϵ(p − q))(V (1) + q

p
ϵV ′(1) + o(ϵ))

+ δ((1 − p) + ϵ(p − q))(V (1) + 1 − q

1 − p
ϵV ′(1) + o(ϵ))

= R(1 − ϵ) + δV (1) − ϵδV ′(1) + o(ϵ)
= p − c + δV (1) + ϵ (−(p − q) + δV ′(1)) + o(ϵ)
= V (1) − ϵV ′(1) + o(ϵ).

Thus, V ′(1) = p−q
1−δ .

With Proposition 4, for all indices i such that xi > 1 − ϵ, we can make the estimation
that V (xi) ≈ V (1) − (1 − xi)V ′(1) = p−c

1−δ − (1 − xi)p−q
1−δ . Let istart be the greatest index i

such that xistart < 1 − ϵ. We have the following estimate: istart = Ox(a · logp/q(1/ϵ)).
Then, for all i ≤ istart, we recursively compute V (xi), in decreasing order, with:

V (xi) :=
V (xi+b) − R(xi+b) − δ · Pxi+b

(U)V (xi+b+a)
δ · Pxi+b

(d)

until we have V (xi) ≤ 0. We call this index i∗ and then set V (xi) := 0 for all i ≤ i∗. The
prior xi∗ gives an estimation of x∗. This method is fast but it is difficult to prove an upper
bound on the precision of the results obtained. Figure 1 presents an example that showcases
the properties we have described.

Static price scenario. We can easily adapt this algorithm to compute an approximation
of the global expected reward in the static price scenario. Here we have R(x) = π − c
which implies V (1) = π−c

1−δ and V ′(1) = 0. Then, we compute values V (xi) similarly, for all
i ≤ istart, until xi ≤ xmin.

In the next section, we give a combinatorial method to compute x∗ and the global
expected reward, that enables us to provide a strong guarantee on the solution.

5 A Combinatorial Approach
In this section we give a good estimation of the value V (x) in both pricing scenarios. To
compute V (x), we make use of the concepts of Catalan’s triangle and Catalan’s trapezoid.
Conceptually, Catalan’s triangle is a number triangle whose entries C(ℓ, d) correspond to the
number of strings such that there are ℓ “likes” and d “dislikes” such that no initial segment
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Figure 1: An example of computing V (x), under dynamic prices, through our dynamic
programming approach. Note that x∗ = 0.33, which is lower than x = 0.5 = c−q

p−q , causes the
local reward to be 0.

of the string has more dislikes than likes. The well-known Catalan numbers correspond to
C(n, n) = 1

n+1
(2n

n

)
.

The so-called Catalan’s trapezoid is an extension of Catalan’s triangle, in which Cm(ℓ, d)
counts the number of strings with ℓ likes and d dislikes such that every initial segment has
at least m more likes than dislikes5. In particular the Catalan’s triangle corresponds to the
special case where m = 0. We have the following closed form for the Catalan’s trapezoid
[15]: Cm(ℓ, d) =

(ℓ+d
d

)
if 0 ≤ d ≤ m, Cm(ℓ, d) =

(ℓ+d
d

)
−

( ℓ+d
d−m−1

)
if m < d ≤ ℓ + m and

Cm(ℓ, d) = 0 otherwise.

Definition 5 (Catalan’s quadrilateral). Given integers ℓ, d and parameters a, b and m we
denote Ca,b

m (ℓ, d) the number of strings consisting of w L-s and d D-s such that in every
initial segment of the string that consists of ℓ′ L-s and d′ D-s, the value a · ℓ′ − b · d′ is always
at least −m.

Let us say that these numbers form Catalan’s quadrilateral since the Catalan’s trapezoid
corresponds to a = b = 1. Figure 2 provides a geometrical interpretation of these numbers.

We have the following induction to compute these numbers: Ca,b
m (ℓ, d) = 0 whenever

a · ℓ − b · d < −m. Otherwise Ca,b
m (ℓ, d) = 1 when ℓ = 0 or d = 0. And generally:

Ca,b
m (ℓ, d) = Ca,b

m (ℓ − 1, d) + Ca,b
m (ℓ, d − 1).

Thus, computing Ca,b
m (ℓ, d) can be done in time O(ℓ · d) with a simple dynamic program

implementing the above inductive formulation. No non-recurrence-based formula exists
for Catalan’s quadrilaterals, though computation of partial values in the quadrilateral are
derived in [7].6 The purpose of defining these particular numbers lies in the following lemma
that will enable us to provide an expression of the global expected reward.

Given an initial prior x, we let Xt be the (random) updated prior after t reviews. In
particular, let X0 = x. Recall that xℓ,d denotes the updated prior after a sequence of ℓ likes
and d dislikes from an initial prior x, and R(x) is the local reward7 when the prior is x. The

5We use here a slightly different definition than in [15]. We have C′
m(ℓ, d) = Cm−1(ℓ, d) where C′

m(ℓ, d)
denote the original Catalan Trapezoid numbers.

6See also [9] for some recent developments.
7Recall that R(x) = π − c in the static price setting and R(x) = xp + (1 − x)q − c in the dynamic price

setting
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Figure 2: The number of paths from A to B along the grid, that do not enter the light
red area (like the blue path but not like the green one) is the Catalan’s quadrilateral
number C1,2

3 (9, 4) = 570 (for comparison, the unconditional number of paths from A to B is(9+4
4

)
= 715 ). The slope of the boundary depends on parameters a, b. The classic Catalan’s

trapezoid arises when the boundary is horizontal.

global expected prior from a prior x is given by

V (x) =
∑

ℓ,d≥0,t=ℓ+d

δt · Px(Xt = xℓ,d) · R(xℓ,d).

We now use the Catalan’s quadrilateral to provide an expression of Px(Xt = xℓ,d). Let
xstop denote the value of the prior when the selling process stops: in the dynamic pricing
scenario, we have xstop = x∗ and in the fixed price scenario, we have xstop = xmin = π−q

p−q .
Lemma 6. Let ℓ, d two integers, and t = ℓ + d. Given any prior x, we have that

Px(Xt = xℓ,d) = Ca,b
m (ℓ, d) · px(ℓ, d),

where
px(ℓ, d) := xpℓ(1 − p)d + (1 − x)qℓ(1 − q)d

is the probability of having a given ordered sequence of ℓ likes and d dislikes; a = log(p/q);
b = log( 1−q

1−p); and m = log 1−q
1−p

(
x(1−xstop)
xstop(1−x)

)
.

Proof. By Lemma 1, the updated prior after a sequence of ℓ likes and d dislikes only depends
on ℓ and d so as the probability of such each sequence. Therefore, Px(Xt = xℓ,d) is the
product of the probability of one sequence and the number of such sequences.

We first show that the probability of having a given ordered sequence of ℓ likes and d
dislikes is

px(ℓ, d) = xpℓ(1 − p)d + (1 − x)qℓ(1 − q)d.

We proceed by induction on the length ℓ + d of the sequence ℓ + d. The base case of the
induction follows from Lemma 1. Then, using the induction hypothesis, we obtain

px(ℓ + 1, d) = pL(x)(ℓ, d) · Px(U) = (L(x)pℓ(1 − p)d + (1 − L(x))qℓ(1 − q)d)(xp + (1 − x)q)

=
( xp

xp + (1 − x)q pℓ(1 − p)d + (1 − xp

xp + (1 − x)q )qℓ(1 − q)d
)
(xp + (1 − x)q)

= xpℓ+1(1 − p)d + (1 − x)qℓ+1(1 − q)d.

11



The calculation for px(ℓ, d + 1) = xpℓ(1 − p)d+1 + (1 − x)qℓ(1 − q)d+1 works similarly.
Thus we have established the induction.

Now for any integers ℓ, d, it is easy to see that xℓ,d < xstop if and only if a · ℓ − b · d < −m

where a = log(p/q), b = log( 1−q
1−p) and m = log 1−q

1−p

(
x(1−xstop)
xstop(1−x)

)
. Thus, the number of

sequences of ℓ likes and d dislikes such that the prior at any time is at least xstop is equal to
the Catalan’s quadrilateral number Ca,b

m (ℓ, d).

In the dynamic pricing scenario, to compute a good approximation of V (x), we first need
to compute a good approximation of the threshold x∗.

Computing x∗. By definition, x∗ is the prior for which stopping or continuing to play
gives the same global expected reward. Assuming that the initial prior is x = x∗, we have
m = 0 and we obtain after simplification the following equation :

0 = V (x∗) =
∑

ℓ,d≥0
δℓ+dCa,b

0 (ℓ, d) · (x∗pℓ(p − c)(1 − p)d + (1 − x∗)qℓ(q − c)(1 − q)d),

where a = log(p/q) and b = log( 1−q
1−p). If we set Φ(p) :=

∑
ℓ,d≥0 δℓ+d·Ca,b

0 (ℓ, d)·(p−c)pℓ(1−p)d,
the above equation becomes 0 = x∗Φ(p) + (1 − x∗)Φ(q). Thus we can express x∗ as

x∗ = Φ(q)
Φ(q) − Φ(p) .

To get a precise estimate of the value Φ(p), we only need to focus on sequences of likes
and dislikes that do not exceed a certain length. More precisely, fix any ϵ > 0. Since Φ(p) is
defined as a series of positive terms, we know that there exists an integer tϵ such that∑

ℓ,d≥0,ℓ+d≥tϵ

δℓ+d · Ca,b
0 (ℓ, d) · (p − c)pℓ(1 − p)d ≤ ϵ

and since this series is upper bounded by a convergent geometric series, we have the following
estimate tϵ = O(log 1/ϵ). Thus, we can compute an ϵ-estimate x̂∗ of x∗, i.e. |x̂∗ − x∗| < ϵ,
in time O(log(1/ϵ)2). When the ratio a/b is a rational number, the set of possible updated
priors from x is discrete, so that choosing an ϵ sufficiently small enables to compute an exact
value for x∗.

Computing V (x). Once we have a precise estimation of x∗, we can proceed similarly to
compute an arbitrarily close estimation of V (x) for any prior x. For any ϵ > 0, there exists
tϵ = O(log 1/ϵ), such that ∑

ℓ,d≥0,ℓ+d≥tϵ

δℓ+d · Px(Xt = xℓ,d) · R(xℓ,d) ≤ ϵ.

We can then use xstop and the values of the Catalan trapezoid to compute the sum

V̂ (x) :=
∑

ℓ,d≥0,t=ℓ+d≤tϵ

δt · Px(Xt = xℓ,d) · R(xℓ,d)

and we have |V (x) − V̂ (x)| ≤ ϵ.
In the symmetric case, when the values of p and q are such that q = 1 − p, we can even

get a closed expression for x∗ and V (x). Indeed, we have a = b = 1 and we can use the
closed formula of the coefficients of the Catalan Trapezoid.
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Figure 3: The value of global expected reward depending on the fixed price π. In the
symmetric setting (left), the blue points represent the revenue on the efficient frontier, which
is the maximum possible price per discrete xstop. The red points are not optimal because
such prices yield the same number of possible net dislikes before the buyers stop buying. In
the general setting (right), we see that revenue as a function of price is not as well-defined.

Computing the optimal static price. For each fixed price π, we can thus compute
the global expected reward for the seller. In order to maximize her revenue, the seller can
optimize this function over the values of π ∈ (c, xp + (1 − x)q]. Clearly π has to be at least
c for the revenue to be positive. Also if π > xp + (1 − x)q then no user will ever buy and
then the revenue is zero.

In the symmetric setting, note that for a price π, buyers can initially tolerate up to a net
of mπ dislikes, where mπ is a function decreasing in π before no longer buying. Thus, for a
fixed integer m, we can maximize the global expected reward by setting the maximum price
π such that mπ = m. This efficient frontier appears to be concave, as shown in Figure 3, so
finding the optimal price is simply a binary search procedure along the efficient frontier. In
the asymmetric setting, however, mπ is a function of both the number of likes and dislikes,
due to the behavior of Catalan’s quadrilateral. Figure 3, shows that computing the optimal
price in the asymmetric case requires searching over a larger set of prices.

6 Success and Failure of Learning
In this section we investigate the probability that the market learns the true value of the
product, i.e. the probability of stopping in finite time when the product is bad and the
probability of selling forever when the product is good. If dynamic pricing is used, learning
occurs with larger probability. Our main conclusion is to express this additional gain as
a function of the primitives of the model, proving a simple quantification of the potential
gains of dynamic pricing over static pricing.

A first observation is that in both models the market will always discover if the product
is bad. Recall that we assume that q ≤ c.

Lemma 7. Assuming that the product is bad, we stop selling in finite time almost surely.

Proof. Let Dt = aℓt − bdt denote the random variable that corresponds to the weighted
difference between the number of likes and dislikes after t reviews, where a = log(p/q) and
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b = log((1 − q)/(1 − p)). We define the stopping time τ as the first time t when Dt < −m
where m depends on the original prior x and the threshold prior xstop.

Given that the product is bad, we have: E(Dt −Dt−1) = a ·P(U|bad)−b ·P(d|bad) =
aq − b(1 − q) =: µ < 0 for any 0 < q < p. Then, E(Dt) = µ · t →t −∞.

We deduce, for t sufficiently large, using Bienaymé-Tchebychev inequality, that

P(τ ≥ t) ≤ P (|Dt − E(Dt)| ≥ −µ · t − m) ≤ O(1/t)

where xstop = x∗ for the dynamic pricing model and xstop = xmin for the single price
model.8

On the other hand, when the product is good, learning may fail to occur. To quantify
this efficiency loss, recall that xstop corresponds to the threshold prior from which the users
stop buying. In the dynamic pricing model we have xstop = x∗ and in the static price model,
we have xstop = xmin = π−q

p−q . The main result of this section, Lemma 8, establishes that
when the product is good the probability of learning it is at least x−xstop

x(1−xstop) .
Given an initial prior x, for all time t ≥ 0 we define the (random) variable Xt that is the

updated prior after t reviews. (Xt)t≥0 is a martingale with X0 = x. Now, let τ denote the
(random) time at which the selling process stops.

Lemma 8. Given an initial prior x, we have the following estimation on the probability
that the process continues forever: x−xstop

1−xstop
< Px(Xτ = ∞) ≤ x−D(xstop)

1−D(xstop) . Additionally, if we
assume that the product is good, then the probability of learning that the product is good is
Px(Xτ = ∞ | good) >

x−xstop
x(1−xstop) .

Proof. Let us fix ϵ > 0. The random time τϵ at which Xt reaches xstop or 1 − ϵ is a stopping
time. Since τϵ has finite expectation, by the optional stopping theorem, the expected value
of Xτϵ is equal to the initial prior, i.e., E(Xτϵ) = x. Then we get

x = Px(Xτϵ < xstop)E(Xτϵ |Xτϵ < xstop) + Px(Xτϵ > 1 − ϵ)E(Xτϵ |Xτϵ > 1 − ϵ).

We know that D(xstop) ≤ E(Xτϵ |Xτϵ < xstop) < xstop and 1 − ϵ < E(Xτϵ |Xτϵ > 1 − ϵ) ≤
L(1 − ϵ).

Thus, when ϵ goes to zero, we obtain Px(τ = ∞) = x−E(Xτ |Xτ <xstop)
1−E(Xτ |Xτ <xstop) . The estimation

then follows from the fact that D(xstop) ≤ E(Xτ | Xτ < xstop) < xstop.
To prove the second part of the statement we simply use:

Px(τ = ∞) = Px(τ = ∞ | good)·Px(good)+Px(τ = ∞ | bad)·Px(bad) = Px(τ = ∞ | good)·x

where Px(τ = ∞ | bad) = 0 holds by Lemma 7.

Notice that since x∗ < xmin, we will learn that the product is bad in the static pricing
scenario earlier than in the dynamic pricing model. Conversely, we learn that the product is
good with higher probability in the dynamic pricing model.

In the symmetric case, i.e. when q = 1 − p, we can have a better estimation. Indeed,
if τ = t then necessarily, Xt−1 = xstop and we observe a dislike at time t − 1. Thus,
E(Xτ |Xτ < stop) = D(xstop) so that Px(Xτ = ∞) = x−D(xstop)

1−D(xstop) . See also Lemma 11 in the
Appendix.

8We now give an exact expression of this probability in the symmetric case, in Lemma 11.
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With these results we can bound the ratio of not learning under the considered pricing
strategies. This happens exactly when the product is good but the market does not discover
it and stops buying in finite time. Let FNstatic and FNdynamic be the probabilities of stopping
when the product is good in the static and in the dynamic prices scenarios, respectively. In
the case when p = 1 − q we have F Nstatic

F Ndynamic
= 1/D(x∗)−1

1/D(xmin)−1 ; see Lemma 12 in the Appendix.

7 Extension
We now consider the problem when the product has a quality q ∈ Q ⊆ [0, 1]. Again, a
product has quality q ∈ Q if it is liked by a q fraction of people, or equivalently, if the
probability that a given person likes the product is q. In this model, the prior on the quality
of the product becomes a random variable X ∈ Q. Given the current prior X, we update
the prior to L(X) after a like (U) and to D(X) after a dislike (d) as follows:

P(L(X) = q) := PX(X = q |U) = PX(U | X = q)PX(X = q)
PX(U) = q

E(X)P(X = q);

P(D(X) = q) := PX(X = q |d) = PX(d | X = q)PX(X = q)
PX(d) = 1 − q

1 − E(X)P(X = q).

These equations correspond to the case in which Q is a discrete set and should be replaced
by the corresponding probability density functions in case Q is a continuous set. Again, the
prior after a sequence of likes and dislikes is independent, of the order in which the likes
and dislikes happened. Therefore we have a simple expression of the prior after a given
sequences of reviews.

Lemma 9. Given a prior X, the distribution of the updated prior Xℓ,d after a sequence of ℓ
likes and d dislikes is given by:

P(Xℓ,d ≤ q) = E(Xℓ(1 − X)d|X ≤ q)P(X ≤ q)
E(Xℓ(1 − X)d) ,

for all q ∈ Q.

Proof. By iterating the calculations above for the distribution of L(X) and D(X) one can
obtain that P(Xℓ,d = q) = qℓ(1−q)d

E(Xℓ(1−X)d)P(X = q), for any q ∈ Q. Of course, if Q is a
continuous set, we need to replace the probabilities by the corresponding densities. To
conclude the lemma, we simply need to integrate this equation for possible quality values in
Q that are below q.

Initially, suppose that the quality prior is X0. At any time, both the seller and the buyers
have access to the current prior X. So the buyer will buy the product if its utility E(X) − π
is non-negative, where π is the current price of the product. In the dynamic price setting,
in order to maximize her revenue, the seller must set the product at price π := E(X). Of
course, at any point in time, the seller may decide to stop selling the product, and she will
do this if the future expected reward is negative. With this, we can again write a dynamic
program to estimate the seller’s optimal revenue under a dynamic pricing strategy. First
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Figure 4: Seller’s revenue depending on the static price. The red plot corresponds to the
good/bad (binary) model with p = 0.6, q = 0.4, c = 0.43, δ = 0.99, and the prior is such that
the product is good/bad with probability 0.5. The blue plot corresponds to the extended
model with Q = [0.4, 0.6] and uniform prior distribution.

note that given a prior X, the value of the total expected reward (for the seller) satisfies the
following equation:

V (X) = max
(
0,E(X) − c + δ ·

(
PX(U)V (L(X)) + PX(d)V (D(X))

))
, (4)

where c is the production cost per unit. Define the estimator V̂ (X) := E(X)−c
1−δ that does

not take into account the reviews. We now describe a dynamic programming approach
to compute an approximation Ṽ (X) of V (X). For this, we consider a constant M , to be
specified later. We set Ṽ (Xℓ,d) = V̂ (Xℓ,d), for all ℓ, d such that ℓ+d = M . (As we note later,
for M relatively large and a well behaved initial prior distribution X0, the random variable
Xℓ,d is highly concentrated around its mean, which is roughly ℓ/(ℓ + d), and thus V̂ (Xℓ,d) is
very close to V (Xℓ,d)). For i = M − 1, . . . , 0 and all ℓ, d such that ℓ + d = i, we compute
Ṽ (Xℓ,d) using (4), where we have replaced V by Ṽ . This can be done in time O(M2).

Proposition 10. |Ṽ (X) − V (X)| ≤ 1−c
1−δ δM .

Proof. We prove by induction that |Ṽ (Xℓ,d) − V (Xℓ,d)| ≤ 1−c
1−δ δM−i, where i = ℓ + d. We

trivially have |Ṽ (Xℓ,d) − V (Xℓ,d)| ≤ 1−c
1−δ when ℓ + d = M . Now, when i = ℓ + d < M , we

have

|Ṽ (Xℓ,d) − V (Xℓ,d)|

≤ δ ·
(
PXℓ,d

(U)|Ṽ (Xℓ+1,d) − V (Xℓ+1,d)| + PXℓ,d
(d)|Ṽ (Xℓ,d+1) − V (Xℓ,d+1)|

)
≤ δ

(
PXℓ,d

(U) 1 − c

1 − δ
δM−(i+1) + PXℓ,d

(d) 1 − c

1 − δ
δM−(i+1)

)
= 1 − c

1 − δ
δM−i.

The previous result provides a general bound on the quality of our dynamic programming
approach. When the initial prior is discrete, the problem is combinatorial and one can use
similar ideas from Section 5 to obtain improved guarantees. On the other hand, when the set
of possible values is continuous, we can obtain significantly better bounds with additional
properties on the initial prior. In particular, when the initial prior admits a continuous
and strictly increasing distribution with bounded density, we have that for ℓ + d large, Xℓ,d

is highly concentrated around ℓ/(ℓ + d). For instance, its variance is V ar(Xℓ,d) = O( 1
ℓ+d).
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Figure 5: Seller’s revenue as a function of the cost in the same instances as in Figure 4. The
red function corresponds to the good/bad model, and the blue function corresponds to the
extended model. On the left, we plot revenues resulting from the optimal static pricing (the
price is optimized for each possible cost), and on the right, we plot revenues resulting from
dynamic pricing.

Additionally, if E(X) is bounded away from c, using Bienaymé-Tchebychev inequality (or
simply the law of large numbers), one can show that the probability that the updated prior
X ′ obtained after M reviews is such that E(X ′) < c is O(1/M2). With this, the bound of
Proposition 10 improves to O( δM

M(1−δ)).
In terms of static pricing, we can easily adapt the approach to this more general model.

Again, the seller wants to fix a price π, and the buyer buys if E(X) ≥ π, where X is the
public prior distribution. Based on this, we can devise a simple dynamic program similar to
the algorithm of Proposition 10, to obtain a good estimation of the total revenue for the
seller. Again, we can prove that if the product is bad, i.e., the true value of the product
is smaller than the cost, then the process will stop almost surely. In Figure 4 we plot the
revenue as a function of the static price in both models, setting parameters to make them
comparable (equal expected quality and equal range of product quality).

Finally, we evaluate the expected revenue of both the static and dynamic pricing policies
in both models in the comparable setting just described. The situation is depicted in
Figure 5. A surprising result is that while for the optimal static price, the seller’s revenue in
the extended model is mostly higher than that in the binary model, the situation changes
dramatically for dynamic pricing. The intuition is that in dynamic pricing, if c > 0.4, then
the expected quality minus c is higher in the good/bad model. However, when considering
static prices this effect is less relevant than the faster learning process that occurs in the
extended model. Indeed, in that case, if c is relatively small, then the extended model gets
higher revenue since the product is more interesting, and the buyers quickly learn that it is
worth buying. However, as the cost approaches 0.5, the product becomes less interesting
and then the faster learning implies that the seller’s revenue decreases faster in the extended
model.
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Appendix
Lemma 11. Assume that q = 1 − p. Then, when the product is good, the probability of
selling forever is equal to 1 −

(
1−

√
1−4p(1−p)

2p

)m

where m is the smallest integer such that
after m dislikes the prior goes below xstop.

Proof. (Lemma 11) Let pm denote this probability. We have pm = 0 if m ≤ 0; pm = p ·pm+1 +
(1 − p) · pm−1 otherwise, and limm pm = 1. The roots of the polynomial pX2 − X + (1 − p)
are 1 and 1−

√
1−4p(1−p)

2p < 1. Thus, we deduce easily the expected expression.

Lemma 12. Let FNstatic and FNdynamic be the probabilities of stopping when the product
is good, respectively in the static and in the dynamic prices scenarios. We have FNstatic ≥
FNdynamic > 0 and in the case when p = 1 − q:

FNstatic
FNdynamic

= D(xmin)
D(x∗) · 1 − D(x∗)

1 − D(xmin) = 1/D(x∗) − 1
1/D(xmin) − 1 .

Proof. (Lemma 12) By Lemma 8, in the symmetric case, the probability of having a false
negative is D(xstop)

1−D(xstop) · 1−x
x and the formula follows.
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