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Abstract—Millimeter-wave (mmWave) is a key enabler for
next-generation transportation systems. However, in an urban
city scenario, mmWave is highly susceptible to blockages and
shadowing. Therefore, base station (BS) placement is a crucial
task in the infrastructure design where coverage requirements
need to be met while simultaneously supporting localisation. This
work assumes a pre-deployed BS and another BS is required to
be added to support both localisation accuracy and coverage rate
in an urban city scenario. To solve this complex multi-objective
optimisation problem, we utilise deep reinforcement learning
(DRL). Concretely, this work proposes: 1) a three-layered grid
for state representation as the input of the DRL, which enables it
to adapt to the changes in the wireless environment represented
by changing the position of the pre-deployed BS, and 2) the
design of a suitable reward function for the DRL agent to
solve the multi-objective problem. Numerical analysis shows that
the proposed deep Q-network (DQN) model can learn/adapt
from the complex radio environment represented by the terrain
map and provides the same/similar solution to the exhaustive
search, which is used as a benchmark. In addition, we show
that an exclusive optimisation of coverage rate does not result
in improved localisation accuracy, and thus there is a trade-off
between the two solutions.

Index Terms—5G, deep Q-learning, deep reinforcement learn-
ing, multi-objective optimisation

I. INTRODUCTION

At present, road transport contributes a significant amount
to the total carbon dioxide (CO2) emissions in the EU [1].
Thus, cities are looking for practical strategies to make their
transport systems more intelligent, efficient and sustainable.
One promising solution is in the form of connected auto-
mated vehicles (AV). Next-generation transportation systems
represented by AVs will require Vehicle-to-Infrastructure (V2I)
wireless connectivity [2]. Such connection should be able to
satisfy the required high-data rates, low latency and decimeter
localisation accuracy [3].

5G networks have already adopted millimetre wave
(mmWave) along with massive multiple-input-multiple-output
(MIMO) technologies to provide extremely high data rates,
low latency and localisation. However, due to unfavourable
propagation conditions at high frequencies, mmWave signals
experience higher path-loss and are more susceptible to build-

ing blockages than sub-6 GHz bands in urban scenarios [4, 5].
Therefore, careful planning of the base station (BS) locations
is essential to reduce infrastructure costs while maintaining
the quality of service and localisation accuracy [6].

Reinforcement learning (RL) is a promising technique that
can be employed to address this problem. RL deals with
sequential decision-making problems. The goal of a sequential
decision-making problem is to select actions to maximize
long-term rewards [7]. RL and the deep RL (DRL) variant
have been used in the literature to optimise various wireless
communications systems, for example, relay nodes selection
[8] and dynamic spectrum access channel selection [9]. More
details on RL application to wireless communications can be
found in [10]. In this work, we propose the utilisation of DRL
to jointly optimise the coverage rate and localisation accuracy.

The problem of BS location optimisation has already been
addressed by several studies [11–13] utilising genetic algo-
rithms or computational geometry combined with optimisa-
tion tools. In addition, DRL algorithms have been mainly
used for aerial BS placement to operate alone or to support
terrestrial network infrastructure to improve users coverage
and throughput. For instance, a single deep Q-network (DQN)
agent is used to control either a single aerial BS [14, 15] or
multiple aerial BSs [16]. A multi-agent RL (MARL) approach
is utilised to control multiple aerial BSs [17]. In the aforemen-
tioned works, the DRL has been mainly used for aerial BS
location placement, while our work considers street level base
stations. In addition, our work assumes a pre-deployed BS
in the service region, and the proposed algorithm is capable
to adapt for changes in the pre-deployed BS location. The
contributions of this work are outlined as follows:

1) We investigate the BS placement with the objective
of jointly optimising the coverage rate and localisation
accuracy, particularly in the presence of a pre-deployed
BS. This addresses the challenge of achieving both cov-
erage requirements and accurate localisation in urban city
scenarios using mmWave technology.

2) We propose a solution based on DQN to tackle the multi-
objective problem. The DQN framework incorporates a
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novel state representation approach, using a three-layered
grid, which enhances the adaptation to the dynamic radio
environment. Additionally, we design a suitable reward
function to guide the DQN agent towards finding solu-
tions that balance between coverage rate and localisation
accuracy.

3) We demonstrate the effectiveness the DQN framework in
adapting to changes in the radio environment, as repre-
sented by the repositioning of the pre-deployed BS. The
DQN model, utilising the proposed state representation
approach, showcases the capability to learn and adjust in
complex radio environments.

II. 5G NEW RADIO NETWORK MODEL

In this section, the 5G radio network model is described. In
order to generate a realistic wireless simulation environment,
the mmWave signals are generated using a ray-tracing-based
approach, as recommended by 3GPP [18]. Furthermore, as our
city model we select the Madrid grid, developed by the METIS
project [19], to represent a generic European city layout.
The realizations of the ray-tracing-based radio channel are
evaluated by using Wireless InSite®software [20]. A similar
environment has been considered in the literature [21, 22].

For this work, a specific segment of the Madrid grid is
selected with BSs operating at 28 GHz. The BSs height are
set to 9 m and each BS includes 4 sectors, where each
sector includes a uniform linear array with 32 half-wavelength-
separated patch antenna elements. The azimuth orientations of
the sectors are set to 45◦, 135◦, 225◦ and 315◦. The utilised
beamforming technique is implemented following the phased-
array principle with a total of 64 beams per BS. The transmit
power is set to 10 dBm. Fig. 1 shows the considered Madrid
grid segment along with the candidate BSs locations. In this
work, the received signal strengths (RSSs) are utilised for the
estimation of the area coverage rate and localisation accuracy.
In practice, the RSS measurements are obtained by the UE
based on 3GPP-specified synchronisation signal blocks (SSBs)
transmitted by each BS over the 64 beams [23]. One of the
clear benefits of the considered approach is that the SSBs
are continuously available in all 5G NR networks as part
of standard network operation, and thus there is no need for
dedicated positioning reference signals whose availability can
considerably vary in practical deployments. Moreover, RSS
measurements are preferred, as they are available in the user
device during both the connected mode and the idle mode as
part of underlying mobility management procedures.

III. PROBLEM FORMULATION

Knowing the system setup, we present the BS placement
strategy to jointly optimise the localisation accuracy and the
coverage rate. After that we also discuss traditional exhaustive
search algorithms.
A. Optimisation problem

We have a multi-objective optimisation problem where we
need to find the optimal location of the BSs to minimise the
average error in localisation and maximise the coverage rate.
The optimisation problem can be formulated as:
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Fig. 1. Madrid grid segment with candidate BS locations.

max{f1(x, y)} ∧ min{f2(x, y)}
s.t. x ∈ X

y ∈ Y

(1)

where X and Y represent the sets of potential coordinates for
the BS, f1(x, y) is the average coverage rate (in percent) of the
area and f2(x, y) is the average localisation error (in meters).
The average coverage rate f1(x, y) is given as

f1(x, y) =
1

N

N∑
n=1

Cn, (2)

where N is the number of positions to be covered and Cn is
the coverage rate and is given as

Cn =

{
1 if RSS ≥ δ,
0 otherwise.

(3)

where RSS is the received signal strength from one of the BS
beams and δ is the threshold for the minimum power required
for a correct signal reception. The average localisation error
f2(x, y) is computed as

f2(x, y) =
1

N

N∑
n=1

zn, (4)

where zn is the Euclidean distance between the estimated
user equipment (UE) horizontal plane position and the actual
position and is given as

zn =
√

(xue
n − x̂ue

n )2 + (yuen − ŷuen )2, (5)

where xue
n and yuen are the user x-coordinate and y-coordinate,

respectively. Moreover x̂ue
n and ŷuen are the estimated x-

coordinate and y-coordinate of the user, respectively.
For the estimation of the user position, fingerprinting with

the traditional K-nearest neighbour algorithm (KNN) is con-
sidered as it is one of the most utilised algorithms for RSS-
based fingerprinting [24]. In KNN, the position of the UE
is estimated based on the mean of K nearest neighbours
locations. The Euclidean distance is used to find the nearest
neighbours from the accumulated database. After a brief
optimisation of localization performance, in this work, we have
defined K = 2. For more details on the K value estimation,
please refer to [22].
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Fig. 2. BS placement optimisation with DQN.

B. Brute force algorithm (BF)

A brute force (BF) algorithm performs an exhaustive search
through all the possible solutions and selects the solution that
provides the best answer for the given optimisation problem.
In this work, three different BF approaches are considered as
a reference:

1) BF coverage (BFC), to maximise the coverage rate (i.e.,
max f1(x, y)) for the given area of interest.

2) BF localisation (BFL), selects the solution that minimises
the localisation error (i.e., min f2(x, y)) for the area of
interest.

3) BF joint (BFJ), selects the solution that maximises the
coverage rate and minimises localisation error for the area
of interest. There are multiple ways to address the general
optimisation problem in (1). In this work, we chose to
maximise the ratio f1(x, y)/f2(x, y) as both f1(x, y) and
f2(x, y) have different numerical ranges [25].

These BF approaches are considered in this work in order to
provide a point of reference to which the performance of the
proposed DQN algorithm can be compared. This is possible
due to the discretisation of the space of candidate BS locations.

IV. PLACEMENT OPTIMISATION WITH DRL

In this section, we introduce the DRL model, which in-
corporates the proposed state representations and reward sig-
nal shaping, aimed at optimising the BS placement for the
given multi-objective problem. This problem involves jointly
optimising the coverage rate and localisation accuracy, under
the condition that one BS has already been deployed. This
represents a simplified and tractable version of a scenario
where some BSs may have already been deployed, perhaps
only bearing in mind the coverage rate, and new BSs are added
to also include the localisation accuracy as a relevant aspect
in the infrastructure design.

A. DRL Algorithm

In RL, the agent continuously learns according to the
rewards or punishments obtained from interacting with the
environment. The agent aims to optimise the location of BSs
based on coverage area and localisation accuracy. At each
time step t, the agent observes the state st, executes an action
at following a policy π, then receives instant reward rt, and

transits to the next state st+1, which together form a sequence
(st, at, rt, st+1) of Markov Decision Process (MDP) [7].

The goal of an MDP is to find the optimum policy that
maximises the long term discounted rewards, given by

Gt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
l=1

γlrt+l, (6)

where γ ∈ [0, 1) denotes the discount factor for weighting the
future rewards. If γ is close to 0, the RL agent will focus on
actions that maximise the short-term rewards, whereas if γ is
close to 1, the agent favours actions with long-term rewards.
The policy π is defined as the mapping from states to actions.
In Q-learning [7], the agent optimises the policy to maximise
the action-value function Q, which is the expectation of the
rewards Gt at the current state st and action at under policy
π and can be described as

Q(s, a|π) = Eπ[Gt|st = s, at = a]. (7)

However, traditional RL can only work with problems
that have a limited number of states and actions, which is
not applicable in our case. Therefore, deep neural network
is used as an approximator to the Q function. In addition,
we apply experience replay which samples the data offline,
prevents catastrophic forgetting and utilises the target network.
At the start of training, the target network is identical to
the Q-network. As training progresses, the target network’s
parameters are updated less frequently than those of the Q-
network. This approach is adopted to provide stability to the
learning process [26].

The DQN is trained to minimise the loss function given as

L(θ) = E[(yt −Q(st, at; θ))
2], (8)

where θ is a vector and represents the DQN weights that
determines the policy π. The target function yt is given as

yt = rt + γmax
a

Q(st+1, at; θtarget), (9)

where θtarget is the target network weights and is copied from
θ every fixed number steps.

B. DRL Agent and actions space
In the proposed DRL algorithm, the agent is the BS (we

will refer to the agent BS as ABS) who is trying to find
the best deployment position to improve both localisation
accuracy and coverage rate given that a BS has already been
deployed. The agent’s actions controls the location of the
ABS. Therefore, we have 5 actions taken from discrete space
A = {up, down, left, right, stay}, which represents moving
the current ABS location to one of the directions (in the 2D
domain) or to keep the ABS in the same position.

C. Proposed state representation
A typical approach for the DRL state is to have the

coordinates of the pre-deployed BS and ABS as the input
state. However, such approach is not suitable as it cannot
adapt to changes in the starting location of the pre-deployed
BS and a new training should be performed to incorporate the
change in the wireless environment. Therefore, we aim to have
a single algorithm that is capable to adapt for the changes in



Algorithm 1: Obtaining the states from city layout
Input: Pre-deployed BS and ABS locations
Input: The Madrid grid city layout.
Output: Tensor 3 × x × y.

1 Construct the 2D grid (x× y)
2 Construct the Building layer: give 1 for buildings, 0

otherwise.
3 Construct the Pre-deployed BS layer: give 1 for

already deployed BSs, 0 otherwise.
4 Construct the Agent BS layer: give 1 for agent BS, 0

otherwise.

the location of the pre-deployed BS and capturing the signal
propagation characteristics due to building shadowing. In the
context of our work, we propose the state to be represented
as a three-layered grid. The first layer represents the location
of buildings. The second layer represents the location of pre-
deployed BS and the third layer represents the location of
the ABS. Thus, for the considered Madrid grid segment, the
states are represented by a 3×19×24 tensor (i.e., composed
of 3 layers of a 19×24 grid). The grid resolution could be
varied depending on the separation between the BS candidate
positions, in our case 19×24 is a good trade-off between
complexity and performance. Each grid layer represents the
position of each individual object and defined as

• Building layer: 1 for buildings, 0 otherwise.
• Static BS layer: 1 for already deployed BSs, 0 otherwise.
• Agent BS layer: 1 for agent BS, 0 otherwise.
Algorithm 1 summarises the states extraction process.

D. Reward signal shaping

In our scenario, where the objective is to maximise the
coverage rate and minimise the localisation error, it is im-
portant that the reward rt at each time step t reflects the
joint optimisation problem. To achieve this, we have chosen
to maximise the ratio f1(x, y)/f2(x, y). Therefore, our reward
function rt is a scalar and is given as

rt =
f1(x, y)

f2(x, y)
+ p, (10)

where f1(x, y) represents the coverage area percentage ob-
tained from (2) and f2(x, y) represents the localisation error
obtained from (4). The term p corresponds to a penalty to
discourage illegal actions taken by the agent, such as colliding
with a building or moving outside the simulation environment.
To reduce the reward when an illegal action is chosen we set
p=-0.1, and define p=0 otherwise.

E. Proposed DQN training and application

The training for the proposed DQN algorithm for the ABS
placement is given by Algorithm 2. The algorithm starts
by initialising the parameters (Lines 1∼3), followed by M
episodes. Each episode includes T steps and starts with
resetting the states (Line 5). For the actions selection (Lines 7
and 8), we utilise the ϵ-greedy approach to balance exploration
and exploitation from previous experience. After an action at
is performed a reward rt is received and transit to a new

Algorithm 2: DRL-based solution for BS placement
(training phase)
Input: Tensor representation of the environment

obtained form Algorithm 1
Output: Final ABS location.

1 Initialise the replay memory D to a maximum capacity
2 Initialise Q-network with random weights θ
3 Initialise target network with weights θtarget = θ
4 for episode = 1, ..., M do
5 Initialise the environment and receive initial state

st
6 for step t = 1, ..., T do
7 with probability ϵ select random action at
8 otherwise select at = maxa Q(st, at; θ)
9 observe rt and new state st+1

10 store transition {st, at, rt, st+1} in D
11 if memory is full then
12 sample mini-batch randomly of transitions

{st, at, rt, st+1} in D

13 set yt =

{
rt t = T

rt + γmaxa Q(st, at; θ) t < T

14 update weights for θ of the main Q-network
by minimising the loss function ((8))

15 set θtarget = θ every τ steps

state st+1. The transition tuple {st, at, rt, st+1} is stored in
experience replay memory D, which stores experiences in a
first-in-first-out manner (Line 10). Once D is larger than the
mini-batch size, the network training starts (Lines 11∼15).
Random transition tuples of mini-batch size are sampled
from D to train the DQN from past experiences. The target
network is used to estimate the target value yt (Line 13),
which is used to evaluate the actions selected by the main Q-
network. The loss function is found from (8), which is used to
update the main Q-network parameters θ (Line 14). The target
network parameters θtarget are updated every fixed number τ
of training steps (Line 15).

Once the training is finished, the proposed DQN learns the
placement of the ABS. During application, the trained DQN
observes the environment state st at each step and selects
an action that maximises f1(x, y)/f2(x, y). This is repeated
multiple times (50 in our case) until the optimum ABS location
is found.

V. PERFORMANCE ANALYSIS

A. Evaluation scenario
In the DRL training stage, the DQN model is trained for

3000 episodes with 200 steps per episode. Adam optimiser
with adaptive learning rate (Lr) was used for the training
with Lr=10−3 for the first 500 episodes, Lr=10−4 for the
following 500 episodes and Lr=10−5 for the rest of episodes.
Reducing Lr allows the optimiser to find the minimum in
the loss more efficiently [27]. Parameter γ is set to 0.9, the
mini-batch size is set to 64, the memory buffer is set to
20000, the target network update frequency τ is set to 50 and
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Fig. 3. 2D visualization for the BS locations. (a) Case 1, (b) Case 2, (c) Case 3.

TABLE I
COVERAGE RATE AND LOCALISATION ERROR (IN METER).

Pre-deployed
BS BFC BFL BFJ Traditional DQN Proposed DQN

Case Cov rate Loc error Cov rate /
Loc error Cov rate Loc error Cov rate /

Loc error Cov rate Loc error Cov rate /
Loc error Cov rate Loc error Cov rate /

Loc error Cov rate Loc error Cov rate /
Loc error

1 0.98 2.45 0.40 0.90 1.46 0.61 0.90 1.46 0.61 0.88 2.19 0.40 0.92 1.73 0.53
2 0.95 3.37 0.28 0.86 1.97 0.43 0.87 1.97 0.44 0.90 3.21 0.28 0.87 1.97 0.44
3 0.98 2.17 0.45 0.95 1.71 0.55 0.95 1.71 0.55 0.95 2.35 0.40 0.98 1.87 0.52

the Mean Squared Error loss function is used. In our study,
we compare two DQNs: our proposed version with a grid-
based state representation and the traditional version that uses
a coordinate-based state representation for both pre-deployed
and new Base Stations (BS). The traditional DQN model is
structured with a Q-network that consists of two hidden layers
containing 50 and 25 neurons, respectively. These layers utilize
the ReLU activation function for the hidden layers and a
Linear activation function for the output layer. In contrast,
our proposed DQN model integrates two CNN layers on top
of these hidden layers. The kernel size of these CNN layers is
4×5, and there is a 2×2 max pooling layer following the first
CNN layer. Additionally, the starting location of our ABS is
randomly determined at the start of each training episode. To
evaluate the model’s effectiveness, 70% of the available pre-
deployed BSs are used for training, and the remaining 30%
are utilized for testing. We set the threshold for the received
signal strength (δ) to -80 dBm.

B. Numerical results
The achieved localisation error and coverage rate are shown

in Table I for the considered algorithms (i.e., BFC, BFL,
BFJ, traditional DQN and proposed DQN) for three different
pre-deployed BS scenarios. Fig. 3 shows a 2D visualization
of the BS placement for the different approaches. The BSs
deployment scenarios order in Table I matches what is shown
in Fig. 3. As it can be appreciated from Table I, BFC finds
the best location to maximise the coverage rate, but it has a
significant impact on the localisation accuracy. Taking Case
2 as an example, the BFC coverage rate is 95% while the
localisation error is more than 3.37 m. On the other hand,
the smallest localisation error given by BFL is 1.97 m at the
expense of reducing the coverage rate to 86%.

The aim of the traditional and proposed DQN algorithm is to
provide a solution that is similar to the one obtained from BFJ.

Therefore, we also investigate the Cov rate/Loc error ratio. The
three shown cases are taken from the test data (locations of
pre-deployed BS that are not used while training the DQN). As
it can be seen from Table I, the proposed DQN performance
either matches (Case 2) or provides a similar (Cases 1 and
3) coverage and localisation error as BFJ. Therefore, the
capability of the proposed DQN to adapt to the changes in
the location of the deployed BS is demonstrated, while the
traditional DQN approach fails to adapt. The reason why the
results for the proposed DQN are not identical to BFJ is as
we only trained for 70% of the possible pre-deployed BSs and
the shown results come from the testing (i.e., not seen by the
model during training). Moreover, the proposed DQN model
needs to be trained only once while BFJ needs to be trained
for each scenario. Note that the coverage rate and localisation
error achievable by the proposed DQN are not higher than
those of BFC and BFL, respectively, as they represent the
optimal solutions for coverage rate and localisation error when
considered independently. In contrast, the DQN aims for a
solution that is jointly optimized.

Finally, Fig. 4 shows the effect of selecting different ABS
locations and its effect on both localisation error and coverage
rate. The pre-deployed BS location is the same as shown
in Fig. 3(a). The localisation error and coverage rate have
different optimal locations and the ABS location to optimise
the coverage rate is not the same for optimising the localisation
error. In other words, there is a trade-off between the two
optimisation problems in BS location selection that needs to
be addressed through network planning, depending on which
parameter is more significant in each specific scenario.

VI. CONCLUSIONS

This work has investigated the placement optimisation of
mmWave BS in the presence of a pre-deployed BS to simul-
taneously optimise the coverage rate and localisation accuracy
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in an urban city layout. We presented a DRL algorithm that
is capable to solve the multi-objective problem and adapt
to the changes in the location of the pre-deployed BS by
proposing a three-layered state representation that is capable to
capture spatial properties of the radio environment. Numerical
results have demonstrated that the proposed algorithm provides
similar results as the optimum exhaustive search algorithms.
The reason why the results for the proposed DQN are not
identical to BFJ is as we only trained for 70% of the possible
pre-deployed BSs and the shown results come from the testing.
Nevertheless, the proposed DQN model needs to be trained
only once while BFJ needs to be trained for each scenario. In
addition, this work has demonstrated that there is a trade-off
between localisation accuracy and coverage rate. Future work
will extend the current work to a multi-agent scenario.
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