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Abstract

To address the challenge of constructing short girth-8 quasi-cyclic (QC) low-density parity-check (LDPC) codes,

a novel construction framework based on vertical symmetry (VS) is proposed. Basic properties of the VS structure are

presented. With the aid of these properties, existing explicit constructions for column weights from three to five which

can be transformed into the VS structure are sorted out. Then two novel explicit constructions with the VS structure

which guarantee short codes are presented for column weights of three and six. Moreover, an efficient search-based

method is also proposed to find short codes with the VS structure. Compared with the state-of-the-art benchmarks,

both the explicit constructions and the search-based method presented in this paper can provide shorter codes for

most cases. Simulation results show that the new shorter codes can perform almost the same as or better than the

longer existing counterparts. Thus, the new shorter codes can fit better with the low-latency requirement for modern

communication systems.

I. INTRODUCTION

High-performance short codes have important applications in a variety of modern communication systems,

including the future 6G system. A low-density parity-check (LDPC) code [1]–[3] with larger girth (being an even

number at least four) typically provides a larger minimum distance and thus is likely to exhibit better performance

[4]–[9]. A quasi-cyclic (QC) LDPC code is defined as the null space of a sparse parity-check matrix composed of

circulants, and thus can be compactly described by its associated exponent matrix and the circulant size [2], [10],

[11]. For the girth of 6, the problem of constructing short QC-LDPC codes has been partially solved by a couple of

existing methods. By contrast, how to construct short girth-8 QC-LDPC codes has been a long-standing challenge for

channel coding community [2]. In recent years, both explicit constructions (i.e. without using search) [12]–[14] and

search-based methods [4], [15]–[17] for girth-8 codes with short lengths (or equivalently, small circulant sizes) have

attracted increasing attention. In general, the smallest circulant sizes in the literature as far as we know are given

by earliest-sequence (ES) method [18] (J = 3) and max-function method [19] (J = 4) for explicit constructions,

and by horizontal symmetry (HS) [15] and integer-ring-sieve (IRS) methods [16] for search-based ones.
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In this paper, we first present a new structure regarding exponent matrices, which is called vertical symmetry

(VS) structure. An exponent matrix with the VS structure can be defined by Evs = [ET
U ,ET

D]T if J is even, and

[0T ,ET
U ,ET

D]T otherwise, where ED = −EU . Based on the VS structure, we then propose several new explicit and

search-based methods, which are able to offer the current smallest circulant size for most cases of row weights.

Moreover, simulations show that the proposed shorter codes perform as well as or even better than the existing

benchmarks for longer lengths. Therefore, the novel short codes have potential to match better with low-latency

requirement for modern communication systems.

II. EXPLICIT CONSTRUCTIONS FOR ODD COLUMN WEIGHTS

This section presents a basic property for VS exponent matrices with odd column weights, and then provides

some explicit constructions for J = 3 and J = 5.

In this paper, only weight-1 circulant (i.e. cyclic permutation matrix, CPM) is considered. A P × P circulant

associated with the respective element e within the J × L exponent matrix, is defined as a P × P identity matrix

with all its rows being cyclically shifted to the right by mod(e, P ) positions. Consequently, the parity-check matrix

of a (J, L)-regular QC-LDPC code is a J × L array of P × P circulants.

Lemma 1: Let J ≥ 3 be odd. Suppose that the exponent matrix E = [α0, α1, · · · , αJ−1]
T [β0, β1, · · · , βL−1]

satisfies the constraint αi + αJ−1−i = 2α J−1

2

for each i in the range 0 ≤ i < J−1

2
. Then E is equivalent to a VS

exponent matrix: Evs = [0, a,−a]T [β0, β1, · · · , βL−1], where a = [α J+1

2

− α J−1

2

, α J+1

2
+1

− α J−1

2

, · · · , αJ−1 −

α J−1

2

].

Proof : See Appendix.

Lemma 1 plays an important role in the following two subsections.

A. VS exponent matrices for J = 3

In this subsection, a type of VS exponent matrices for J = 3 is proposed, which contains three specific cases

(two derived from existing sequences and one from a new sequence).

Let J = 3 and set [α0, α1, α2] = [0, 1, 2]. According to Lemma 1, [0, 1, 2]T [β0, β1, · · · , βL−1] has an equivalent

VS exponent matrix Evs = [0, 1,−1]T [β0, β1, · · · , βL−1].

Theorem 1: Let {β0, β1, · · · , βL−1} be a sequence composed of L distinct (modulo P ) integers such that (1)

2βi 6= 2βj (mod P ), where 0 ≤ i < j ≤ L − 1; and (2) 2βk 6= βi + βj (mod P ), where i, j and k are different

integers from 0 to L − 1. Then [0, 1,−1]T [β0, β1, · · · , βL−1] is a VS exponent matrix, which yields a girth-8

QC-LDPC code for the circulant size P .

Proof : See Appendix.

In what follows, we consider three sequences which satisfy the inequality in Theorem 1. The first two sequences

are existing ones in the literature, and the third is novel.

Definition 1 [20] [21]: If {s0, s1, · · · , sL−1} is a sequence of integers such that all pair-wise sums (si + sj , 0 ≤

i ≤ j ≤ L− 1) are distinct modulo P , then it is called a Sidon sequence over ZP , the integer ring of modulo P .

Corollary 1: Let {β0, β1, · · · , βL−1} be a Sidon sequence over ZP . Then [0, 1,−1]T [β0, β1, · · · , βL−1] is a VS

exponent matrix for a girth-8 QC-LDPC code with the circulant size P .
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Since a Sidon sequence with L elements can possibly exist only if P ≥ L(L − 1) + 1, VS exponent matrices

provided by Corollary 1 generally lead to large circulant sizes. To obtain short girth-8 codes with the VS structure,

other sequences need to be examined. The earliest sequence (ES) belongs to such sequences allowing for girth-8

codes with short circulant sizes.

Definition 2 (ES) [18]: If n is even, set sel(n) = 3 · sel(n/2); otherwise, set sel(n) = sel(n − 1) + 1, where

sel(0) = 0.

Corollary 2: Let {β0, β1, · · · , βL−1} consist of the first L entries of the ES. Then [0, 1,−1]T [β0, β1, · · · , βL−1]

is a VS exponent matrix for a girth-8 QC-LDPC code with the circulant size P = 2 · sel(L− 1) + 1.

Generally speaking, as far as explicit constructions for column weight of three are concerned, the ES has held

the best record in providing the shortest circulant size (i.e. P in Corollary 2) since its invention in 2004. A thought-

provoking question, therefore, is whether there exists a way to go beyond the unrivaled ES. In our search for

exponent matrices by using a Two-Direction column-scanning greedy strategy, a magical sequence (called TD for

short) is discovered. Through careful analysis, we realize that the TD is inextricably linked with the ES, and can

be compactly defined via the latter.

Definition 3 (TD): Let std(n) = (−1)n+1[6 · sel(⌊
n
4
⌋) + mod(n, 4)] for each n ≥ 0.

Let {β0, β1, · · · , βL−1} be a sequence consisting of the first L entries of a TD sequence, i.e., βi = std(i) for

0 ≤ i ≤ L − 1. Define the value of P (L) by an iterative manner: P (L) = 3 · P (L/2) for an even L ≥ 4 and

P (L) = 3 · P (L+1

2
) + mod(L, 4)− 5 for an odd L ≥ 3, where P (2) = 3.

Conjecture 1: Let {β0, β1, · · · , βL−1} be a sequence consisting of the first L entries of the TD. For the circulant

size P (L), the VS exponent matrix [0, 1,−1]T [β0, β1, · · · , βL−1] generates a girth-8 QC-LDPC code.

The validity of Conjecture 1 has been verified for each L in the range of 3 ≤ L ≤ 500. As shown in Fig. 1, for

the vast majority of cases the TD offers a smaller circulant size than ES, and for the rest cases the former provides

the same circulant size as ES.

Besides the single circulant size of P (L), many circulant sizes larger than 2 · sel(L− 1) also allow girth-8 codes.

Conjecture 2: The exponent matrix also leads to a (3, L)-regular girth-8 QC-LDPC code for any odd circulant

size P ≥ Px, where Px = 2 · sel(L− 1) + 1.

For each L in the range 3 ≤ L ≤ 100, Conjecture 2 has been verified for each odd circulant size P in the range

of Px ≤ P < 2 · Px. This indicates that for a general row weight, the new method not only provides the smallest

circulant size to the best of our knowledge, in the sense of explicit constructions, but also allows for rather flexible

circulant sizes.

B. VS exponent matrices for J ≥ 5

Let βi = fJ(i) for 0 ≤ i ≤ L − 1, where the function fJ(i) is defined by the base-expansion method in

Section IV of [23]. Then E = [0, 1, · · · , J − 1]T [β0, β1, · · · , βL−1] corresponds to a girth-8 (J, L)-regular QC-

LDPC code for each circulant size larger than fJ(L − 1) · (J − 1), according to the proof of Construction 5 in

[23]. Since αi + αJ−1−i = 2α J−1

2

= J − 1 for each i in the range 0 ≤ i < J−1

2
, the constraint in Lemma 1
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Fig. 1. Circulant size comparison of two explicit VS methods for J = 3: the proposed TD-based method and existing ES-based method.

holds. Therefore, according to Lemma 1, E has an equivalent VS form Evs = [0, a,−a]T [β0, β1, · · · , βL−1], where

a = [1, 2, · · · , (J − 1)/2].

Although VS exponent matrices with odd values of J can be generated without search via the base-expansion

method [23] and Lemma 1, their circulant sizes are generally not small. As for an odd J ≥ 5, we have not yet

found an effective way to explicitly construct VS exponent matrices with the smallest possible circulant sizes, but

this issue clearly deserves further investigation.

III. EXPLICIT CONSTRUCTIONS FOR EVEN COLUMN WEIGHTS

This section presents a basic property for VS matrices with even column weights, and then provides some explicit

constructions for J = 4 and J = 6.

Lemma 2: Let J ≥ 4 be even. If an exponent matrix E = [α0, α1, · · · , αJ−1]
T [β0, β1, · · · , βL−1] satisfies

αi + αJ−1−i = 2x for each i (0 ≤ i ≤ J/2 − 1), where x is a constant, then E is equivalent to a VS exponent

matrix Evs = [a,−a]T [β0, β1, · · · , βL−1], where a = [α J

2
− x, · · · , αJ−1 − x].

Proof : Lemma 2 can be similarly proved as Lemma 1.

Lemma 2 has a crucial role in the following two subsections.
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A. VS exponent matrices for J = 4

In this subsection, a type of VS exponent matrices for J = 4 is proposed, from which three specific cases are

generated by combining Lemma 2 and certain existing constructions (based on greatest common divisor (GCD)

[22]–[25], disjoint difference sets (DDS) [26] and max function [19]).

Let e(i, r) be the entry in the i-th row and r-th column of a J × L matrix E, where 0 ≤ i ≤ J − 1 and

0 ≤ r ≤ L− 1. Then E can be expressed as E = [e(i, r)] for brevity.

Lemma 3: Suppose that E = [e(i, r)] is a 4×L exponent matrix satisfying e(0, r) = 0 and e(3, r) = e(1, r)+e(2, r)

for each r (0 ≤ r ≤ L− 1). Then E can be equivalently transformed into a VS matrix Evs:
















a(0) a(1) · · · a(L − 1)

b(0) b(1) · · · b(L− 1)

−a(0) −a(1) · · · −a(L− 1)

−b(0) −b(1) · · · −b(L− 1)

















(1)

for the following two cases: (i) e(1, r) + e(2, r) being even for each r (0 ≤ r ≤ L − 1): in this case, set

a(r) = −[e(1, r)+e(2, r)]/2 and b(r) = [e(1, r)−e(2, r)]/2. (ii) P being odd: in this case, if e(1, r)+e(2, r) is even,

set a(r) = −[e(1, r) + e(2, r)]/2 and b(r) = [e(1, r)− e(2, r)]/2; otherwise, set a(r) = −[P + e(1, r) + e(2, r)]/2

and b(r) = [e(1, r)− e(2, r)− P ]/2.

Proof : See Appendix.

The case 1 in Lemma 3 is illustrated by two examples. The first one is an explicit construction based on GCD,

while the second is based on random search.

Example 1 (GCD): Let J = 4 and L be odd. Set E = [0, 1, L, L+1]T [0, 1, · · · , L− 1] [22]. Then its VS form is

Evs = [a,−a]T [0, 1, · · · , L− 1], where a = [(L− 1)/2, (L+1)/2]. The VS matrix corresponds to a (4, L)-regular

girth-8 QC-LDPC code for any circulant size P ≥ L2.

Example 2: Set P = 38 and L = 8. Generate the exponent matrix E according to Lemma 3, where the middle

two rows are [e(1, 0), e(1, 1), · · · , e(1, L−1)] = [7, 10, 20, 11, 29, 2, 35, 12] and [e(2, 0), e(2, 1), · · · , e(2, L−1)] =

[1, 10, 22, 3, 15, 16, 19, 28], respectively. Then, thanks to Lemma 3 (case 1), it is easily seen that E is equivalent to

the following VS exponent matrix:
















34 28 17 31 16 29 11 18

3 0 37 4 7 31 8 30

−34 −28 −17 −31 −16 −29 −11 −18

−3 0 −37 −4 −7 −31 −8 −30

















, (2)

which corresponds to a (4, 8)-regular girth-8 code with the circulant size of 38. The length of this code is shorter

than the shortest one [15] in the literature as far as we know.

To illustrate the case 2 in Lemma 3, we first use an example based on DDS [26], and then present an explicit

construction which is a modification of the max-function method [19].
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Example 3 (DDS): Set P = 131 and L = 8. Then the two sets, d1 = [0, 31, 37, 55, 56, 83, 97, 99] and d2 =

[0, 12, 17, 21, 47, 50, 57, 70] form a (P,L, 2)-DDS over ZP . Due to Lemma 3 (case 2), a VS exponent matrix can

be obtained as follows:
















0 44 104 93 14 130 54 112

0 75 10 17 70 82 20 80

0 −44 −104 −93 −14 −130 −54 −112

0 −75 −10 −17 −70 −82 −20 −80

















, (3)

which corresponds to a (4, 8)-regular girth-8 code with the circulant size of 131.

Since a (P,L, 2)-DDS over ZP possibly exists only if P ≥ 2L(L−1)+1 [26], the circulant size (≥ 2L(L−1)+1)

in Example 3 is much larger than that (≥ L2) in Example 1. Circulant sizes noticeably smaller than that in Example 1,

are redolent of our earlier construction for J = 4 based on max function [19], which is considered as a scheme

able to provide by far the smallest circulant sizes in an explicit manner [15]. The max-function method can be

slightly modified to attain VS girth-8 codes for each odd circulant size larger than approximately 3L2/4, where L

can be arbitrarily chosen.

Corollary 3 (max-function): Let E = [e(i, r)] be a 4 × L exponent matrix. Set e(0, r) = 0, e(1, r) = r and

e(3, r) = e(2, r) + e(1, r) for 0 ≤ r ≤ L− 1, where e(2, 0) = 0 and e(2, r+ 1) = e(2, r) + max(r + 2, L− r) for

0 ≤ r ≤ L− 2. For each odd P ≥ ⌈3 · L2/4⌉+ L− 1, there exists a VS exponent matrix Evs which corresponds

to a (4, L)-regular girth-8 QC-LDPC code for the circulant size P .

Proof : See Appendix.

In summary, the circulant sizes available from Example 1 (GCD, L odd) and Example 3 (DDS, P odd) are

approximately linear with L2 and 2L2, respectively, while that from Corollary 3 (max-function, P odd) is merely

with 3L2/4. Clearly, explicit constructions suitable for even P noticeably smaller than L2, remain unsolved and

deserve further research.

B. VS exponent matrices for J = 6

In this subsection, new VS exponent matrices with small circulant sizes are proposed for J = 6.

Theorem 2: The VS exponent matrix Evs = [a,−a]T [0, 1, · · · , L − 1] corresponds to a (6, L)-regular girth-

8 QC-LDPC code for the circulant size P , where a and P can be separately determined for four cases: (i) if

mod(L, 6) ∈ {0, 2}, set a = [2, L+1, L+3] and P = (L+2)2+3; (ii) if mod(L, 6) ∈ {1, 3}, choose a = [2, L, L+2]

and P = (L+1)2+3; (iii) if mod(L, 6) = 4, set a = [2, L+3, L+5] and P = (L+1)(L+5); (iv) if mod(L, 6) = 5,

choose a = [2, L+ 2, L+ 4] and P = L(L+ 4).

Proof : See Appendix.

From Fig. 2, it is clear that the circulant sizes offered by the new girth-8 codes in Theorem 3 are much shorter

than existing benchmarks for almost all values of row weight.

IV. SEARCH-BASED METHOD

In Section II and III, VS exponent matrices are proposed via pure formulae without search procedure. In this

section, we consider how to obtain VS exponent matrices with the aid of simple but efficient search procedure. To
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Fig. 2. Circulant size comparison for J = 6: the proposed explicit VS method and existing random (HS+IRS) method.

be specific, we only consider a type of VS exponent matrices, the upper part of which can be expressed as the

product of two sequences: {α0, α1, · · · α⌊ J−2

2
⌋} and {β0, β1, · · · , βL−1}. Set J0 = ⌊J−2

2
⌋. Define EU = [αi · β

r]

for 0 ≤ i ≤ J0 and 0 ≤ r ≤ L− 1.

A. Governing equations for 4-cycles

Let r and s be two indexes such that 0 ≤ r < s ≤ L− 1.

(1) If a 4-cycle exists in the upper (or lower) part of the exponent matrix, then such a cycle can be represented

by (αi−αj)(β
r−βs) = 0 (mod P ), where 0 ≤ i < j ≤ J0. (2) If a 4-cycle occurs cross the upper and lower parts

of the exponent matrix, then this cycle can be denoted by (αi+αj)(β
r−βs) = 0 (mod P ), where 0 ≤ i ≤ j ≤ J0.

(3) For a 4-cycle in the all-zero row and the upper (or lower) part, it can be expressed as αi(β
r−βs) = 0 (mod P ),

where 0 ≤ i ≤ J0.

B. Governing equations for 6-cycles

Let r, s and t be different indexes in the range 0 ≤ r, s, t ≤ L− 1. (1) If a 6-cycle exists in the upper (or lower)

part of the exponent matrix, then such a cycle can be represented by (αi−αj) ·β
s+(αj−αk) ·β

r+(αk−αi) ·β
t =

0 (mod P ), where 0 ≤ i < j < k ≤ J0.
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(2a) If a 6-cycle occurs in two rows in the upper part and one row in the lower part of the exponent matrix, then

this cycle can be expressed by (αi−αj) ·β
s +(αj +αk) ·β

r − (αk +αi) ·β
t = 0 (mod P ) where 0 ≤ i < j ≤ J0

and 0 ≤ k ≤ J0. (2b) If a 6-cycle exists in one row in the upper part and two rows in the lower part of the exponent

matrix, then this cycle can be denoted by (αi + αj) · β
s + (αk − αj) · β

r − (αk + αi) · β
t = 0 (mod P ) where

0 ≤ i ≤ J0 and 0 ≤ j < k ≤ J0.

(3a) If a 6-cycle occurs in the all-zero row and the upper (or lower) part of the exponent matrix, then such a

cycle can be represented by αi(β
r − βs) + αj(β

t − βr) = 0 (mod P ), where 0 ≤ i < j ≤ J0. (3b) If a 6-cycle

exists in the all-zero row, the upper part, and the lower part of the exponent matrix, then this cycle can be expressed

as αi(β
r − βs)− αj(β

t − βr) = 0 (mod P ), where 0 ≤ i, j ≤ J0.

C. Search algorithm

To reduce search space, α0 is set to 1. Consequently, huge search space due to L⌊J⌋/2 values is significantly

reduced to very small space merely involving ⌊J⌋/2 values. For example, when J = 4 and J = 5, it suffices to

search for only two values (α1 and β) to generate a (J, L)-regular QC-LDPC code without cycles of four and six.

For another example, when J = 6 and J = 7, only three values (α1, α2 and β) are enough to define the new

QC-LDPC codes. The results of this search method (by avoiding all 4-cycles and 6-cycles described in Subsection

B) are listed in Tables II∼IV. Compared with the state-of-the-art benchmarks (HS and IRS methods), the new search

method can provide shorter codes for most values of L (especially for J = 5 and J = 6).

Moreover, the following example shows that by using a random search without the constraint of EU = [αi · β
r],

the VS structure we proposed can provide the current smallest circulant sizes for J = 4 and small values of L.

Example 4: Let J = 4. Then the following two EU ’s lead to a VS girth-8 (4, 5)-regular code with P = 21 and

a VS girth-8 (4, 7)-regular code with P = 29, respectively.





0 1 2 3 8

0 8 3 7 10



 ,





0 1 2 4 9 25 26

0 2 12 9 11 19 14



 .

V. PERFORMANCE SIMULATIONS

In this section, three new VS codes are compared with existing benchmarks in terms of bit-error rate (BER)

and block-error rate (BLER). Assume the BPSK modulation, AWGN channel and sum-product-algorithm (SPA)

decoding. (1) for J = 3 and L = 9, the new TD-based VS code is compared with existing ES-based code; (2) for

J = 6 and L = 11, the new code (generated by Theorem 2 (iv)) is compared with the two codes from IRS-search

method [16] and HS-search method [15]; (3) for J = 6 and L = 12, the new search-based code is compared with

the code from IRS-search method [16]. From Fig. 3∼5, it is observed that the new shorter VS codes perform almost

the same as or better than the longer counterparts. Also shown in Fig. 5 is the noticeably improved performance

of a masked (3, 6)-regular code, which is generated by combining the new VS code with a masking matrix (from

g1 = [1, 0, 0, 0, 1, 1] and g2 = [0, 1, 0, 0, 1, 1] via the manner described in Example 2 (code 1) of [24]).
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TABLE I

CIRCULANT SIZE COMPARISON FOR J = 4: NEW SEARCH METHOD AND THE STATE-OF-THE-ART SEARCH METHOD [15] (NA: NOT

AVAILABLE).

L Pnew [α1, β] PHS [15]

5 29 [12,5] 23

6 37 [3,11] 24

7 43 [12,4] 30

8 53 [23,3] 39

9 61 [24,3] 48

10 61 [24,3] 57

11 89 [4,2] 67

12 91 [31,19] 80

13 131 [17,39] 98

14 137 [37,16] 112

15 137 [37,16] 130

16 137 [37,16] 150

17 137 [37,16] 170

18 181 [72,101] 190

19 199 [74,124] 205

20 199 [74,124] 220

21 199 [74,124] NA

22 277 [4,16] NA

23 277 [4,16] NA

24 313 [25,19] NA

25 313 [25,19] 350

VI. CONCLUSION

A new structure called vertical symmetry (VS) for exponent matrices of QC-LDPC codes is proposed to construct

short codes without cycles of length four and six. Properties, explicit constructions and search-based methods

regarding the novel structure are investigated. While the VS-based QC-LDPC codes have shorter lengths for most

row weights, their performances are identical to or even superior to the existing benchmarks for longer lengths.
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Fig. 3. Performance comparison of (3, 9)-regular girth-8 VS codes: derived from existing ES and new TD methods.
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Fig. 4. Performance comparison of (6, 11)-regular girth-8 codes: new VS code (L = 11 in Theorem 2 (iv)) and existing HS and IRS codes.
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APPENDIX A

PROOF OF LEMMA 1

Proof : Clearly, after subtracting α J−1

2

· βi from each element within the i-th column of this matrix, the re-

sultant matrix is equivalent to the original matrix. Perform this operation in turn for all columns, and the final

matrix becomes [α0 − α J−1

2

, α1 − α J−1

2

, · · · , αJ−1 − α J−1

2

]T [β0, β1, · · · , βL−1] Since αi + αJ−1−i = 2α J−1

2

,

we have αi − α J−1

2

= −(αJ−1−i − α J−1

2

). As a result, rearranging rows leads to the VS exponent matrix

Evs = [0, a,−a]T [β0, β1, · · · , βL−1].

APPENDIX B

PROOF OF THEOREM 1

Proof : Thanks to Lemma 1, it suffices to prove that [0, 1, 2]T [β0, β1, · · · , βL−1] leads to a QC-LDPC code free

of 4-cycles and 6-cycles for the circulant size P . First, consider 4-cycles. Case (1): If there exist 4-cycles associated

with the first two rows of the exponent matrix, then such cycles can be expressed as (0−βi)+(βj−0) = 0 (mod P ),

where 0 ≤ i < j ≤ L− 1. It reduces to βi = βj (mod P ), which is impossible due to Condition (i) in the theorem.

Case (2): If there are 4-cycles in the first and last rows of the exponent matrix, then they can be denoted by

(0 − 2βi) + (2βj − 0) = 0 (mod P ), where 0 ≤ i < j ≤ L − 1. It becomes 2βi = 2βj (mod P ), which is

impossible due to Condition (i) in the theorem. Case (3): The nonexistence of 4-cycles associated with the last two

rows of the exponent matrix can be similarly proved as in Case (1).

Next, consider 6-cycles. Let i, j and k be three different indexes from 0 to L− 1. If there exist 6-cycles in three

rows of the exponent matrix, then without loss of generality they can be expressed as (0−βj+βi−2βi+2βk−0) =

0 (mod P ), equivalent to 2βk = βi + βj (mod P ). It is impossible owing to Condition (2) in the theorem.

Finally, the exponent matrix is not associated with 4-cycles but has a sub-matrix [0, 1, 2]T [βi, βj], where 0 ≤ i <

j ≤ L− 1. Therefore, 8-cycles exist [23].

APPENDIX C

PROOF OF LEMMA 3

Proof : (i) case 1: Subtracting [e(1, r)+e(2, r)]/2 from each element within the r-th column results in an equivalent

exponent matrix. The r-th column becomes [a(r), b(r),−b(r),−a(r)]T . Swapping the last two rows yields the final

VS exponent matrix. (ii) case 2: If e(1, r) + e(2, r) is even, subtract [e(1, r) + e(2, r)]/2 from each element within

the r-th column; otherwise, subtract [P +e(1, r)+e(2, r)]/2. The r-th column becomes [a(r), b(r),−b(r),−a(r)]T .

Swapping the last two rows yields the final VS exponent matrix.

APPENDIX D

PROOF OF COROLLARY 3

Proof : On the one hand, according to Theorem 1 in [19], the exponent matrix E leads a girth-8 QC-LDPC

code for each circulant size P ≥ ⌈3L2/4⌉+ L− 1. On the other hand, according to Lemma 3(ii), a VS exponent

matrix Evs can be generated from E as long as the circulant size P is odd. Therefore, Evs corresponds to a girth-8

QC-LDPC code for each odd circulant size P ≥ ⌈3L2/4⌉+ L− 1.
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APPENDIX E

PROOF OF THEOREM 2

The following two properties and three transformations are useful in the proof of our new construction.

p.0: For a triple of integers (0, a, b) such that 0 < a < b and b/gcd(b, a) ≥ L, the matrix [0, a, b]T ·[0, 1, · · · , L−1]

has no 6-cycles for any circulant size P ≥ b(L− 1) + 1.

p.1: For a triple of integers (0, a, b) such that gcd(a, c) = c and gcd(b, c) = 1, the matrix [0, a, b]T ·[0, 1, · · · , L−

1] has no 6-cycles for any circulant size P satisfying gcd(P, c) = c.

Shifting (‘S’): For any circulant size, the two exponent matrices, [a0, a1, · · · , ai]
T · [0, 1, · · · , L − 1] and [a0 −

a0, a1 − a0, · · · , ai − a0]
T · [0, 1, · · · , L− 1] have the same cycle distribution.

Reversion (‘R’) : For any circulant size, the two exponent matrices, [a0, a1, · · · , ai]
T · [0, 1, · · · , L − 1] and

[ai − ai, ai − ai−1, · · · , ai − a0]
T · [0, 1, · · · , L− 1] have the same cycle distribution.

Division (‘D’): For any circulant size P and any positive integer d such that gcd(d, P ) = 1, the two exponent

matrices, [d · a0, d · a1, · · · , d · ai]
T · [0, 1, · · · , L− 1] and [a0, a1, · · · , ai]

T · [0, 1, · · · , L− 1] have the same cycle

distribution. This transformation with the parameter d is denoted by ‘/d’.

Proof : We only prove the case (iii), i.e. mod(L, 6) = 4; the other cases can be similarly proved. It is equivalent

to proving that [0, 2, L+ 3, L+ 7, 2L+ 8, 2L+ 10]T [0, 1, · · · , L− 1] corresponds to a girth-8 QC-LDPC code for

the circulant size of P = (L+1)(L+5). First, consider 4-cycles. There are 15 cases. The three cases, expressed as

(0, 2), (0, L+ 3) and (0, L+ 7), directly guarantee the absence of 4-cycles for P = (L+ 5)(L+ 1). According to

Transformation ‘D’, the two cases, (0, 2L+8), (0, 2L+10), are turned into (0, L+4) and (0, L+5), respectively;

By utilizing first Transformation ‘S’ and then ‘D’, the two cases, (2, 2L + 8) and (2, 2L + 10), are reduced to

(0, L+ 3) and (0, L+ 4), respectively. Therefore, 4-cycles are also impossible for the four cases. For each of the

rest 8 cases, it is reduced to the form (0, x) via ‘S’, where 2 ≤ x ≤ L+ 7. As a result, these 8 cases also exclude

4-cycles.

Now, we consider 6-cycles. There are 20 cases for 6-cycles, as listed in Table IV. The reason why 6-cycles for

each case cannot exist is explained in the last column of Table IV. For example, Case 12 means that the original

triple [2, L + 3, 2L + 8] can be reduced to [0, L + 1, 2L + 6] via ‘S’, and further to [0, L + 5, 2L + 6] via ‘R’.

Accordingly, the original matrix [2, L+3, 2L+8]T ·[0, 1, · · · , L−1] is reduced to [0, L+1, 2L+6]T ·[0, 1, · · · , L−1],

and further to [0, L+5, 2L+6]T · [0, 1, · · · , L−1]. By choosing a = L+5, b = 2L+6 and c = L+5, we now check

whether a, b, c and P = (L+1)(L+5) satisfy all the conditions in Property p.1. Since mod(L, 6) = 4, it follows

that gcd(L+1, 2) = 1 and hence gcd(b, c) = gcd(L+1, 4) = 1. Moreover, it is obvious that gcd(P, c) = c and

gcd(a, c) = c. Therefore, thanks to Property p.1, the matrix [0, L+5, 2L+6]T · [0, 1, · · · , L−1] are not associated

with 6-cycles for the circulant size P = (L+1)(L+5). Other 19 cases in this table can be similarly analyzed.
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TABLE IV

REASONS FOR THE NONEXISTENCE OF 6-CYCLES ASSOCIATED WITH EACH COMBINATION OF THREE ROWS WITHIN THE EXPONENT

MATRIX. THE NOTATION a ∼ b MEANS GCD(a, b) = 1

# Original triple Reduced form Reason

1 [0, 2, L+ 3] - L even, p.0

2 [0, 2, L+ 7] - L even, p.0

3 [0, 2, 2L+ 8] (/2)[0, 1, L+ 4] P odd, p.0

4 [0, 2, 2L+ 10] (/2)[0, 1, L+ 5] P odd, p.0

5 [0, L+ 3, L+ 7] (R)[0, 4, L+ 7] L even, p.0

6 [0, L+ 3, 2L+ 8] (R)[0, L+ 5, 2L+ 8] L+ 1 ∼ 2, p.1

7 [0, L+ 3, 2L+ 10] - L+ 1 ∼ 2, p.1

8 [0, L+ 7, 2L+ 8] (R)[0, L+ 1, 2L+ 8] L+ 1 ∼ 6, p.1

9 [0, L+ 7, 2L+ 10] (R)[0, L+ 3, 2L+ 10] same as #7

10 [0, 2L+ 8, 2L+ 10] (R)[0, 2, 2L+ 10] same as #4

(/2)[0, 1, L+ 5]

11 [2, L+ 3, L+ 7] (S)[0, L+ 1, L+ 5] L even, p.0

(R)[0, 4, L+ 5]

12 [2, L+ 3, 2L+ 8] (S)[0, L+ 1, 2L+ 6] L+ 1 ∼ 2, p.1

(R)[0, L+ 5, 2L+ 6]

13 [2, L+ 3, 2L+ 10] (S)[0, L+ 1, 2L+ 8] same as #8

14 [2, L+ 7, 2L+ 8] (S)[0, L+ 5, 2L+ 6] same as #12

15 [2, L+ 7, 2L+ 10] (S)[0, L+ 5, 2L+ 8] same as #6

16 [2, 2L+ 8, 2L+ 10] (S)[0, 2L+ 6, 2L+ 8] same as #3

(R)[0, 2, 2L+ 8]

(/2)[0, 1, L+ 4]

17 [L+ 3, L+ 7, 2L+ 8] (S)[0, 4, L+ 5] same as #11

18 [L+ 3, L+ 7, 2L+ 10] (S)[0, 4, L+ 7] same as #5

19 [L+ 3, 2L+ 8, 2L+ 10] (S)[0, L+ 5, L+ 7] same as #2

(R)[0, 2, L+ 7]

20 [L+ 7, 2L+ 8, 2L+ 10] (S)[0, L+ 1, L+ 3] same as #1

(R)[0, 2, L+ 3]
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