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ABSTRACT

Training spiking neural networks to approximate complex functions is essential for studying informa-
tion processing in the brain and neuromorphic computing. Yet, the binary nature of spikes constitutes
a challenge for direct gradient-based training. To sidestep this problem, surrogate gradients have
proven empirically successful, but their theoretical foundation remains elusive. Here, we investigate
the relation of surrogate gradients to two theoretically well-founded approaches. On the one hand, we
consider smoothed probabilistic models, which, due to lack of support for automatic differentiation,
are impractical for training deep spiking neural networks, yet provide gradients equivalent to surrogate
gradients in single neurons. On the other hand, we examine stochastic automatic differentiation,
which is compatible with discrete randomness but has never been applied to spiking neural net-
work training. We find that the latter provides the missing theoretical basis for surrogate gradients
in stochastic spiking neural networks. We further show that surrogate gradients in deterministic
networks correspond to a particular asymptotic case and numerically confirm the effectiveness of
surrogate gradients in stochastic multi-layer spiking neural networks. Finally, we illustrate that
surrogate gradients are not conservative fields and, thus, not gradients of a surrogate loss. Our work
provides the missing theoretical foundation for surrogate gradients and an analytically well-founded
solution for end-to-end training of stochastic spiking neural networks.

Keywords Spiking neural networks · surrogate gradients · stochastic automatic differentiation · stochastic spiking
neural networks

1 Introduction

Our brains efficiently process information in spiking neural networks (SNNs) that communicate through short stereo-
typical electrical pulses called spikes. For understanding information processing in the brain and instantiating similar
capabilities in silico, SNNs are an indispensable tool. Like conventional artificial neural networks (ANNs), SNNs
require training to implement specific functions. However, typical SNN models are not differentiable due to the
binary nature of the spike, which precludes the use of standard gradient-based training techniques based on back-
propagation (BP) [1]. To overcome this problem, there are multiple options. One can dispense with hidden layers
altogether [2, 3], but this option has its obvious limitations. Alternatively, one makes the neuron model differentiable
[4] or works in a reduced solution space, for instance, by only considering the timing of existing spikes for which
gradients exist [5–8]. Finally, one can replace the gradient with a suitable surrogate [9–15]. In this article, we focus
on the latter. Surrogate gradient (SG) approaches are empirically successful and not limited to changing the timing of
existing spikes while working with non-differentiable neuron models.

However, SGs lack a solid theoretical foundation. We address this gap in our understanding by analyzing the
commonalities and differences of SGs with theoretically well-founded approaches based on stochastic networks.
Specifically, we focus on smoothed probabilistic models (SPMs) [14, 16] and the more recently proposed stochastic
automatic differentiation (stochAD) framework [17]. SPMs typically rely on stochasticity to smooth out the optimization
landscape in expectation to enable gradient computation on this smoothed loss. In this article, we particularly focus on

ar
X

iv
:2

40
4.

14
96

4v
1 

 [
cs

.N
E

] 
 2

3 
A

pr
 2

02
4



neuron models with escape noise [18] which are commonly used to smooth the non-differentiable spikes in expectation
and for which exact gradients are computable [19, 20]. However, extending SPMs to multi-layer and, in particular, deep
neural networks has been difficult because they preclude using BP, which usually requires additional approximations
[21]. In contrast, stochAD is a recently developed framework for automatic differentiation (AD) in programs with
discrete randomness, i.e. with discrete random variables. While this opens up the door for BP or other recursive gradient
computation schemes, the framework has not yet been applied to SNNs.

Here, we jointly analyze the above methods, elucidate their relations, and provide a rigorous theoretical foundation
for SG-descent in stochastic SNNs. We first provide some background information on each of the above methods
before starting our analysis with the case of a single Perceptron. From there, we move to the more complex case
of multi-layer Perceptrons (MLPs), where we elaborate the theoretical connection between SGs and stochAD, and
end with deep networks of leaky integrate-and-fire (LIF) neurons. Finally, we substantiate the theoretical results with
empirical simulations.

2 Background on SGs, SPMs, and stochAD

Before analyzing the relation between SGs, gradients of the log-likelihood in SPMs, and stochAD, we briefly review
these methods. The first two approaches have been developed for training SNNs. Their goal is to compute reasonable
gradient approximations, but they use different methods for smoothing spikes. In contrast, the third approach is not
tailored to SNNs and aims to compute unbiased gradients of arbitrary functions with discrete randomness by introducing
the concept of stochastic derivatives.

Smoothed probabilistic models. SPMs are based on stochastic networks in which the gradients are well-defined in
expectation [14, 16]. Typically such models consist of a noisy neuron model, such as the LIF neuron with escape noise
[18] and a probabilistic loss function. On the one hand, this includes models that require optimizing the log-likelihood
of the target spike train being generated by the current model [19]. However, this method only works effectively without
hidden units. On the other hand, SPMs also comprises models that follow a variational strategy [20], which makes
them applicable to networks with a single hidden layer. In general, the gradients that are computed within the SPM
framework are given by

∂

∂w
E [L] ,

where L is the loss and w is an arbitrary model parameter. The computational cost associated with evaluating E [L]
precludes training deeper networks in practice. This is because SPMs lack support for AD, as we will explain in detail
in Section 3.2.1.

Surrogate gradients. SGs are a heuristic that constitute a continuous relaxation of the non-differentiable spiking
activation function that occurs when computing gradients in SNNs [14]. To that end, one systematically replaces the
derivative of the hard threshold by a surrogate derivative (SD), also called pseudo-derivative [13], when applying the
chain rule. The result then serves as a surrogate for the gradient.

For example, when computing the derivative of the loss with respect to a weight, ∂L
∂w , the problematic derivative of a

Heaviside ∂Θ(u)
∂u is replaced by an SD

∂L
∂w
← ∂L

∂Θ(u)

∂σ(βSG · u)
∂u︸ ︷︷ ︸
SD

∂u

∂w
.

Different SD functions are used in practice. For instance, rectified linear functions have been used successfully as SD [5,
11, 13], whereas SuperSpike [12] used a scaled derivative of a fast sigmoid h(x) = 1

(β|x|+1)2
. However, SNN training

is robust to the choice of SDs [22, 23]. In binarized neural networks, the notion of SGs is known as the straight-through
estimator (STE) [10, 24–26].

Stochastic automatic differentiation. AD in general aims at calculating the derivative, i.e., infinitesimal changes, of
a function at a given location in parameter space together with a primal evaluation of the function at the same location.
The chain rule is used to calculate the derivatives, and the individual derivative terms can be calculated in forward or
backward mode, with the latter being called BP [27]. To extend this to exact AD in programs with discrete randomness,
the stochAD framework Arya et al. [17] introduces stochastic derivatives. To deal with discrete randomness, stochastic
derivatives consider not only infinitesimally small continuous changes but also finite changes with infinitesimally small
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probability. Following Arya et al. [17], a stochastic derivative of a random variable X(p) consists of a triple (δ, w, y),
where δ is the "almost sure" derivative, w, the derivative of the probability of a finite change, and Y , the alternate value,
i.e., the value of X(p) in case of a finite jump. Although stochastic derivatives are suitable for forward mode AD, they
cannot be used directly for BP as of now. This is because they application of the chain rule would require the derivatives
to be scalars, whereas they consist of a triple. The stochAD framework outlines a way to convert them to a single scalar
value, which makes them compatible with BP albeit at the cost of introducing bias. Given a stochastic derivative, its
smoothed stochastic derivative is

δ̃ = E[δ + w(Y −X(p))|X(p)]. (1)

for one realization of the random variable X(p) [17].

3 Analysis of the relation between SGs, SPMs, and stochAD for direct training of SNNs

To fathom the theoretical foundation of SG learning, we focused on the theoretically well-grounded SPMs and the
recently proposed stochAD framework. Because both approaches assume stochasticity whereas SGs are typically
applied in deterministic settings, we start our analysis with focus on stochastic networks. We will later discuss
deterministic networks as a special case of the stochastic setting.

To keep our analysis general and independent of the choice of the loss function, we consider the Jacobian ∇wy defined
at the network’s output y where w are the trainable parameters or weights. For simplicity and without loss of generality,
we further consider networks with only one output such that the above is equivalent to studying

∇y =

(
∂

∂w1
y, . . . ,

∂

∂wn
y

)
.

To further ease the analysis, we start with binary Perceptrons, thereby neglecting all temporal dynamics and the reset
of conventional spiking neuron models, while retaining the essential binary spike generation process (see Fig. 1A,
Methods). We begin our comparison by examining a single neuron before moving on to MLPs. We defer the discussion
of LIF neurons to Section 5.

3.1 Analysis of a single binary Perceptron

The deterministic Perceptron is defined as

u = WTx+ b

y = Θ(u− θ) , (2)

where Θ(·) is the Heaviside step function and u is the membrane potential, which depends on the weights W , the bias b,
the input x, and the firing threshold θ. The Jacobian is related to the gradient via

∂L
∂wi

=
∂L
∂y

∂y

∂wi
,

where the problematic derivative of the non-differentiable Heaviside function appears in ∂y
∂wi

. When computing SGs the
derivative of the Heaviside function is replaced with the corresponding SD

∂

∂wi
y(u− θ) :=

∂

∂wi
σβ(u− θ) . (3)

To see how the above expression compares to the derivative of the corresponding SPM, we consider the stochastic
Perceptron

u = WTx+ b

p = f(u− θ) = σβ(u− θ) (4)
y ∼ Ber(p) .

To model stochasticity, we model escape noise with the probability of firing f(·) given by the sigmoid function
σβ(u− θ) = 1

1+exp(−β(u−θ)) , where β controls the steepness. Importantly, there is some degree of freedom as to which
escape noise function we chose. Other common choices in the realm of spiking neurons are the exponential or error
function [18]. For our current choice, the sigmoid, we find that it approaches the step function in the limit β →∞ and
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Figure 1. SGs are equivalent to gradients of expected outputs in SPMs and smoothed stochastic derivatives
in single binary Perceptrons. (A) Membrane potential dynamics of an LIF neuron (red) in comparison with the
Perceptron. When input spikes, n0 and n1, are received, they excite the LIF neuron which causes the membrane
potential to increase. Once it reaches the threshold, output spikes, nout, are emitted. In the limit of a large simulation
time step (dt≫ τmem) and appropriate scaling of the input currents the LIF neuron approximates a Perceptron receiving
time-locked input (gray lines). (B) Left: The simplified computational graph of a deterministic (blue) and a stochastic
(yellow) Perceptron. Right: Forward pass in a deterministic (top) or stochastic (bottom) shallow network. The colored
arrows indicate that both use the gradient of σβ(·) on the backward pass, which is the gradient of the expected output of
the stochastic neuron. In the case of the deterministic neuron, this constitutes the SG used instead of the non-existing
gradient of the step function. (C) Network output over multiple trials (left) and the derivative in the deterministic
Perceptron (right). For SG-descent, the derivative of a sigmoid (gray) is used to approximate the non-existing derivative
of the step function (black). (D) Same as (C) but for the stochastic Perceptron. Escape noise leads to variability in the
spike trains over trials (left). The expected output follows a sigmoid, and we can compute the derivative (yellow curve)
of the expected output (right).

the stochastic Perceptron becomes deterministic. Finally, for ease of comparison, we use the same β as above for the
SD.

In SPMs, the idea is to compute the derivative of the expected loss at the output to smooth out the discrete spiking
non-linearity [19]. In our setup, this amounts to computing the expected output of the stochastic Perceptron,

E[y] = σβ(u− θ),

and taking its derivative
∂

∂wi
E[y] =

∂

∂wi
σβ(u− θ) . (5)

We note that Expressions (5) and (3) are the same. Thus, the derivative of the expected output of the stochastic
Perceptron is equivalent to the SD of the output of the deterministic Perceptron for suitable choices for the escape noise
and SD functions (see Fig. 1B). For equivalent expressions, the choice of the SD should be matched to the derivative of
the escape noise in the corresponding stochastic neuron.

Next, we compare these findings with the derivative obtained from the stochAD framework. To that end, we first apply
the chain rule

∂y

∂wi
=

∂

∂p
Ber(p)

∂

∂wi
p (6)

and use the smoothed stochastic derivative of a Bernoulli random variable following the steps of Arya et al. [17]. The
right stochastic derivative for a Bernoulli random variable is given by (δR, wR, YR) = (0, 1

1−p , 1) if the outcome of the
random variable was zero (Ber(p) = 0) and zero otherwise. The left stochastic derivative is given by (δL, wL, YL) =
(0, −1

p , 0) if Ber(p) = 1 and also zero otherwise. According to Eq. (1), the corresponding smoothed versions are

δ̃R = 1
1−p · 1X(p)=0 and δ̃L = 1

p · 1X(p)=1. Since every affine combination of the left and right derivatives is a valid

derivative, we can use ∂
∂pBer(p) = (1− p)δ̃R + pδ̃L = 1 as the smoothed stochastic derivative of the Bernoulli random

4



C DBA

Figure 2. Derivative computation in MLPs. Schematic of an example network for which (surrogate) derivatives
are computed according to different methods. The colored arrows indicate where partial derivatives are calculated.
(A): SG descent relies on the chain rule for efficient gradient computation in a deterministic MLP. Thus, the derivative
of the output with respect to a given weight is factorized into its primitives, which are indicated by the colored arrows.
(B) SPMs approach the problem of non-differentiable spike trains by adding noise and then smoothing the output based
on its expected value. Since this method does not allow the use of the chain rule, the derivative for each weight must
be computed directly. (C) The derivative and the expected value are not interchangeable, which makes this option
mathematically invalid. Furthermore, it is not possible to achieve the necessary smoothing using the expected value after
such an interchange. (D) Smoothed stochastic derivatives in stochAD use the expected value of each node to compute
the derivative; however, the method relies on expectation values conditioned on the activity of a specific forward pass.

variable. This results in
∂y

∂wi
= 1 · ∂

∂wi
σβ(u− θ)

when inserted into Eq. (6). Yet again, we obtain the same result as above.

Thus, for a single binary Perceptron, the results obtained from the different approaches are identical, given a sensible
choice of SD, which should match the derivative of the escape noise function. However, it is worth noting that despite
the identical derivatives, the resulting overall gradients, are different in the deterministic and stochastic case. This
difference is due to distinct outputs y, which directly affect ∂L

∂y . For instance, there is typically no equivalence in the
expected value since a binary output generally does not correspond to the expected value of a stochastic Perceptron,
which can take any value between zero and one. We will see in the next section that these and other notable differences
break the equivalence of the different approaches in MLPs.

3.2 Analysis of the multi-layer Perceptron

To analyze the relation of the different gradient approximation methods in the multi-layer setting, we begin by examining
SPMs, which lack support for AD and thus an efficient algorithm to compute gradients. We then further discuss how
stochAD provides smooth stochastic derivatives equivalent to SGs in multi-layer networks.

3.2.1 Output smoothing in multi-layer SPMs precludes efficient gradient computation

SPMs lack support for AD, because they smooth the expected loss landscape through stochasticity and therefore require
the calculation of expected values at the network output. While output smoothing allows the implementation of the
finite difference algorithm, this algorithm does not scale to large models and is therefore of little practical use for
training ANNs [28, 29]. The application of AD, however, requires differentiable models, like standard ANNs, so that
the chain rule can be used to decompose the gradient computation into simple primitives. This composability is the
basis for efficient recursive algorithms like BP and real-time recurrent learning (RTRL) [27].

To see why SPMs do not support AD, let us consider a simple example network: Let y be the output of a binary neural
network with two hidden layers h1, h2 (Fig. 2). The output y has the firing probability py = σβ(w

T
y h2), and the hidden

layers have the firing probabilities p1 = σβ(w
T
1 x) and p2 = σβ(w

T
2 h1). We are looking for a closed-form expression

of the derivative of the expected output for each parameter, e.g., ∂
∂w1

E[y] for weight w1 (Fig. 2B). In a deterministic
and differentiable network, one can use the chain rule to split the expression into a product of partial derivatives as
∂

∂w1
y = ∂y

∂py

∂py

∂h2

∂h2

∂p2
. . . ∂p1

∂w1
(see Fig. 2A). However, this is not possible for SPMs because

∂

∂w1
E[y] ̸= E

[
∂

∂w1
y

]
.
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Finite differences approach

How to compute gradients?

Stochastic SG descent

Deterministic SG descent       
select path with deterministic 
firing pattern

  Each stochastic 
   trial creates a path
  Smooth onto a 
   selected path 

Figure 3. SGs correspond to smoothed stochastic derivatives in stochastic SNNs. The tree illustrates the discrete
decisions associated with the binary spike generation process at different points over different layers of a stochastic
MLP. A single forward pass in the network corresponds to a specific path through the tree which yields a specific set of
spike trains. Another forward pass will result in a different path and spike patterns. Computing gradients using finite
differences requires randomly sampling paths from the network and evaluating their averaged loss before and after a
given weight perturbation. Although this approach is unbiased for small perturbations, the random path selection results
in high variance. Furthermore, that approach is not scalable to large networks. Stochastic SG-descent is equivalent to
smoothed stochastic derivatives in the stochAD framework. To compute the gradient, we roll out the network once
and sample a random path in the tree which we now keep fixed (yellow). At each node, we then compute the expected
output given the fixed activation of the previous layer E[hi|hi−1], which yields a low-variance estimate (see inset: spike
raster, selected trial shown in yellow, spike trains of other trials in gray, expectation shown as shaded overlay). By
choosing a surrogate function that matches the escape noise process, both methods give the same derivative for a spike
with respect to the membrane potential. Deterministic SG-descent can be seen as a special case in which the random
sampling of the path is replaced by a point estimate given by the deterministic roll out (blue).

While this inequality generally holds for any nonlinear derivative, in the case of binary networks and SNNs there is
another potential problem with the above expression. Some of the factors involve the derivative of the binary output and
are thus ill-defined. Smoothing them with stochasticity was the entire point of working with expectation values in the
first place.

Finally, even if we could exchange the expectation value and the derivative, we would still be faced with the fact that
the expectation of a product is usually not equal to the product of expectation values, unless the factors are independent
(Fig. 2C), hence

E
[

∂

∂py
y

∂

∂h2
py

∂

∂p2
h2 . . .

∂

∂w1
p1

]
̸= E

[
∂

∂py
y

]
E
[

∂

∂h2
py

]
E
[

∂

∂p2
h2

]
. . .E

[
∂

∂w1
p1

]
.

Clearly, in neural networks the factors are not independent, because the activity of downstream neurons depends on the
activity of their upstream partners. Thus, it is not obvious how to compute gradients in multi-layer SPMs networks.
We will see that stochAD suggests sensible solutions to the aforementioned problems which ultimately justify why we
can in fact do some of the above operations. Consequently, in the following, we will only consider SGs and stochAD,
which support BP.

3.2.2 stochAD constitutes the missing theoretical basis for surrogate gradients

Here we show how smoothed stochastic derivatives for stochastic binary MLPs relate to SGs. The smoothed stochastic
derivative is defined by Eq. (1) for one realization of the random variable X(p), where the discrete random variables
are usually Bernoulli random variables in stochastic binary MLPs.

To gain an intuitive understanding of the essence of smoothed stochastic derivatives, we consider a single realization of
a stochastic program, which, in our case, is a stochastic MLP. In other words, we run a single stochastic forward pass in
the MLP and condition on its activity. At each point in time, each neuron either emits a one or a zero, i.e., a spike or
none. Thus, we can think of all these binary decisions as edges in a tree, with each node representing the spike pattern
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of all neurons in a given layer. Any roll-out of a forward pass then corresponds to a particular randomly chosen path
through this tree (Fig. 3). These paths originate from the same root for a given input x, yet the stochasticity in all of
them is independent. In this tree of possible spike patterns, it is easy to understand how different methods for gradient
approximation work.

Let us first consider the finite differences method. In this approach, the loss is evaluated once using the parameters w and
once using w +∆w, either considering a single trial or averaging over several independent trials. Hence, one randomly
samples paths in the tree of spike patterns and compares their averaged output before and after weight perturbation.
Since the randomness of the sampled paths is uncoupled, the finite difference approach results in high variance (cf.
Fig. 3, gray), which scales with the inverse of the squared perturbation ∆w. However, smaller perturbations allow a
more accurate gradient approximation [30, 31]. A joint, i.e. coupled, randomness could clearly reduce the variance.

A better way of sampling, which is at the heart of stochAD, is to condition on the previous layer’s output hi−1 and then
consider all possible spike patterns for the current layer E[hi|hi−1]. Thus, we can consider the expected layer activity,
given a randomly chosen path, e.g., the yellow path in Fig. 3. For this path the derivatives now need to be smoothed at
each node. To do so, we compute the expectation in each layer conditioned on the activity of the previous layer along
the selected path. After smoothing, it is possible to compute the path-wise derivative along a selected path with activity
h∗
1, h

∗
2, y

∗:
∂

∂w1
E[y] =

1

npaths

∑
paths

∂

∂py
E[y|h∗

2]
∂

∂h2
E[py|h∗

2]
∂

∂p2
E[h2|h∗

1] · · ·
∂

∂w1
E[p1|x] .

Here we averaged over all possible paths, i.e., all possible combinations of the activities h∗
1, h

∗
2. In practice, it is rarely

possible to average over all possible combinations and one instead uses a Monte Carlo estimate, which still yields
significantly lower variance than other schemes and can be computed efficiently using BP for a single path per update.

Given the above method for computing smoothed stochastic derivatives, we are now in the position to understand their
relationship to SGs. Since we condition on a specific path in the tree of all possible spike patterns, we only compute
derivatives of the expected output hi conditional on the output of the previous layer hi−1 according to the chosen path
at each node. Such an approach exactly corresponds to treating each node as a unit in the single layer case above. As
we saw above, the derivative of the expected output of a single unit is equivalent to the corresponding SD and the
corresponding smoothed stochastic derivative. Furthermore, when using SGs, there is no difference in how the method
is applied in single versus multi-layer cases and there is always a well-defined path to condition on. Thus, SGs can also
be understood as treating all units at each layer as single units. Thus, the stochAD framework provides the missing
theoretical foundation for SGs when applied to stochastic networks. In conclusion, we find that smoothed stochastic
derivatives in the stochAD framework and stochastic SGs are the same for reasonable choices of SD and the escape
noise model.

A word on SGs in deterministic networks. In practice, SGs are often used in deterministic networks, which are
a limit case of stochastic networks. While a stochastic network typically selects a different path on each trial, in the
deterministic case there is only one path per input and parameter set. This difference introduces an additional selection
bias into the estimation of the stochastic implementation which is generally small in practice (Supplementary Fig. S1).
In the next section, we will examine some of the consequences of bias in deterministic networks in more detail.

4 Analysis of the bias effects of surrogate gradients

By design SGs are biased because they provide a non-vanishing estimate in situations in which the actual gradient is the
zero. It is not clear a-priori what consequences such added bias has and whether SGs are gradients at all, which can be
obtained by differentiating a surrogate loss. However, it is difficult to get a quantitative understanding of bias when
comparing to the zero vector.

Thus, to take a closer look at biases due to SGs we now move to differentiable network models that have a well-defined
gradient. While SG training is not required in such networks, it allows us to develop a quantitative understanding of the
commonalities and differences we should expect. This comparison also allows us to check whether SGs satisfy the
formal criteria of gradients.

4.1 Surrogate gradients introduce bias in differentiable MLPs

We first sought to understand whether SGs point in a “similar direction” as the actual gradient. Specifically, we asked
whether SGs ensure sign concordance, i.e., whether they preserve the sign of the gradient components. To investigate

7



Figure 4. SGs introduce bias in differentiable MLPs. (A) Schematic of a differentiable network (left) with sigmoid
activations (right) for which we compute an SD using the derivative of a flatter sigmoid (yellow) in contrast to the actual
activation (black). (B) Top row: Network output (solid gray), smoothed network output (dashed), and integrated SD
(yellow) as a function of w. The triangles on the x-axis indicate the minimum of the corresponding curves. Bottom
row: Derivatives of the top row. Left and right correspond to a flatter (βSG = 15) and a steeper (βSG = 25) SD (see
Table 1 for network parameters). Bottom: Gradient of the curves in the upper row. Note that the actual derivative and
the surrogate can have opposite signs. (C) Heatmap of the optimization landscape along v1 and v2 for different βSG

values (top to bottom). While the actual gradient can be asymptotically zero (see yellow dot, bottom), the SD provides
a descent direction, thereby enabling learning (top and middle).

Table 1. Parameter values for sign flip example. Parameter values for the network in Fig. 4A, which serve as an
example, that SGs can have the opposite sign of the actual gradient and thus point towards the opposite direction.
Therefore, we cannot guarantee the SG to align with the actual gradient.

Parameter w v1 v2 u1 u2 x β βSG

Value 0 0.05 0.1 1 -1 1 100 25

this question, we consider a small network (Fig. 4A) defined by

g = σβ(wx)

h1 = σβ(v1g)

h2 = σβ(v2g)

y = σβ(u1h1 + u2h2) , (7)

which has a well-defined gradient and provides a minimal working example. To study the effect of computing a SD, we
replace the derivative of a sigmoid parameterized with β by a surrogate function with βSG, which is used to compute
the SDs during the backward pass

∂̃

∂u
σ(β · u) = βSGσ(βSG · u) · (1− σ(βSG · u)) (8)

with β > βSG. As before, the deterministic binary Perceptron corresponds to the limiting case β →∞.

To investigate the differences between the SG and the actual gradient, we are particularly interested in the derivative of
the output with respect to the hidden layer weight w (cf. Fig. 4A). The partial derivative of the output with respect to w
is given as

∂

∂w
y ≈ ∂̃y

∂h1

∂̃h1

∂g

∂̃g

∂w︸ ︷︷ ︸
blue path

+
∂̃y

∂h2

∂̃h2

∂g

∂̃g

∂w︸ ︷︷ ︸
maroon path

.
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Figure 5. SGs are not gradients. (A) Heat map of the network output while moving along two random directions in
the parameter space of the example network in a network with step activation (top) and sigmoid activation (bottom) (see
Fig. 4 A). The circles indicate a closed integration path through parameter space, starting at the arrow. (B) Integral
values of SDs as a function of the angle along the closed circular path shown in (A). Different shades of yellow
correspond to different values of βSG. The black line corresponds to the actual output of the network with step activation
function (solid) or sigmoid activation (dashed). The integrated actual derivative of the network with sigmoid activation
matches the output (dashed line) and is thus not visible in the plot. (C) Absolute difference between actual loss value
and integrated SD as function of the number of integration steps. The numerical integrals converge to finite values.
Thus the observed difference is not an artifact of the numerical integration.

Now inserting the SDs using (8) leads to

∂

∂w
y ≈

(
∂̃y

∂h1

∂̃h1

∂g
+

∂̃y

∂h2

∂̃h2

∂g

)
∂̃g

∂w

=
(
u1v1 · σ′

βSG
(v1g) + u2v2 · σ′

βSG
(v2g)

)︸ ︷︷ ︸
responsible for sign flip

·β3
SG · σ′

βSG
(u1h1 + u2h2) · σ′

βSG
(wx)︸ ︷︷ ︸

positive factor

·x , (9)

where only the first factor in Eq. (9), which consists of two terms, determines the relative sign of the SD with respect
to the actual derivative. This is because in the second factor, β, as well as βSG, are always positive. Furthermore, the
derivative of the sigmoid is always positive independently of the choice of β or βSG. Finally, x, the input data, does not
change its sign dependent on βSG. However, the first factor can change its sign, since it is a summation of two nonlinear
functions with different hyperparameters β or βSG and different weights, which may be negative. For instance, when
we use specific parameter values (Table 1) in Eq. (9), the SD has the opposite sign of the actual derivative (Fig. 4B).
Thus, already in this simple example there is no guarantee that the sign of the SG is preserved with respect to the actual
gradient. As a consequence following the SG will not necessarily find parameter combinations that correspond to a
minimum of the loss. We expect that this conclusion also holds for the case of binary MLPs or SNNs.

4.2 Surrogate gradients are not gradients of a surrogate loss

Given the above realization we wondered whether an SG can be understood as the gradient of a surrogate loss that is not
explicitly defined. To answer this question, we note that if, and only if, the SG is the gradient of a scalar function, i.e.
corresponds to a conservative field, then the integrating over any closed path must yield a zero integral. To check this,
we considered the approximate Jacobian obtained using the SDs in the above example and numerically computed the
integral over a closed circular path parameterized by the angle α in the two-dimensional parameter space for different
values of β

ISG =

∫ 360◦

0◦

d̃y(θα)

dθα

dθα
dα

dα ,

where the tilde indicates, that we are using SDs (Fig. 5A,B; Methods). We found that integrating the SD did not yield a
zero integral, whereas using the actual derivatives resulted in a zero integral as expected. Importantly, this difference
was not explained by numerical integration errors due to the finite step size (Fig. 5C). Thus SGs cannot be understood
as gradients of a surrogate loss.

5 From Perceptrons to LIF neurons

In our above treatment we focused on binary Perceptrons for ease of analysis. In the following we show that our findings
readily generalize to networks of LIF neurons. To that end, we consider LIF neurons in discrete time which share many
commonalities with the binary Perceptron (see also Fig. 1A). To illustrate these similarities let us consider a single LIF
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neuron with index i described by the following discrete-time dynamics:

Ii[n+ 1] = λsIi[n] +
∑
j

wijSj [n] (10)

Ui[n+ 1] = (λmUi[n] + (1− λm) Ii[n]) (1− Si[n]) (11)
Si[n] = Θ(Ui[n]− θ) , (12)

with λs = exp
(
−∆t

τs

)
and λm = exp

(
−∆t

τm

)
, where ∆t is the time step, τs is the synaptic time constant, and τm is

the membrane time constant. While the first two equations characterize the linear temporal dynamics, the last equation
captures the non-linearity of the neuron, the spiking threshold. Thus in this formulation, we can think of a LIF neuron
as a binary Perceptron whose inputs are first processed through a linear filter cascade, i.e., the neuronal dynamics and
additionally have a reset mechanism.

In the stochastic case, this filter does not change. In fact we keep the same equations for synaptic current Eq. (10) and
membrane potential Eq. (11). However, instead of a deterministic Heaviside function as in Eq. (12), we use a stochastic
spike generation mechanism with escape noise

pi[n] = σβ(Ui[n]− θ) (13)
Si[n] ∼ Ber(pi[n]) . (14)

Again, this mechanism is in direct equivalence with the stochastic Perceptron case (cf. Eq. (4)) and permissive of
computing smoothed stochastic derivatives.

Finally, the derivative of the current and the membrane potential with respect to the weights induce their own dynamics:

d

dwij
Ii[n+ 1] = λs

d

dwij
Ii[n] + Sj [n]

d

dwij
Ui[n+ 1] = λm(1− Si[n])

d

dwij
Ui[n]

+(1− λm)(1− Si[n])
d

dwij
Ii[n]

− (λmUi[n] + (1− λm)Ii[n])
d

dwij
Si[n] , (15)

where we used the product rule to include the derivative of the reset term. To compute the smoothed stochastic derivative
of the spike train, we use the affine combination of the left and right smoothed stochastic derivatives of a Bernoulli
random variable according to Arya et al. [17] to get

d

dwij
Si[n] =

d

dpi[n]
Ber(pi[n])︸ ︷︷ ︸
=1

d

dUi[n]
σβ(Ui[n])

d

dwij
Ui[n]

=
d

dUi[n]
σβ(Ui[n])︸ ︷︷ ︸
SD

d

dwij
Ui[n] . (16)

Again, we find that this exactly recovers SGs as defined in Zenke et al. [12] when conditioning on the deterministically
spiking path and hence confirms the equality between SGs and smoothed stochastic derivatives.

Going further, we can use Eq. (16) to write Eq. (15) such that it only depends on current and membrane potential
derivatives

d

dwij
Ui[n+ 1] =

λm (1− Si[n])− σ′
β (Ui[n]) · (λmUi[n] + (1− λm) Ii[n])︸ ︷︷ ︸

derivative through reset

 dUi[n]

dwij
(17)

+(1− λm) (1− Si[n])
dIi[n]

dwij

and can be computed forward in time. Most SNN simulators avoid BP through the reset term [12, 15] as this empirically
improves performance for poorly scaled SGs [22]. Therefore, it is common practice to set the right-hand term in the
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Figure 6. SGs successfully train stochastic SNNs on a spike train matching task. (A) Spike raster plots of the input
and target spike trains of the spike train matching task. Time is shown on the x-axis, the neuron indices are on the
y-axis and each dot is a spike. The task is to convert the given frozen Poisson input spike pattern into a structured
output spike pattern depicting the Radcliffe Camera in Oxford. (B) L2 loss (top) and van Rossum distance (bottom)
over the course of training for the two network models. While the deterministic network outperforms the stochastic one
in terms of L2 distance, the difference is negligible for the van Rossum distance. (C) Output spike raster plots after
training of the deterministic (left) and the stochastic SNNs (right). Although both methods faithfully reproduce the
overall target structure, the deterministic network is slightly better at matching the exact timing. (D) Hidden layer spike
raster plots. Despite the similar output (see C), the two networks show visibly different hidden layer activity patterns.
(E) Average Fano factor over the course of training in the hidden and output layer of the stochastic network. Although
the stochastic network reduces its variability during training to match the deterministic target, its hidden layer still
displays substantial variability at the end of training.

parenthesis in Eq. (17), i.e., the derivative through the reset term, to zero. Conversely, strict adherence to stochAD would
suggest keeping the reset term when back-propagating. However, similar to Zenke et al. [22], we find no difference in
performance whether we back-propagate through the reset or not when the SG is scaled with 1

β (see supplementary
Fig. S2), while without this scaling, BP through the reset negatively affects performance. Overall, we have shown that
our results obtained from the analysis of Perceptrons are transferable to SNNs and hence confirm again the equality
between SGs and smoothed stochastic derivatives in the stochAD framework.

6 Surrogate gradients are ideally suited for training SNNs

Above we have seen that SG-descent is theoretically justified by stochAD albeit only for stochastic spiking. This
finding also suggests that SG-descent is suitable for training stochastic SNNs, with deterministic SNNs being only a
special case (cf. Fig. 3). Next, we wanted to confirm this insight numerically. To that end, we trained deterministic and
stochastic SNNs with SG-descent on a deterministic spike train matching task and a classification task.

For the spike train matching task, we assumed 200 input neurons with frozen Poisson spike trains. We then set up a
feed-forward SNN with one hidden layer, initialized in the fluctuation-driven regime [32]. We used supervised SG
training of a deterministic and stochastic version of the same network to match 200 target spike trains which were given
by a dithered picture of the Radcliffe Camera (Fig. 6A; Methods). Both networks learned the task (Fig. 6B&C), albeit
with visibly different hidden layer activity (Fig. 6D). The deterministic version outperformed the stochastic SNN in
terms of L2-distance at 1 ms, i.e. the temporal resolution of the simulation. However, when comparing their outputs
according to the van Rossum distance [33] with an alpha-shaped filter kernel equivalent to the ϵ-kernel of the LIF
neuron (τmem = 10 ms, τsyn = 5 ms), we found no difference in loss between the stochastic and deterministic networks
(Fig. 6B). Finally, we observed that the Fano factor, a measure of stochasticity, of the stochastic SNN dropped during
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Figure 7. SGs can successfully train stochastic CSNNs. (A) Snapshot of network activity for two correctly classified
sample inputs from the SHD dataset. Top: readout unit activity over time, the colored line indicates the activity of the
unit that corresponds to the correct class. Below: Spike raster plots of the three convolutional hidden layers. The spike
raster plots of the inputs are shown at the bottom in red and gray. Time is on the x-axis, the neuron index is on the
y-axis and each dot represents a spike. (B) Learning curves for training (dashed) and validation (solid) accuracy for
the stochastic and the deterministic case (average over n = 6 trials ± std). (C) The mean Fano factor of the different
layers in the stochastic network over the course of training (± std, n = 3). (D) The first three pairs of boxes show
train, validation, and test loss of the CSNN as in (A) for the stochastic and the deterministic case for n = 6 random
initializations. The rightmost boxes show test loss for the opposite activation function. This means the network trained
deterministically is tested with stochastic activation and vice versa. (E) Raster plots over trials of the spiking activity of
three randomly chosen units from the second hidden layer. The units show clear trial-to-trial variability reminiscent of
cortical activity.

training to better accommodate the deterministic target (Fig. 6E). In summary, we find that the stochastic network
exhibits comparable performance to the deterministic network. Thus SGs are suitable for training stochastic SNNs.

To verify that this finding generalizes to a more complex task, we trained a convolutional spiking neural network (CSNN)
with three hidden layers on the Spiking Heidelberg Digits (SHD) dataset [34] with maximum-over-time readout
(Methods). Like above, the stochastic network learned to solve the task with comparable training and validation
accuracy to the deterministic network (Fig. 7B). Specifically, we found that the stochastic CSNN achieved a validation
accuracy of 96± 2 %, (test 86± 1 %), compared to 96± 2 % (test 84± 1%) for the deterministic CSNN. Furthermore,
in the case of the stochastic SNN, we left the escape noise active during validation and testing. However, in Fig. 7D,
one can see that the stochastic network performs equally well when tested in a deterministic environment (Fig. 7D,
others). Conversely, the deterministically trained network does not perform well when evaluated under stochastic spike
generation. In contrast to the previous task, we found that the Fano factor remained high during training (Fig. 7C), i.e.
stochasticity is preserved. This is also reflected in a high trial-to-trial variability as shown in Fig. 7E. One can see that
the spiking activity for three example neurons shows a high variability across trials for the same input. Thus, even for a
more complex task, SG-descent is well suited for training stochastic SNNs, and stochasticity is preserved after training.

7 Discussion

We investigated the theoretical basis of the widely used SG descent method and showed that SGs can be formally
derived for stochastic networks from the stochAD framework [17]. While SPMs rely on smoothing the loss function
and are, therefore, ill-suited for AD, stochAD sidesteps this problem by defining smoothed stochastic derivatives
that can be combined with the chain rule. We saw that SGs can be understood as the deterministic limiting case of
stochAD. Moreover, our analysis uncovered two important insights: First, SGs provide biased gradient approximations
in deterministic networks with well-defined gradients. Second, SGs do not correspond to gradients of a surrogate
loss. Finally, we showed in simulations that SGs can directly train stochastic SNNs that exhibit comparable or better
performance while preserving trial-to-trial variability reminiscent of cortical neurons in neurobiology.
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Related work. The issue of non-existing derivatives is not unique to SNNs but is a well-known challenge when
dealing with discrete random variables and their derivatives. It hence arises in various contexts, such as in general
binary neural networks [10], sigmoid belief nets [35], or when dealing with categorical distributions [36, 37]. To
address this challenge in arbitrary functions including discrete random variables, often the score function estimator,
also called REINFORCE [38] is applied, as it provides unbiased estimates. This can be computed through stochastic
computation graphs [39]. While Arya et al. [17] use coupled randomness to reduce variance, there are also methods
building on reinforcement learning for low variance gradient estimation [40]. Conversely, to address the challenge
of BP through non-differential functions in neural networks instead, a commonly used solution is the STE [24, 25],
which replaces the derivative of a threshold function with 1, also called the identity STE in Yin et al. [26]. For SNNs
the term SG is commonly used in deterministic networks where it refers to an STE with a nonlinear SD [14]. While
both are successful in practice, we still lack a complete theoretical understanding. Bengio et al. [25] introduced the
identity STE as a biased estimator, which guarantees the correct sign only in shallow networks. Yin et al. [26] studied
coarse gradients, including the STE. They analyzed training stability and investigated which choice of STEs leads
to useful weight updates. They concluded that the identity STE does not, while the rectified linear unit (ReLU) and
clipped ReLU versions do. They further found that the identity STE might be repelled from certain minima. However,
they studied this either in a network with only one nonlinearity or in an activation quantized network with a quantized
ReLU as opposed to a Heaviside activation function, as we have in the case of SNNs. Liu et al. [41] showed that the
identity STE provides a first-order approximation to the gradient, which was previously shown by Tokui et al. [42]
specifically for Bernoulli random variables. However, other STEs were not considered, such as e.g. the sigmoidal STE,
which would correspond to our SG. Another approach to dealing with discrete distributions was pursued by Maddison
et al. [36] and Jang et al. [37]. They proposed a solution similar to the reparametrization trick but combined with a
smooth relaxation of the categorical distribution. This amounts to training a network with continuous representations by
sampling from a Gumbel-Softmax, while after training, the temperature of the Gumbel-Softmax distribution is set to
zero to obtain a discrete output. Hence, while providing discrete output after training, such a network is trained with
continuous neuronal outputs rather than spikes.

Interestingly, most of these solutions deal with discrete functions in the stochastic case, such as stochastic binary
Perceptrons or a Bernoulli random variable, where noise is used for smoothing. But as we saw above, probabilistic
approaches in the context of SPMs cannot be applied to deep SNNs without approximations. Therefore, stochastic
SNN models have been implemented in the past mainly for theoretical and biological plausibility reasons ([19, 20]).
Nevertheless, there were also approaches that made it possible to train multi-layer SNNs with AD, such as the
MultilayerSpiker proposed by Gardner et al. [21], which uses the spike train itself as the SD of a spike train. Today,
SNNs are mostly implemented as networks of deterministic LIF neurons with a Heaviside function as spiking non-
linearity, as they tend to have higher performance. Recently, however, Ma et al. [43] found empirically that stochastic
SNNs with different types of escape noise can be trained with SG descent to high performance. While they showed
a connection to deterministic SG descent, they did not discuss the implications for deep networks with stateful LIF
neurons. Again, the effectiveness of SG descent in stochastic SNNs was confirmed, as suggested by the connection
to the stochAD framework. Thus, our work not only provides empirical confirmation of the effectiveness of SGs in
training stochastic SNNs but also provides a comprehensive theoretical explanation for their success beyond shallow
networks.

Limitations. To gain insight into the theory behind SGs, we had to make some simplifying assumptions to allow an
analytical investigation of the problem. Consequently, we performed our theoretical analysis on Perceptrons, which
can be considered as a special limiting case of LIF neurons without memory. Thanks to this analogy, we were able to
transfer analytical implications to the training of SNN with LIF neurons. For continuous-time simulations this is not
as straightforward, as there is no well-defined function for how the spikes are derived from the membrane potential.
For discretized LIF neurons, however, we were able to translate the results from binary perceptrons directly, as such
networks can be understood as a special type of binary recurrent neural networks (RNNs) [14] where the output is given
by a Heaviside step function.

Another point is that in LIF models, unlike Perceptrons, the question of how to deal with the reset is not decided.
Smoothed stochastic derivatives allow and recommend running BP through the reset. However, previous work has
recommended not running BP through the reset, as this leads to more robust performance, especially when the SG is
not properly scaled [12, 15, 22]. Both options are possible when using SG-descent, and we have not noticed much
difference in performance when scaling correctly. However, omitting the scaling by 1

β (as in the asymptotic SuperSpike
in Zenke et al. [12]) slowed down learning (see Supplementary Fig. S2C). While omitting this scaling can potentially
be counteracted by an optimizer using per-parameter learning rates, the prefactor due to β in the unscaled case could
become quite large across layers and thus still affect performance.
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Next, while the bias of a gradient estimator is well defined for differentiable neural networks for which a gradient exists,
this is not the case for deterministic SNNs. Therefore, in this article we have had to content ourselves to discussing
the bias with respect to the gradient of the expected output in a corresponding stochastic SNN. However, smoothed
stochastic derivatives are themselves biased with respect to the gradient of the expected output of the stochastic SNNs.
This bias results from the dependence of the update step on the selection of a particular path for which the path-wise
derivative is computed. While this bias can be reduced by averaging over many paths, such averaging does not work for
deterministic SNNs where there is only one path per input and parameter set. This shows that deterministic SGs are
biased with respect to the gradient of the corresponding stochastic SNNs. Furthermore, when we empirically analyzed
the effects of the bias in deterministic SGs, we were again restricted to an environment with an existing gradient.
Therefore, we have instead shown that SGs induce bias in deterministic networks with well-defined gradients. In the
limiting case β → ∞, these networks are equivalent to Perceptron networks with step activation functions. Thus,
although we could not extrapolate our results to the case of SNN, we consider the above approaches to be a good
approximation as they preserve the main properties of SGs.

Historically, stochastic SNNs have been evaluated on tasks that require exact deterministic spike trains at readout such
as in the spike train matching task ([19–21]. However, despite being performed with stochastic SNNs such tasks actually
punish stochasticity, at least in the readout. Therefore, stochastic SNNs respond by becoming more deterministic
during training as we have observed when monitoring the Fano factor (cf. Fig. 6). In our setting, neurons have the
possibility to change the effective steepness of the escape noise function by increasing their weights, as it is dependent
on β · |w|, and thus get more deterministic. Therefore, we believe that tasks which do not punish stochasticity, such as
classification tasks, are much more suitable for evaluating the performance of stochastic SNNs as it allows training of
well-performing SNNs that still show substantial variability in their responses.

Future research. We saw that SGs generally decrease the loss but they do not necessarily find a local minimum of
the loss. This discrepancy is due to bias in the gradient approximation. However, learning in SNNs is only possible due
to bias, because the actual gradient is almost always zero. This dichotomy extends even to networks with well-defined
gradients, but a rough loss landscape, in which mollifying is successful in practice [44]. In conventional ANN training,
bias is similarly often desirable. For instance, many optimizers rely on momentum to speed up training. This raises
questions about the impact of bias on optimization effectiveness. Thus, an interesting line of future work is to study
what constitutes a good local minimum in the case of SNNs, which types of bias help finding them, and how this bias
relates to SGs.

We linked SG-descent to smoothed stochastic derivatives, which are biased with respect to standard stochastic derivatives.
However, the latter can can only be computed in forward-mode AD, which is impractical for neural network training,
as it comes with an increased computational cost. Hence, an interesting direction of future research is to investigate
whether training improvements due to the bias reduction would justify the added computational load and whether
the load could be reduced to make it applicable to SNN training, for instance, by using mixed-mode AD, such as in
DECOLLE [45] or online spatio-temporal learning [46] (see [47] for a review).

In this article, we found an effective way of training stochastic SNNs. This ability is not only relevant to study the
brain, where biological neurons exhibit trial-to-trial variability, but also for neuromorphic ultra-low-power applications
in which circuits may be similarly noisy. The role of variability in biological systems is not fully understood and
functional stochastic SNN models will help to further our understanding of the role of variability in the brain and may
prove as a potential sources of representational drift [48]. Thus, it would be interesting to study how learning influences
representational changes in plastic functional stochastic SNNs and whether we can identify specific dynamic signatures
that allow drawing conclusions about the underlying learning mechanisms in the brain.

In conclusion, SGs are a valuable tool for training both deterministic and stochastic SNNs. In this article, we saw that
stochAD provides a theoretical backbone to SGs learning which naturally extends to stochastic SNNs. Training such
stochastic SNNs is becoming increasingly relevant for applications with noisy data or noisy hardware substrates and is
essential for theoretical neuroscience as it opens the door for studying functional SNNs with biologically realistic levels
of trial-to-trial variability.

8 Methods

Our Perceptron and SNN models were written in Python 3.10.4 and extended either on the stork library [32] which
is based on Pytorch [49], or Jax [50]. The code repository can be found at https://github.com/fmi-basel/
surrogate-gradient-theory. All models were implemented in discrete time. The following sections give more
details on the different neuron models before providing all necessary details to the two learning tasks, including
architecture and parameters used for a given task.
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8.1 Neuron models

Perceptron. As mentioned in the theoretical results 3.1, the Perceptron is a simplified version of the LIF neuron
model, where there is no memory and no reset. The membrane dynamics U l

i for Perceptron i in layer l are given by for
a special case by Eq. (2) in the theoretical results section, and in general by

U l
i =

∑
j

wijSj + bi ,

where wij are the feed-forward weights, Sj the binary outputs (spikes) of the previous layer and bi is an optional bias
term.

Leaky integrate-and-fire neuron. We used an LIF neuron model with exponential current-based synapses [18]. In
discrete time, the membrane potential U l

i [n] of neuron i in layer l at time step n is given by

U l
i [n+ 1] =

(
λmem · U l

i [n] + (1− λmem) · I li [n]
)
· (1− Sl

i[n]) , (18)

where I li [n] is the input current and Sl
i[n] output spike of the neuron itself, which governs reset dynamics. With

multiplicative reset as above, the neuron stays silent for one time step after each spike. The membrane decay variable
λmem = exp

(
− ∆t

τmem

)
is defined through the membrane time constant τmem and the chosen time step ∆t. The input

current I li [n] is given by

I li [n+ 1] = λsyn · I li [n] +
∑
j

wl
ij · Sl−1

j [n]︸ ︷︷ ︸
feedforward

+
∑
k

vlik · Sl
k[n]︸ ︷︷ ︸

recurrent

, (19)

where wij and vik are the feedforward and recurrent synaptic weights, respectively, corresponding to the previous
layers’ spikes Sl−1

j and the same layers’ spikes Sl
k, respectively. The synaptic decay variable is again given as

λsyn = exp
(
− ∆t

τsyn

)
, defined through the synaptic time constant τsyn. At the beginning of each minibatch, the initial

membrane potential value of all neurons was set to their resting potential U l
i [0] = Urest = 0 and the initial value for

the synaptic current was zero as well, I li [0] = 0.

8.2 Spike generation

The generation of a spike follows the same mechanism in both, the LIF and the Perceptron neuron model. Depending
on the membrane potential value, the activation function generates a spike or not. The following paragraphs highlight
the differences between the deterministic and the stochastic cases.

Deterministic spike generation. A spike is generated in every time step, in which the membrane potential crossed a
threshold θ. Hence, we were using the Heaviside step function Θ to generate a spike deterministically at time step n:

Sl
i[n] = Θ

(
U l
i [n]− θ

)
. (20)

Stochastic spike generation. A stochastic neuron model with escape noise [18] may spike, even if the membrane
potential is below the threshold or vice versa not spike, even if the membrane potential is above the threshold. Therefore,
in discrete time, the probability of spiking in time step n is

pli[n] = f(U l
i [n]− θ) = σβ

(
U l
i [n]− θ

)
(21)

for each neuron. We used σβ(x) =
1

1+exp(−β·x) , if not stated otherwise. The hyperparameter β defines the steepness of
the sigmoid, with β →∞ leading to deterministic spiking. Spikes were then drawn from a Bernoulli distribution with
probability pli[n], hence

Sl
i[n] ∼ Ber(pli[n]) . (22)

The expected value of spiking equals the spike probability, so E
[
Sl
i[n]
]
= pli[n].

8.3 Differentiable example network

The minimal example network (Fig. 4A) was simulated using Jax [50]. To implement the main essence of SG descent in
a differentiable network, we constructed a network of Perceptrons with sigmoid activation functions (see Eq. (7)). The
SG was implemented by a less steep sigmoid, which was used instead of the actual activation function on the backward
pass.
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Integrated (surrogate) gradients. In general, the integral of the derivative of the loss should equal again the loss∫
∂L
∂wdw = L. The same holds true for the network output. In Fig. 4, we computed this quantity for w ∈ [−0.2, 0.2],

as well as in two dimensions for the parameters v1 and v2. In Fig. 5, we did not compute this along a line but instead
chose to compute this along a closed path in parameter space, i.e. a circle. To do so, we integrated the SG along a
circle in a two-dimensional hyperplane which is spanned by two randomly chosen orthonormal vectors d1 and d2 in
parameter space. The position along the circle is defined by an angle α and the circle is parametrized by a and b such
that a = r · sin(α) and b = r · cos(α) with r the radius of the circle. Hence, when integrating along the circle, the
weights θ in the network changed according to the angle α

θα = d1 · a(α) + d2 · b(α) .

8.4 Learning tasks

We trained SNNs to evaluate the differences in learning between the stochastic and deterministic SNN models trained
with SG-descent. For this purpose, we chose a spike train matching and a classification task to cover different output
modalities.

8.4.1 Spike train matching

If an SNN can learn a precise timing of spikes, it must be able to match its output spike times with some target output
spike times. Therefore in the spike train matching task, we ask, whether both, the stochastic and the deterministic
network can learn deterministic output spike trains. For the training, no optimizer is used and since we use a minibatch
size of one, this means we apply batch gradient descent. The details about the used architecture, neuronal, and
training parameters are given in the following paragraphs as well as in Tables 2 and 3 for both, the stochastic and the
deterministic versions of the network. The code was written in Jax.

Task. The target spike trains to match were generated from a picture of the Radcliffe Camera in Oxford using dithering
to create a binary image. We set this image as our target spike raster, where the x-axis corresponds to time steps and the
y-axis is the neuron index. Hence, the image provides a binary spike train for each readout neuron. As an input, we
used frozen Poisson-distributed spike trains with a per-neuron firing rate of 50 Hz. This created a one-image dataset
that requires 200 input neurons, and 200 output neurons and has a duration of 198 time steps, i.e. 198 ms when using
∆t = 1 ms.

Network architecture. The above described spike train matching task is an easy task, that could also be solved by
an SNN without a hidden layer. However, since we knew that in the shallow case without a hidden layer, the only
difference between our stochastic and our deterministic versions would lie in the loss, we decided to use a network
with one hidden layer. Hence the used network architecture was a feed-forward network with 200 input units, 200
hidden units, and 200 readout units, run with ∆t = 1 ms for a total of 198 time steps (see also Table 3). Weights were
initialized in the fluctuation-driven regime [32] with a mean of zero and target membrane fluctuations σU = 1. For the
stochastic networks, we averaged the update over ten trials, i.e., we sampled ten paths in the tree of spike patterns, used
each of them to approximate a gradient and took their average to perform the weight update before sampling another
path for the next weight update (see Fig. 3).

Reset at same time step. Matching a target binary image without further constraints with a spike train might require
a neuron to spike in two adjacent time steps. However, this is not possible with the membrane dynamics as in Eq. (18),
where after every spike the neuron stays silent for one time step. Hence for this task, we used slightly modified
membrane dynamics

U l
i [n+ 1] = λmem · U l

i [n] · (1− Sl
i[n]) + (1− λmem) · I li [n] , (23)

where the reset was applied at the same time step as the spike and thus high enough input in the next time step could
make the neuron fire again.

Loss functions. We trained the network using an L2 loss function

L2 =
1

N

ML∑
i=1

T∑
n=1

(
SL
i [n]− Ŝi[n]

)2
(24)

to compute the distance between target spike train Ŝi for readout neuron i and output spike train SL
i [n] at the readout

layer L, where ML is the number of readout neurons and T is the number of time steps. Furthermore, we also monitor
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the van Rossum distance [33]

LvR =
1

2

∫ t

−∞

((
αŜi − αSi

)
(s)
)2

ds (25)

between the target spike train and the output spike train, which might be a better distance for spike trains, since it also
takes temporal structure into account by punishing a spike that is five time steps off more than a spike that is only one
time step off. It does so, by convolving the output and target spike train first with a temporal kernel α, before computing
the squared distance. We chose α to be equivalent to the ϵ-kernel of the LIF neuron

α(t) =
1

1− τmem
τsyn

(
exp

(
− t

τsyn

)
− exp

(
− t

τmem

))
with τmem = 10 ms, τsyn = 5 ms.

Fano factor. The Fano factor F was calculated on the hidden layer and output spike trains S as F =
σ2
S

µS
.

8.4.2 Classification on SHD

To evaluate performance differences, we also evaluated both the stochastic and the deterministic version on a classi-
fication task using a deep recurrent CSNN (as in Rossbroich et al. [32]), hence also increasing the difficulty for the
stochastic model, which now had to cope with multiple noisy layers. The details about the used architecture, neuronal,
and training parameters are given in the following paragraphs as well as in Tables 2 and 3 for both, the stochastic and
the deterministic versions of the network.

Task. For the classification task, we used the SHD dataset [34], which is a real-world auditory dataset containing
spoken digits in German and English from different speakers, hence it has 20 classes. The dataset can be downloaded
from https://ieee-dataport.org/open-access/heidelberg-spiking-datasets. Cramer et al. [34] prepro-
cessed the recordings using a biologically inspired cochlea model to create input spike trains for n = 700 neurons.
The duration of the samples varies, hence we decided to consider only the first TSHD = 700 ms of each sample, which
covers > 98% of the original spikes. For our numerical simulations, we binned the spike trains using a ∆t = 2 ms and
hence we had ∆t

TSHD
= 350 time steps in this task. 10% of the training data was used as a validation set, and for testing

we used the officially provided test set, which contains only speakers that did not appear in the training set.

Network architecture. We used a deep recurrent CSNN for the SHD classification task (see also Table 3). There
were 700 input neurons, that directly get fed the input spikes from the SHD dataset. The network had three recurrently
connected hidden layers and used one-dimensional convolution kernels. Weights were initialized in the fluctuation-
driven regime with a mean of zero, target membrane fluctuations σU = 1, and the proportion of fluctuations due to
the feed-forward input was α = 0.9. The network size as well as the parameters for the feed-forward and recurrent
convolutional operations are summarized in Table 3. Again, we performed only one trial per update for the stochastic
case.

Readout units. As opposed to the previous task, a classification task requires special readout units. The readout units
did have the same membrane and current dynamics as a normal LIF neuron (Eqns. (18) and (19)), but they did not spike.
Furthermore, we used a different membrane time constant τRO

mem = TSHD = 700 ms for the readout units. This allowed
us to read out their membrane potential for classification (see paragraph on the loss function).

Activity regularization. To prevent tonic firing, we used activity regularization to constrain the upper bound of firing
activity. To this end, we constructed an additional loss term as a soft upper bound on the average firing activity of each
feature in our convolutional layers. Hence for every layer, we computed a term

gl,kupper =

 1

M l

M l∑
i

ζl,ki − ϑupper


+

2

, (26)

where M l = nfeatures × nchannels is the number of neurons in layer l and ζl,ki =
∑T

n Sl,k
i [n] is the spike count of

neuron i in layer l given input k. We chose the parameter ϑupper = 7 to constrain the average firing rate to 10 Hz.
Hence, the total upper bound activity regularization loss is given by

Lupper = −λupper

L∑
l=1

F l∑
f=1

gl,kupper , (27)
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where λupper = 0.01 was the regularization strength. Those parameters can also be found in Table 3.

Loss function. As this is a classification task, we used a standard cross-entropy loss

LCE = − 1

K

k∑
i=1

C∑
c=1

ykc log
(
pkc
)

(28)

to sum over all samples K and all classes C. The correct class is encoded in ykc as a one-hot encoded target for the
input k. To compute the single probabilities pkc for each class c, we first read out the maximum membrane potential
values of each readout neuron over simulation time to get the activities

akc = max
n

(UL
c [n]) . (29)

From those activities, we computed the probabilities using a Softmax function pkc =
exp(ak

c )∑C
c′ exp(a

k
c′ )

.

Optimizer. We used the squared mean over root mean squared cubed (SMORMS3) optimizer [51], which chooses a
learning rate based on how noisy the gradient is. The SMORMS3 optimizer keeps track of the three values g1, g2 and
m, which were initialized to g = g2 = 0 and m = 1. They are updated after every minibatch as follows:

r =
1

m+ 1

g = (1− r) · g + r ·
(
∂L
∂θ

)
g2 = (1− r) · g2 + r ·

(
∂L
∂θ

)2

m = 1 +m · 1− g2

g2 + ϵ
.

Given this, SMORMS3 computes the current effective learning rate as ηcurrent =
min

(
η, g2

g2+ϵ

)
√
g2+ϵ , where η is the initially

chosen learning rate and ϵ is a small constant to avoid division by zero. Therefore the parameter update is ∆θ =
−ηcurrent · ∂L∂θ .

Fano factor. The Fano factor was calculated after taking a moving average over the spike train S with a window of
10 timesteps (20 ms) to get Sbin. Subsequently, the Fano factor F was computed as

F =
σ2
Sbin

µSbin

.
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Table 2. Noise and surrogate function parameters. Parameters used in our numerical simulations for feed-forward
networks on the spike-train matching task and deep recurrent CSNNs on the SHD classification task. We selected the
learning rate based on best validation accuracy (cf. Supplementary Fig. S2B). The SuperSpike non-linearity h(x) is the
derivative of a fast sigmoid scaled by 1

β : h(x) = 1
(β|x|+1)2 .

Spike train matching task Classification task

stochastic deterministic stochastic deterministic

Number of trials 10 1 1 1

Learning rate ηhid = 10−05

ηout = 10−05
ηhid = 10−05

ηout = 10−04
0.01 0.01

Escape noise

Function σ(·) step σ(·) step

Parameter βhid = 10
βout = 100

- β = 10 -

Surrogate gradient

Function σ′(·) SuperSpike SuperSpike SuperSpike

Parameter βhid = 10 β = 10 β = 10 β = 10
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Table 3. Network and training parameters. Parameters used in numerical simulations for feed-forward SNNs on the
spike-train matching task and deep recurrent CSNNs on the SHD classification task.

Spike train matching task Classification task

Dataset Radcliffe Camera SHD

No. input neurons 200 700

No. hidden neurons 200 16-32-64

No. output neurons 200 20

No. training epochs 5000 200

Time step 1 ms 2 ms

Duration 198 ms 700 ms

Mini-batch size 1 400

Kernel size (ff) - 21-7-7

Stride (ff) - 10-3-3

Padding (ff) - 0-0-0

Kernel size (rec) - 5

Stride (rec) - 1

Padding (rec) - 2

Loss L2 or van Rossum distance [33] Maximum over time

Optimizer None (gradient descent) SMORMS3[51]

Neuronal parameters

Spike threshold 1 1

Resting potential 0 0

τmem 10 ms 20 ms

τsyn 5 ms 10 ms

τRO
mem - 700 ms

Reset at same time step at next time step

Activity regularizer

ϑupper - 7

λupper - 0.01
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A Supplementary figures

Figure S1. The bias induced in SNN training due to deterministic SGs is small. (A) Spike raster plot of a network
trained on the random manifolds (Randman) dataset [22]; top: membrane potential of the readout units, middle: spike
raster plot of the 128 hidden units, bottom: input data. Time is on the x-axis, the y-axis is the neuron index and each dot
is a spike. (B) Cosine similarity of gradients obtained in 100 single trials in a stochastic SNN performing the Randman
task in (A) w.r.t the mean gradient over 100 trials before and after learning. Teal shows the cosine similarity between
the deterministic and the mean stochastic gradient. (C) First two principal components of the gradients obtained in
different trials with the stochastic network before training. Teal is the deterministic, and silver is the mean gradient.
(D) Same two principal components as in (C), but with the mean added back. One can see that there is a slight bias
in the direction chosen by the deterministic update with respect to the average direction of an update in a stochastic
network. (D) & (E) Same as (C) & (D) but after training on the Randman task for 200 epochs.
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Figure S2. Supplementary metrics on the CSNN experiments. (A) Train, validation and test accuracy for the three-
layer CSNN trained on SHD for the stochastic and deterministic case. In the case of the stochastic SNN, escape noise is
applied during, training, validation and testing. The box labeled "other" shows the performance, if the stochastic network
is evaluated on the test set without any escape noise being present and vice versa for the deterministic. (B) Validation
accuracy for the stochastic and deterministic networks after training for different learning rates. (C) Validation accuracy
for different setups, that applied specific changes to the setup from the main text (compare Fig. 7): diff. reset stoch.:
stochastic network trained with BP also through the reset term. Scaled sigmoid SG: stochastic network trained with
sigmoid instead of fast sigmoid SG, but scaled by 1

βSG
, as done in Zenke et al. [12] for the fast sigmoid. Sigmoid SG:

same as (B), but without scaling and βSG = 1.

B Example: stochastic derivative of a Perceptron as in stochAD [17]

Let us consider a stochastic binary Perceptron as in Eq. (4). Let us first consider only the derivative of the Bernoulli
w.r.t the probability of firing p, namely dy

dp = d
dpBer(p), as we can later apply the chain rule after smoothing. For

the right stochastic derivative (which takes into account jumps from 0 to 1), we assume ϵ > 0, thus the differential
dy(ϵ) = y(p+ ϵ)− y(p) will be

dy(ϵ)(ω) =

{
1 if 1− p− ϵ ≤ ω < 1− p

0 otherwise

where ω is the actual sample drawn from the Bernoulli and we use this fixed randomness to compute the differential.
Given a sample y(p)(ω) = 1, there can be no jump, but if we start with y(p)(ω) = 0, there is a probability of 1

1−p that
the output of y(p+ ϵ)(ω) will jump from zero to one. A stochastic derivative is written as triple, where the first number
is the "almost sure" part δ of the derivative, the second is the weight (probability) w of a finite jump in the derivative,
and finally, we have the alternate value Y , which is the new value of the output if the jump occurred. Hence, in our case,
the correct stochastic derivative would be

(δR, wR, YR) =

{
(0, 1

1−p , 1) if y(p)(ω) = 0

(0, 0, 0) if y(p)(ω) = 1
.
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For the left stochastic derivative, we would only consider jumps from one to zero. So the left stochastic derivative is

(δL, wL, YL) =

{
(0, 0, 0) if y(p)(ω) = 0

(0,− 1
p , 0) if y(p)(ω) = 1

.

To use stochastic derivatives with BP, one needs to smooth them first. This, however, is no longer an unbiased solution.
The smoothed stochastic derivative is defined as δ̃ = E [δ + w(Y − y(p))|y(p)] (see also Eq. (1)). Hence in our case,
we have δ̃R = 1

1−p · 1y(p)=0 and δ̃L = 1
p · 1y(p)=1. We know from (4), that p = σβ(u) and we can compute the

continuous part of the derivative, e.g. d
dup = βσβ(u) · (1− σβ(u)) by applying the chain rule. Put together, we end up

with

δ̃totR =
1

1− p
· 1y(p)=0 ·

dp

du

=
1

1− σβ(u)
· 1y(p)=0 · βσβ(u)(1− σβ(u))

= βσβ(u) · 1y(p)=0

for the smoothed right stochastic derivative, and

δ̃totL =
1

p
· 1y(p)=1 ·

dp

du

=
1

σβ(u)
· 1y(p)=1 · βσβ(u)(1− σβ(u))

= β(1− σβ(u)) · 1y(p)=1

for the smoothed left stochastic derivative. Now since every affine combination of the left and the right smoothed

Figure S3. Smoothed stochastic derivatives: Any affine combination of a smoothed left (light blue) and a smoothed
right (teal) stochastic derivative is a valid stochastic derivative (red) given a specific realization X(p).

stochastic derivative is a valid smoothed stochastic derivative, we can choose our smoothed stochastic derivative to be
(1− p) · δ̃totR + p · δ̃totL which evaluates to

δ̃tot = (1− σβ(u)) · βσβ(u) · 1y(p)=0 + σβ(u) · β(1− σβ(u)) · 1y(p)=1

= β · σβ(u) · (1− σβ(u))

Therefore, when using a specific affine combination of the left and the right smoothed stochastic derivatives, we can
write dy

du = β · σβ(u) · (1− σβ(u)) = β · σ′
β(u) thereby exactly recovering SDs in a stochastic network. Furthermore,

we find the same expression for the SD independent of the outcome of the Bernoulli random variable. The SD and the
smoothed left and right stochastic for one sample of a stochastic Perceptron are shown in Fig. S3.
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