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Abstract

The symmetric (2 + 1)-dimensional Lotka–Volterra equation with self-consistent

sources is constructed and solved by employing the source generation procedure,

whose solutions are expressed in terms of pfaffians. As special cases of the pfaf-

fian solutions, different types of explicit solutions are obtained, including dromions,

soliton solutions and breather solutions.
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1 Introduction

In recent years, there has been extensive research on (2+1)-dimensional integrable sys-

tems [1–3]. In particular, one crucial aspect is to explore new (2+1)-dimensional soliton

equations. In various fields such as fluid dynamics, nonlinear optics, particle physics, general

relativity, differential and algebraic geometry, and topology, several well-known examples

of multi-dimensional integrable systems have been identified. Currently, there are a couple

of effective methods for discovering (2+1)-dimensional integrable systems. One of these

methods is to find integrable extensions of known (2+1)-dimensional integrable systems.

For example, two coupled KP equations were discovered in two different research directions

for the well-known KP equation. One is the so-called KP equation with self-consistent

sources. and the other is generated through what is now called “Pfaffianization” [4,5]. Fol-

lowing the leading work by Mel’nikov [6–12], much attention has been paid to soliton equa-

tions with self-consistent sources (SESCSs). A number of methods have been developed to

study SESCSs, such as inverse scattering method, Darboux transformation, Hirota’s bilin-

ear method, dressing method and squared eigenfunction symmetry method [13–25]. Lately,
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Hu and Wang suggested the source generation procedure which provides an efficient and

unified way to construct and solve SESCSs [14, 26–29]. The source generation procedure

is in essence variation of constants and has been successfully applied to different types of

soliton equations.

In literature, some work has been done on discrete soliton equations with sources.

In [30], integrability of the differential-difference KdV equation with a source was investi-

gated. In [31], the extended Toda lattice hierarchy was constructed by squared symmet-

ric eigenfunctions, for which the non-autonomous Darboux transformation was derived.

Furthermore, the two-dimensional Toda lattice equation, discrete KP equation and the

semi-discrete BKP equation have been extended to their corresponding equations with self-

consistent sources by source generation procedure, along with which determinant solutions

and pfaffian solutions are derived, respectively [26–28].

It is well known that Lotka–Volterra (LV) equation

ut(n) + eu(n)+u(n+1) − eu(n)+u(n−1) = 0 (1.1)

is one of the most important lattices. In [32–35], several (2+1)-dimensional generalizations

of equation (1.1) are presented. In [36], the symmetric (2+1)-dimensional Lotka–Volterra

(2DLV) equation is proposed together with its bilinear Bäcklund transformation, Lax pair

and Pfaffian solutions. Moreover, explicit solutions including dromions and soliton solutions

are derived from the pfaffian solutions for the symmetric 2DLV equation. As is explained

in [36], the property of strong two-dimensionality seems to be closely related to the existence

of dromions which has been proved to be true for the DS equation [37–39], the NVN

equation [40, 41] and the symmetric 2DLV equation. In this paper, we shall apply the

source generation procedure to construct and solve the symmetric 2DLV equation with self-

consistent sources (2DLV ESCS). It will be very interesting to explore the corresponding

explicit solutions such as dromions as well.

This paper is organized as follows. In Section 2, by using the source generation proce-

dure, the symmetric 2DLV ESCS as well as its DKP-type pfaffian solutions are presented.

In Section 3, explicit solutions of the symmetric 2DLV ESCS including dromions, soliton so-

lutions and breather solutions, are derived from the pfaffian solutions. Section 4 is devoted

to conclusions and discussions.

2 The symmetric 2DLV ESCS and DKP-type pfaffian

solutions

The symmetric 2DLV equation reads as [36]

2ut + eu+∆2
mφn − e−u+∆2

nφ + eu+∆2
nφm − e−u+∆2

mφ + e−u+∆2
nφmn̄ − eu+∆2

mφm̄

+ e−u+∆2
mφm̄n − eu+∆2

nφn̄ = 0, u = ∆m∆nφ
(2.1)
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where u = u(m,n, t), φ = φ(m,n, t), the subscript t denotes partial derivative as usual and

the subscripts involving the discrete variables m or n denote shifts:

um ≡ u(m+ 1, n, t), un̄ ≡ u(m,n− 1, t), um̄n ≡ u(m− 1, n+ 1, t).

The ∆m and ∆n are standard difference operators defined by

∆mu = um − u, ∆nu = un − u.

In the case that m = n, the symmetric 2DLV equation (2.1) reduces to (1.1). In this sense,

(2.1) is regarded as a strong generalization of (1.1).

Through the dependent variable transformation

u = ln
fmnf

fmfn

, (2.2)

equation (2.1) is transformed into the multilinear form

sinh
(

1

2
Dn

)

[(

Dte
1

2
Dm − eDn−

1

2
Dm + eDn+ 1

2
Dm

)

f · f
]

·
(

e
1

2
Dmf · f

)

+ sinh
(

1

2
Dm

)

[(

Dte
1

2
Dn − eDm−

1

2
Dn + eDm+ 1

2
Dn

)

f · f
]

·
(

e
1

2
Dnf · f

)

= 0,
(2.3)

where the bilinear operators Dk
t and exp(Dn) are defined by [5]

Dta · b = (∂t − ∂t′)a(t)b(t′)|t′=t, exp(δDn)a(n) · b(n) = a(n+ δ)b(n − δ).

The multilibear equation (2.3) has the DKP-type Pfaffian solution

f = (1, 2, · · · , 2N)

where the Pfaffian elements (i, j) are determined by the relations

(i, j)n = (i, j) + θi,nθj − θiθj,n, (2.4)

(i, j)m = (i, j) − θi,mθj + θiθj,m, (2.5)

(i, j)t =
1

2
(θi,n̄θj,n − θi,nθj,n̄ + θi,mθj,m̄ − θi,m̄θj,m) (2.6)

and θi (i = 1, 2, · · · , 2N) satisfy the linear dispersion relations

θi,mn + θi = θi,m + θi,n, (2.7)

θi,t =
1

2
(θi,n̄ − θi,n + θi,m̄ − θi,m). (2.8)

For simplicity, the index dj
i is introduced and defined by

(dj
i , k) = θk(m+ i, n+ j), (dj

i , d
l
k) = 0,
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so that the (2.4)-(2.6) can be written as

(i, j)n = (i, j) + (d0
0, d

1
0, i, j),

(i, j)m = (i, j) + (d0
1, d

0
0, i, j),

(i, j)t =
1

2
((d1

0, d
−1
0 , i, j) + (d0

−1, d
0
1, i, j)).

With the known pfaffian solution f of the multilinear equation (2.1), we now construct

the symmetric 2DLV ESCS. Following the source generation procedure [26], we change f

into the following form

τ = (1, 2, · · · , 2N), (2.9)

whose Pfaffian elements are defined by

(i, j)n = (i, j) + (d0
0, d

1
0, i, j), (2.10)

(i, j)m = (i, j) − (d0
1, d

0
0, i, j), (2.11)

(i, j)t =
1

2
(Ċi,j(t) + (d1

0, d
−1
0 , i, j) + (d0

−1, d
0
1, i, j)), (2.12)

where Ċi,j(t) is the t-derivative of Ci,j(t) satisfying

Ci,j(t) =











Ci(t), i < j and j = 2N + 1 − i, 1 ≤ i ≤ K ≤ N

ci,j, i < j and j 6= 2N + 1 − i.
(2.13)

It is obvious that τ no longer satisfies the symmetric 2DLV equation (2.3) since Ci,j(t)

becomes dependent of t. In fact, we can prove that τ given by (2.9) satisfies the new

equation

sinh
(

1

2
Dn

)

[

(

Dte
1

2
Dm − eDn−

1

2
Dm + eDn+ 1

2
Dm

)

τ · τ −
K
∑

i=1

sinh
(

1

2
Dm

)

hi · gi

]

·
(

e
1

2
Dmτ · τ

)

+ sinh
(

1

2
Dm

)

[

(

Dte
1

2
Dn − eDm−

1

2
Dn + eDm+ 1

2
Dn

)

τ · τ

−
K
∑

i=1

sinh
(

1

2
Dn

)

gi · hi

]

·
(

e
1

2
Dnτ · τ

)

= 0

(2.14)

with

gi =
√

Ċi(t)(d
0
0, 1, · · · , î, · · · , 2N), i = 1, 2, · · · , K, (2.15)

hi =
√

Ċi(t)(d
0
0, 1, · · · , ̂2N + 1 − i, · · · , 2N), i = 1, 2, · · · , K. (2.16)

Meanwhile, τ , gi and hi satisfy the following two equations

e
1

2
Dm+ 1

2
Dngi · τ =

(

e
1

2
Dm−

1

2
Dn − e−

1

2
Dm−

1

2
Dn + e−

1

2
Dm+ 1

2
Dn

)

gi · τ, (2.17)

e
1

2
Dm+ 1

2
Dnhi · τ =

(

e
1

2
Dm−

1

2
Dn − e−

1

2
Dm−

1

2
Dn + e−

1

2
Dm+ 1

2
Dn

)

hi · τ. (2.18)
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Actually, by detailed calculations we have

(i, j)n̄ = (i, j) + (d0
0, d

−1
0 , i, j), (i, j)m̄ = (i, j) + (d0

−1, d
0
0, i, j), (2.19)

(i, j)mn = (i, j) + (d0
1, d

1
0, i, j), (i, j)mn̄ = (i, j) + (d0

1, d
−1
0 , i, j), (2.20)

(i, j)m̄n = (i, j) + (d0
−1, d

1
0, i, j). (2.21)

These results are then used to give expressions for the derivatives and differences of τ , gi and

hi. For simplicity, denote (1, 2, · · · , 2N) = (•), (1, · · · , î, · · · , ̂2N + 1 − i, · · · , 2N) = (◦),

(1, · · · , î, · · · , 2N) = (⋆) and (1, · · · , ̂2N + 1 − i, · · · , 2N) = (∗) for short and extend these

notations to write (d1
0, d

0
1, 1, 2, · · · , 2N) = (d1

0, d
0
1, •) and so on. Using equations (2.19)-

(2.21), we obtain

τn = (•) + (d0
0, d

1
0, •), τm = (•) + (d0

1, d
0
0, •), τn̄ = (•) + (d0

0, d
−1
0 , •),

τm̄ = (•) + (d0
−1, d

0
0, •), τmn = (•) + (d0

1, d
1
0, •), τmn̄ = (•) + (d0

1, d
−1
0 , •),

τm̄n = (•) + (d0
−1, d

1
0, •), τt =

1

2
((d1

0, d
−1
0 , •) + (d0

−1, d
0
1, •)) +

1

2

K
∑

i=1

Ċi(t)(◦),

τm,t =
1

2
((d1

0, d
−1
0 , •) + (d−1

0 , d0
0, •) − (d1

0, d
0
0, •) − (d0

2, d
0
0, •) + (d0

1, d
−1
0 , •)

− (d0
1, d

1
0, •) + (d1

0, d
−1
0 , d0

1, d
0
0, •)) +

1

2

K
∑

i=1

Ċi(t)((◦) + (d0
1, d

0
0, ◦)),

τn,t =
1

2
((d0

−1, d
0
1, •) + (d0

−1, d
1
0, •) − (d0

−1, d
1
0, •) + (d0

0, d
0
−1, •) − (d0

0, d
0
1, •)

− (d0
0, d

2
0, •) + (d0

−1, d
0
1, d

0
0, d

1
0, •)) +

1

2

K
∑

i=1

Ċi(t)((◦) + (d0
0, d

1
0, ◦)).

gi,n = (d1
0, ⋆), gi,m = (d0

1, ⋆), gi,mn = (d0
1, ⋆) + (d1

0, ⋆) − (d0
0, ⋆) + (d1

0, d
0
1, d

0
0, ⋆),

hi,n = (d1
0, ∗), hi,m = (d0

1, ∗), hi,mn = (d0
1, ∗) + (d1

0, ∗) − (d0
0, ∗) + (d1

0, d
0
1, d

0
0, ∗).

On one hand, by direct substitution, equation (2.14) turns into the combination of the

following two Pfaffian identities

(d0
1, d

0
0, ◦)(•) − (d0

1, d
0
0, 1, •)(◦) = (d0

1, ∗)(d0
0, ⋆) − (d0

1, ⋆)(d
0
0, ∗),

(d1
0, d

0
0, ◦)(•) − (d1

0, d
0
0, 1, •)(◦) = (d1

0, ∗)(d0
0, ⋆) − (d1

0, ⋆)(d
0
0, ∗).

On the other hand, substituting these results into (2.17) and (2.18) will lead to

(d1
0, d

0
1, d

0
0, ⋆)(•) =(d1

0, ⋆)(d
0
1, d

0
0, •) − (d0

1, ⋆)(d
1
0, d

0
0, •) + (d0

0, ⋆)(d
1
0, d

0
1, •),

(d1
0, d

0
1, d

0
0, ∗)(•) =(d1

0, ∗)(d0
1, d

0
0, •) − (d0

1, ∗)(d1
0, d

0
0, •) + (d0

0, ∗)(d1
0, d

0
1, •),

respectively, which are nothing but Pfaffian identities.

To sum up, equations (2.14), (2.17) and (2.18) constitute a coupled system with K pairs

of self-consistent sources which can be viewed as the symmetric 2DLV ESCS. At the same

time, τ , gi and hi given by (2.9), (2.15) and (2.16) provide the associated Pfaffian solutions.

With the help of the dependent variable transformations

u = ln
τmnτ

τmτn

, qi =
gi

τ
, ri =

hi

τ
,
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equations (2.14)-(2.18) are transformed into the nonlinear symmetric 2DLV ESCS

2ut + eu+∆2
mφn − e−u+∆2

nφ + eu+∆2
nφm − e−u+∆2

mφ + e−u+∆2
nφmn̄ − eu+∆2

mφm̄ + e−u+∆2
mφm̄n

− eu+∆2
nφn̄ =

1

4

K
∑

i=1

[(qi,mn − qi)(ri,m − ri,n) + (qi,m − qi,n)(ri − ri,mn)], (2.22)

qi,mne
u − qi,m + qie

u − qi,n = 0, i = 1, 2, · · · , K, (2.23)

ri,mne
u − ri,m + rie

u − ri,n = 0, i = 1, 2, · · · , K. (2.24)

3 Explicit solutions of the symmetric 2DLV ESCS

In the previous section, we have constructed the symmetric 2DLV ESCS and obtained its

Pfaffian solutions. In this section, we shall follow the the method in [42, 43] to derive

(M,N − M)-dromions, N soliton solutions and therefore multi-breather solutions for the

symmetric 2DLV ESCS.

Notice that (2.7) may be rewritten as

∆m∆nθi = 0,

which implies that each θi can be decomposed as

θi(m,n, t) = φi(n, t) + ψi(m, t). (3.1)

Substituting (3.1) into (2.8), we have

2φi,t = φi,n̄ − φi,n,

2ψi,t = ψi,m̄ − ψi,m.
(3.2)

Based on the above calculations, the Pfaffian element (i, j) in f determined by (2.10), (2.11)

and (2.12) can be established as

(i, j) = Ci,j(t) + φiψj − ψiφj +
∫

(φi,n̄φj,n − φi,nφj,n̄ + ψi,mψj,m̄ − ψi,m̄ψj,m)dt. (3.3)

Following the method proposed in [42], we choose the following appropriate functions

for φi and ψi for the Pfaffian element (i, j) in f = (1, 2, · · · , 2N). We take

φi = Pie
ηi , 1 ≤ i ≤ 2M,

φi = 0, 2M + 1 ≤ i ≤ 2N,

ψi = 0, 1 ≤ i ≤ 2M,

ψi = Q2N+1−ie
ξ2N+1−i , 2M + 1 ≤ i ≤ 2N

where

ηi =
−2pit

1 − p2
i

, ξi =
−2qit

1 − q2
i

, Pi = αi

(

1 − pi

1 + pi

)

−n

, Qi = βi

(

1 − qi

1 + qi

)

−m

and αi, βi, pi and qi are constants. With these assumptions, explicit solutions such as

dromion solutions, soliton solutions and breather solutions are able to be derived.
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3.1 Dromion solutions

By taking 0 < M < N , we have from (3.3) that

(i, j) = Ci,j(t) +
pi − pj

pi + pj

PiPje
ηi+ηj , 1 ≤ i < j ≤ 2M,

(i, 2N + 1 − j) = Ci,2N+1−j(t) + PiQje
ηi+ξj , 1 ≤ i ≤ 2M, 1 ≤ j ≤ 2N − 2M,

(2N + 1 − j, 2N + 1 − i) = C2N+1−j,2N+1−i(t) +
qi − qj

qi + qj

QiQje
ξi+ξj , 1 ≤ i < j ≤ 2N − 2M.

In this case, τ , gi and hi give the M × (N −M)-dromion solutions.

Consider the simplest case M = 1, N = 2 and K = 1. According to the definition of

Ci,j(t) in (2.13), we have

τ =c1,2c3,4 − c1,3c2,4 + C1(t)C2(t) − c1,3P2Q1e
η2+ξ1 − c2,4P1Q2e

η1+ξ2

+ C2(t)P1Q1e
η1+ξ1 + C1(t)P2Q2e

η2+ξ2 + c3,4
p1 − p2

p1 + p2
P1P2e

η1+η2

+ c1,2
q1 − q2

q2 + q1
Q1Q2e

ξ1+ξ2 +
p1 − p2

p1 + p2

q1 − q2

q1 + q2
P1P2Q1Q2e

η1+η2+ξ1+ξ2 ,

g1 =
√

Ċ1(t)(C2(t)Q1e
ξ1 − c2,4Q2e

ξ2 + (c3,4 +
q1 − q2

q1 + q2
Q1Q2e

ξ1+ξ2)P2e
η2),

h1 =
√

Ċ1(t)(C2(t)P1e
η1 − c1,3P2e

η2 + (c1,2 +
p1 − p2

p1 + p2
P1P2e

η1+η2)Q2e
ξ2).

(3.4)

Furthermore, by setting p2 = q1 = 0, we have

τ =c1,2c3,4 − c1,3c2,4 − c1,3α2β1 + C1(t)C2(t) + (c3,4α2 + β1C2(t))P1e
η1

+ (α2C1(t) − c1,2β1)Q2e
ξ2 − (α2β1 + c2,4)P1Q2e

η1+ξ2,

g1 =
√

Ċ1(t)(α2c3,4 + β1C2(t) − (α2β1 + c2,4)Q2e
ξ2),

h1 =
√

Ċ1(t)(−c1,3α2 + c1,2Q2e
ξ2 + C2(t)P1e

η1 + α2P1Q2e
η1+ξ2),

which gives the (1, 1)-dromion solution of the symmetric 2DLV ESCS (2.22) (see Fig.1).

3.2 Soliton solutions

By taking 2M = N and Ci,j(t) = δi,2N+1−jCi(t), we have

(i, j) =
pi − pj

pi + pj

PiPje
ηi+ηj , 1 ≤ i < j ≤ N,

(i, 2N + 1 − j) = δi,jCi(t) + PiQje
ηi+ξj , 1 ≤ i, j ≤ N,

(2N + 1 − j, 2N + 1 − i) =
qi − qj

qi + qj

QiQje
ξi+ξj , 1 ≤ i < j ≤ N.

In this case, τ , gi and hi give the N -soliton solution.

7



Figure 1: (1, 1)-dromion solution of (2.22) with t = 1, C1(t) = t2, C2(t) = t, α1 = α2 =

β1 = β2 = 1, p1 = −1
4
, q2 = 1

3
, c1,2 = −1,

c1,3 = 1, c2,4 = −2, c2,4 = −2.

Consider the case N = 2 and K = 1, we can obtain the 2-soliton solution (see Fig. 2)

τ = C1(t)C2(t) + C1(t)P2Q2e
η2+ξ2 + C2(t)P1Q1e

η1+ξ1

+
p1 − p2

p1 + p2

q1 − q2

q1 + q2
P1P2Q1Q2e

η1+η2+ξ1+ξ2 ,

g1 =
√

Ċ1(t)(C2(t)Q1e
ξ1 +

q1 − q2

q1 + q2
P2Q1Q2e

η2+ξ1+ξ2),

h1 =
√

Ċ1(t)(C2(t)P1e
η1 +

p1 − p2

p1 + p2

P1P2Q2e
η1+η2+ξ2).

(3.5)

Note that if we further set p2 = q2 = 0, we have

τ = α2β2C1(t) + C1(t)C2(t) + (α2β2 + C2(t))P1Q1e
η1+ξ1 ,

g1 =
√

Ċ1(t)(C2(t) + α2β2)Q1e
ξ1 ,

h1 =
√

Ċ1(t)(C2(t) + α2β2)P1e
η1 ,

which is the one-soliton solution.

3.3 Breather solutions

In the preceding subsections, we have obtained soliton solutions for the symmetric 2DLV

ESCS. In what follows, we are going to derive breather solutions from soliton solutions.

For the sake of convenience, we set αi = βi = 1. Consider the case N = 2 and K = 1.

Let ∗ denote complex conjugate. By taking p1 = p∗

2 = a + bi, q1 = q∗

2 = c + di and

8



Figure 2: 2-soliton solution of (2.22) with t = 2, C1(t) = t2, C2(t) = t, α1 = α2 = β1 =

β2 = 1, p1 = 1
5
, p2 = 1

2
, q1 = 1

6
, q2 = 1

4
.

C1(t) = C∗

2(t) = γ(t) + δ(t)i, we have the 1-breather

τ = γ2(t) + δ2(t) + 2γ(t)R(a, b)−
n
2R(c, d)−

m
2 e2(I(a,b)+I(c,d))t cos(−Arg(S(a, b))n

− Arg(S(c, d))m− 2(T (a, b) + T (c, d))t+ Arg(δ(t)i))

+ a12R(a, b)−nR(c, d)−me4(I(a,b)+I(c,d))t,

g1 =
√

(γ̇(t) + δ̇(t)i)M(c, d)−me(I(c,d)−T (c,d)i)t(γ(t) − δ(t)i+
di

c
S(a, b)−n

S(c, d)−me(I(a,b)+I(c,d)−(T (a,b)+T (c,d))i)t),

h1 =
√

(γ̇(t) + δ̇(t)i)M(a, b)−me(I(a,b)−T (a,b)i)t(γ(t) − δ(t)i+
bi

a
S(a, b)−n

S(c, d)−me(I(a,b)+I(c,d)−(T (a,b)+T (c,d))i)t)

(3.6)

where

R(x, y) =
(x− 1)2 + y2

(x+ 1)2 + y2
, I(x, y) =

2x

x2 + y2 − 1
, S(x, y) =

−x2 − y2 + 1 + 2yi

(x+ 1)2 + y2
,

T (x, y) =
2y

x2 + y2 − 1
, M(x, y) =

−x2 − y2 + 1 − 2yi

(x+ 1)2 + y2
, a12 = −

bd

ac

with a, b, c, d being arbitrary real-valued constants (see Fig.3). Remarkably, a12 > 1, γ ≤ 1

and γ2(t) + δ2(t) ≥ 1 imply that τ is always positive, which accounts for the nonsingular

solution. The general breather solutions can be obtained from the soliton solutions in a

similar way.

4 Conclusions and discussions

The symmetric 2DLV ESCS is constructed by employing the source generation procedure.

DKP-type Pfaffian solutions of the system have also been derived. In the case that Ci(t)

9



Figure 3: 1-breather solution of (2.22) with t = 0.01, a = −1, b = 1, c = −0.2, d =

−3, δ(t) = t2 + 2, γ(t) = −t2 − 1.

is independent of t, the pairs of sources gi and hi become zero identically. Consequently,

the symmetric bilinear (or nonlinear) 2DLV ESCS is reduced to the symmetric bilinear

(or nonlinear) 2DLV equation. Meanwhile, DKP-type Pfaffian solutions of the symmetric

2DLV ESCS is reduced to the ones of the symmetric 2DLV equation. Due to the property

of strong two-dimensionality, the symmetric 2DLV ESCS has been proved to have dromion

solutions in addition to soliton solutions and breather solutions.

It has been shown that the NVN equation is a continuous analogue of the symmetric

2DLV equation [36]. Since the NVN equation has nonsingular lump solutions [44, 45], it is

believed that the symmetric 2DLV equation and the symmetric 2DLV ESCS should have

nonsingular lump solutions too. We will discuss such problems elsewhere.
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