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Abstract
In biological tasks, data is rarely plentiful as it
is generated from hard-to-gather measurements.
Therefore, pre-training foundation models on
large quantities of available data and then trans-
fer to low-data downstream tasks is a promising
direction. However, how to design effective foun-
dation models for molecular learning remains an
open question, with existing approaches typically
focusing on models with large parameter capaci-
ties. In this work, we propose MiniMol, a foun-
dational model for molecular learning with 10
million parameters. MiniMol is pre-trained on a
mix of roughly 3300 sparsely defined graph- and
node-level tasks of both quantum and biological
nature. The pre-training dataset includes approxi-
mately 6 million molecules and 500 million labels.
To demonstrate the generalizability of MiniMol
across tasks, we evaluate it on downstream tasks
from the Therapeutic Data Commons (TDC) AD-
MET group showing significant improvements
over the prior state-of-the-art foundation model
across 17 tasks. MiniMol will be a public and
open-sourced model for future research.

1. Introduction
Accurate prediction of molecular properties plays an es-
sential role in many applications, including novel drug
discovery (Stokes et al., 2020; Jin et al., 2021; Wallach
et al., 2015), efficient catalyst development (Zitnick et al.,
2020), and materials design (Reiser et al., 2022). Tradition-
ally, Density Functional Theory (DFT) methods (Nakata &
Shimazaki, 2017) accurately compute molecular properties
by physics simulation, but are computationally demanding
even for small molecules, and becomes intractable in large
scale of biological systems (Stevens et al., 2023). Con-
sequently, deep learning methods such as Graph Neural
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Kerstin Kläser <kerstink@graphcore.ai>, Błażej Banaszewski
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Figure 1. Workflow overview of the MiniMol pre-training and
downstream task evaluation. MiniMol is pre-trained on the
LargeMix datasets. Then MiniMol embeddings are used as
molecular fingerprints for downstasks such as those in TDC.

Networks (GNNs) (Masters et al., 2023a; Gasteiger et al.,
2019) and graph transformers (Rampášek et al., 2022) have
achieved significant success in molecular representation
learning. This is demonstrated in the recent Open Graph
Benchmark (OGB) Large Scale Challenge where on the
PCQM4Mv2 dataset, deep learning models produce ac-
curate approximations of DFT while being significantly
faster (Lu et al., 2023; Masters et al., 2023a). In addition, by
training on DFT calculations and biological tasks, ML mod-
els can predict complex biochemical properties not possible
with DFT alone. Therefore, building foundation models
that capture chemical and biological knowledge from large
amounts of pre-training data and adapt it for a wide range
of downstream low-data tasks is a promising next step.

Prior work on foundational models for molecular learn-
ing has typically adopted the common practices used in
computer vision and natural language processing, aim-
ing for large model capacity and pre-training dataset size.
Molecular foundation models such as MolE (Méndez-Lucio
et al., 2022), ChemBERTa-2 (Ahmad et al., 2022) and
Galactica (Taylor et al., 2022) directly receive SMILES
strings (Weininger et al., 1989) of molecules as input. How-
ever, a number of equally valid SMILES strings can denote
the same molecule thus SMILES string based models are
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unable to represent the symmetries underlying the molec-
ular graphs. Therefore, large amounts of pre-training data
and a large model capacity is required to properly learn
these symmetries. Recently, ULTRA (Galkin et al., 2023),
a foundational model for knowledge graphs, demonstrated
that properly respecting the symmetries of the underlying
data alleviates the need for large models in order to beat
task-specific baselines. Specifically, ULTRA improves the
state-of-the-art on a wide variety of knowledge graph rea-
soning tasks with only 177K parameters. Therefore, we
leverage the permutation invariant property of GNNs to
build a generally-capable and parameter-efficient founda-
tion model for molecular fingerprinting.

In this work, we propose MiniMol, a parameter-efficient
foundation model for molecular learning based on GNN
backbone. MiniMol is pre-trained on the Graphium
LargeMix dataset (Beaini et al., 2024) with around 6 mil-
lion molecules and 526 million data labels. The pre-training
strategy of Graphium is multi-level and multi-task mean-
ing that over 3300 sparsely defined tasks on both graph
and node level are trained jointly. MiniMol demonstrates
strong downstream task performance on the Therapeutic
Data Commons (TDC) ADMET group (Huang et al., 2021).
Figure 1 shows a simplified diagram of this idea. Our main
contributions are as follows:

• In this work, we propose MiniMol, a parameter-efficient
foundation model with a GINE backbone of 10 million
parameters, pre-trained on around 3300 biological and
quantum tasks on the graph and node level of molecules.

• We demonstrate that the molecular fingerprint from
MiniMol is highly transferable to downstream tasks. On
the TDC benchmark, the current state of the art for a
single model applied to all tasks (a foundation model) is
MolE, which achieves a mean rank of 5.4, when compared
against the specialized per-task models on the leaderboard.
MiniMol achieves a mean rank of 3.6 and outperforms
MolE on 17 tasks.

• We conduct a thorough performance correlation analysis
between the pre-training datasets and downstream tasks.
We found that PCQM4M G25 dataset often has a negative
correlation with downstream tasks thus highlighting the
importance of understanding the correlation between pre-
training tasks and downstream tasks.

• MiniMol will be a public and open-sourced model for
future research. With only 10% of the parameters of
prior state-of-the-art, MiniMol offers strong downstream
performance and lower compute requirement to adapt.

Reproducibility: We include the code and weight check-
point for MiniMol needed to reproduce the experiments as
supplementary materials.

2. Related Work
2.1. Molecular Fingerprints

Traditional molecular fingerprints such as Extended Connec-
tivity Fingerprint (ECFP) (Rogers & Hahn, 2010), RDkit fin-
gerprints (Landrum et al., 2013) and MAP4 (Capecchi et al.,
2020) are designed for molecular characterization, similar-
ity searching, and structure-activity modelling, with wide
applications in drug discovery. However, they encode the
presence of particular substructures within the molecule and
should be manually customized for specific applications. In
addition, it is shown that different types of fingerprints per-
form better for specific categories of molecules. For exam-
ple, substructure fingerprint (Kim, 2021) has the best perfor-
mance on small molecules such as drugs while atom-pair fin-
gerprints (Awale & Reymond, 2014) are best suited for large
molecules such as peptides. Even SOTA fingerprints can
suffer from embedding collisions due to how sub-structures
are resolved (Probst et al., 2022). From large molecular
datasets, foundation models aim to learn a universal and
descriptive molecular representation as practical molecular
fingerprints for downstream tasks. Our MiniMol model
generates strong fingerprints for various tasks on the TDC
benchmark as indicated by downstream task performance.

2.2. Foundational Models in ML.

In Natural Language Processing (NLP) and Computer
Vision (CV), foundation models have achieved signif-
icant progress, especially for Large Language Mod-
els (LLMs) (Achiam et al., 2023). Foundation models are
often pre-trained on a mixture of data across a wide range of
tasks. Downstream tasks with low amounts of data can then
be solved using low-resource, inexpensive fine-tuning (Tian
et al., 2023; Borzunov et al., 2023). Multi-modal datasets
have been used with LLMs to align a single model repre-
sentation across domains (Team et al., 2023; Betker et al.,
2023). In most areas, these general properties have typically
been emergent from extremely large models.

2.3. Foundational Models in Molecular Learning.

Initial unsupervised transformer-based designs most closely
replicate work in NLP (Honda et al., 2019; Wang et al., 2019;
Honda et al., 2019), representing molecules as SMILES
strings (Weininger, 1988). These models leverage extremely
large but low-fidelity unlabelled molecule datasets. Early
FMs can achieve strong results on some small, out-of-
domain tasks. However, generalizability to a wide vari-
ety of tasks remains limited (Zhu et al., 2021; Liu et al.,
2023; Méndez-Lucio et al., 2022; Luo et al., 2023). Re-
cent state-of-the-art in molecular property prediction em-
ploys geometric deep learning, often with an MPNN or
Graph Transformer, trained with supervised labels of molec-
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ular properties (Ying et al., 2021; Veličković et al., 2017;
Dwivedi & Bresson, 2020). Recent work by (Masters et al.,
2023b) has shown promising potential for MPNN scaling
in-depth and total parameters for predicting the quantum
properties of molecules. Recent work COATI (Kaufman
et al., 2023) is based on SMILES and point clouds, uti-
lizing a multi-modal encoder-decoder scheme designed for
molecule regression tasks. Significantly, Shoghi et al. (2023)
demonstrates the importance of multi-task pre-training on
a range of length scales for low-resource fine-tuning and
extracting learned representations for molecular property
prediction (MPP). In this work, we use graph-based repre-
sentations of molecules, which provide rich chemical and
structural information. MiniMol is pre-trained on a large
number of molecular properties of both quantum and biolog-
ical tasks while demonstrating strong performance across
many downstream tasks.

3. Method
Here, we present our architecture for pre-training on the
LargeMix datasets (Beaini et al., 2023), extracting finger-
prints and subsequently fine-tuning to downstream tasks
(see Fig. 2).

3.1. Molecular Representation

Each molecule is modelled as a graph G withN nodes repre-
senting the atoms and M edges representing the bonds. We
denote the set of edges with E . The atom and bond features
are generated using RDKit, providing a set of categorical
and floating values, and the atomic features are concatenated
with positional and structural embeddings. From (Masters
et al., 2023b; Rampášek et al., 2022) the Laplacian eigen-
vectors and eigenvalues, and the random walk probabilities,
were found to be most beneficial. The input node feature
vectors are the concatenation of these features

X0 =
[
Xatom|XLapVec|XLapVal|XRW

]
,

and edge features are the bond features E0 =
[
Ebond

]
. A

global node is added to each graph, providing an additional
connection to every node. It was shown in (Li et al., 2017))
that the global node dramatically improves graph-level rep-
resentation. This acts both as routing between otherwise
distant portions of the graph and as a readout node for the
graph property. It is initialized with a random vector. Each
of the nodes, edges, and global features are initially embed-
ded into the model dimensions using a two-layer MLP each
(eq 1 - 3).

x0 = MLPx

(
X0

)
∈ RN×dnode (1)

e0 = MLPe

(
E0

)
∈ RM×dedge (2)

g0 = MLPg(randg (0)) ∈ Rdglobal (3)

3.2. Model

Given the initial node, edge and graph embeddings we up-
date them through multiple layers of message-passing to
obtain final node embeddings

xfinal = GNN(x0, e0, g0),

where GNN is a chosen GNN backbone. As described later
in Section 4, we try three different backbone GNNs, namely
GCN (Kipf & Welling, 2017), GINE (Hu et al., 2020b; Xu
et al., 2019) and MPNN++ (Masters et al., 2023a). We
briefly describe the different architectures here.

GCN The GCN (Kipf & Welling, 2016) incorporates only
the node embeddings. Concretely, the ℓ-th layer of a GCN
is defined as

xℓ+1
i =

∑
j∈N (i)∪{i}

1√
didj

xℓj ,

where N (i) denotes the set of neighbors of i and di and dj
denote the degree of nodes i and j, respectively.

GINE GINE is an extension of GIN (Xu et al., 2019) to
additionally incorporate edge embeddings (Hu et al., 2020b).
Concretely, the ℓ-th layer of GINE is defined as

xℓ+1
i = MLP

(
(1− ϵ) · xℓi

∑
j∈N (i)

ReLU(xℓj + eℓij)
)
,

where ϵ is a learnable scalar. Compared to GCN, GINE
is more expressive as it has the same expressive power
for graph isomorphism test as the 1-Weisfeiler-Leman al-
gorithm (Xu et al., 2019). Further, GINE has been used
previously for pre-training graph neural networks (Hu et al.,
2020b).

MPNN++ The Message Passing Neural Network (MPNN)
module in (Masters et al., 2023a) called MPNN++, is de-
signed to incorporate and update node-, edge- and graph-
level embeddings. The MPNN++ is a complex architec-
ture as it aggregates messages from adjacent nodes, inci-
dent edges and global graph-level embeddings. In addition,
the MPNN++ uses layer-wise skip connections for node-,
edge- and graph-level embeddings; see Appendix A.1 for
a detailed description of the MPNN++ layer. We include
MPNN++ as a backbone in our experiments.

3.3. Pre-training

MiniMol is jointly pre-trained with many supervised tasks
on both the graph and node levels. The total loss minimized
during training is a summation of each of the pre-training
tasks, accounting for label sparsity per molecule. There is a
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Figure 2. Schematic of the architecture of MiniMol. An example molecule is featurized in the first block. Node feature vectors are
created by combining chemical features with positional and structural encodings, edge features are generated using RDKit and a random
initial global vector is generated. Each initial vector is processed with a separate embedding MLP. The backbone of the model is a stack
of MPNN layers, which output the molecular fingerprint ψ after pooling. The pre-pooling output is used for pre-training on node-level
tasks, in our case, PCQM4M N4. The fingerprint ψ is used either for pre-training multiple graph-level task heads or as an input to the
downstream tasks, including the full set of ADMET tasks from the TDC benchmarks.

rich literature on how to combine losses for multi-task learn-
ing (Crawshaw, 2020), although in this case, the tasks are a
combination of regression and classification, meaning the
losses are not naturally commensurate. The mean absolute
error (MAE) loss is used for the PCQM dataset (N4 and
G25 tasks), the binary cross-entropy (BCE) loss is used for
the PCBA tasks, and the hybrid cross-entropy (HCE) loss
from (Beaini et al., 2023) is used for the L1000 datasets.
Concretely, we compute the final loss L as

L = LL1000 + LPCBA + LN4 +
1

k
LG25.

where k is a scaling constant and we set k = 5 to account
for data imbalance on the G25 dataset (see more discussion
in Section 4).

3.4. Downstream Fingerprinting

For downstream tasks, we generate the global embeddings
of the final layer of MiniMol from a given molecule which
is also referred to as molecular fingerprints. This is more
compute efficient and easy to use when compared to fine-
tuning the entire model from end-to-end. In addition, gen-
erating meaningful molecular fingerprints for downstream
tasks is an important aspect of the foundation model of
molecular learning.

More specifically, we first extract fingerprints for all unique
molecules in a given downstream task and subsequently use

the fingerprints as molecular representation to train a small
Multilayer Perceptron (MLP) for making task-specific pre-
dictions. To generate the fingerprints from MiniMol, we
compute the final node-, edge- and graph-level embeddings
as described in Section 3.2 and subsequently obtain finger-
prints by pooling the final node embeddings, e.g., via max
pooling, obtaining

ψ =
∑
i∈G

xfinal
i

for the fingerprint vector ψ.

There are several advantages of using molecular fingerprints
for downstream tasks when compared to end-to-end fine-
tuning. First, the above procedure allows a significantly
more efficient way to train a model on low-data downstream
tasks. Molecular fingerprints are pre-computed for a given
set of molecules with a single forward pass from the model
and then used for many downstream tasks or hyperparame-
ter sweeps. Second, the downstream model is less likely to
overfit when only the downstream MLP is trainable as there
are fewer trainable parameters. Next, the use of molecular
fingerprints for downstream tasks in this way matches exist-
ing workflows in the bio-chemistry domain increasing the
practical utility of the method. Finally, as fingerprints are
simply embedding vectors, practitioners are not required to
access the architecture or weight of the pre-trained model
thus only the expertise to train a task head (or MLP) is
required.
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4. Experimental Details
In our experiments, we pre-train MiniMol on LargeMix
(Beaini et al., 2023) for various GNN backbones and sub-
sequently fine-tune to all 22 tasks in the ADMET Group of
the TDC benchmark.

4.1. Pre-training

MiniMol uses the LargeMix datasets from (Beaini et al.,
2023) for pre-training, consisting of approximately 6M
molecules and a total of 526M targets, which have been
summarized in Table 1. The datasets are described below.

PCQM4M G25 N4. This dataset contains 3.8M molecules
from the PCQM dataset (Hu et al., 2021), from the OGB-
LSC challenge. The dataset consists of quantum chemistry
calculations for 25 molecular graph-level properties, and
4 node-level properties per atom, resulting in about 400M
labelled data points.

PCBA. This dataset contains 1.5M molecules from the
OGBG-PCBA dataset (Hu et al., 2020a). This bioas-
say dataset, derived experimentally from high-throughput
screening methods, details the impact of the molecules on
living cells across 1328 sparse labels. This results in about
100M labelled data points.

L1000 VCAP and L1000 MCF7. These datasets contain
26k molecules from the L1000 dataset (Subramanian et al.,
2017) which details the change to gene expression profiles
and cellular processes when exposed to the molecules in the
dataset across about 1000 labels and 26M data points.

Table 1. Overview of the datasets in LargeMix.

Dataset # Molecules # Labels # Data Points % of All Data Points
PCQM4M G25 3.81M 25 (G) 93M 17%
PCQM4M N4 3.81M 4 (N) 197.7M 37%
PCBA 132B 1.56M 1328 (G) 224.4M 41%
L1000 VCAP 15K 978 (G) 15M 3%
L1000 MCF7 12K 978 (G) 11M 2%

These diverse labels from fundamental quantum chemistry
properties to macro-scale cellular impact encourage a single
general representation of the molecule suitable for down-
stream tasks. The combined LargeMix contains multiple
task labels per molecule. The datasets only partially overlap
thus requiring the model to generalize across domains from
sparse labels on molecules. Following (Méndez-Lucio et al.,
2022), we filter out molecules with more than 100 heavy
atoms. In addition, we remove molecules in the ADMET
group test sets from our pre-training data to avoid potential
leakage of test labels (7% of MCF7, 4% of VCAP, 0.6% of
PCBA, 0.07% of PCQM4M G25/N4). During pre-training
we split the dataset into 92% training, 4% validation, and
4% test data.

To cover a range of GNN backbones with increasing com-

plexity, we pre-train GCN, GINE, and finally MPNN++
models and subsequently evaluate their downstream perfor-
mance on the TDC ADMET group datasets. Each model
consists of 16 GNN layers with hidden dimensions adjusted
such that all models have around 10M parameters. We train
each model for 100 epochs using the Adam optimizer, with
a maximum learning rate of 3e−4, 5 warm-up epochs and
linear learning rate decay.

4.2. Benchmarking on TDC ADMET Group

Here, we describe the ADMET group of the TDC bench-
mark which we use to evaluate the downstream perfor-
mance of MiniMol. The Therapeutics Data Commons
(TDC) (Huang et al., 2021) is a platform designed to facili-
tate the assessment and development of AI methods in drug
discovery. It particularly emphasizes identifying the most
effective AI techniques for this purpose. Within TDC, the
ADMET Benchmark Group specializes in single-instance
prediction, offering a standardized suite of 22 datasets for
molecular property prediction. These datasets vary in size,
ranging from 475 to 13,130 molecules, and encompass tasks
in both regression and classification. The datasets span a
breadth of molecular properties, categorized into Absorp-
tion, Distribution, Metabolism, Excretion, and Toxicity. To
ensure fair comparability, scaffold splits are employed, with
80% of data for training and 20% for testing.

A diverse array of models, including random forests, GNNs,
and CNNs, are evaluated on these tasks. Their performance
is showcased on the TDC leaderboard which includes vari-
ous models trained with SMILES or other encoding strate-
gies. To benchmark MiniMol, we first build an ensemble
by training a distinct model on each fold in 5-fold cross-
validation. While building the ensemble, the best epoch is
selected based on validation loss, and to distinguish which
ensemble to select for testing (e.g. while choosing one out
of the sweep), the ensemble’s mean validation metric is
used. Final test scores are derived from the top ensemble,
with error bars reported from five trials (see Appendix A.4
for pseudo code). Table 3 presents the performance of three
GNN architectures (GCN, GINE, MPNN++) across various
datasets and two computational budgets for sweeping hy-
perparameters of the dataset-specific models. Since our fin-
gerprinting approach permits fast evaluation of downstream
predictors, we conduct extensive hyperparameter sweeping
across all tasks (see Appendix A.2 for more details about
the hyperparameter selection). For CPU-only runs, training
a downstream model only takes 1 to 10 minutes per model
per dataset.

5. Empirical Results
Here, we present our experimental results for both pre-
training and fine-tuning on fingerprints.

5
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Table 2. Results on downstream evaluation of MiniMol (GINE) with max pooling on TDC ADMET benchmarks, and comparison to the
TDC leaderboard and MolE. The rank is determined for each dataset individually, on a set of 7 scores, which include the test results from
the TOP5 leaderboard, MolE and MiniMol. The best result is shown in green and the top three results are highlighted in purple.

TDC Dataset
Leaderboard

Jan. 2024 MolE MiniMol (GINE)

Name Size Metric SOTA Result Result Rank Result Rank

A
B

S
O

R
P

T
IO

N

Caco2 Wang 906 MAE (↓) 0.276 ± .005 0.310 ± .010 6 0.324 ± .012 7
Bioavailability Ma 640 AUROC (↑) 0.748 ± .033 0.654 ± .028 7 0.699 ± .008 6
Lipophilicity AZ 4,200 MAE (↓) 0.467 ± .006 0.469 ± .009 3 0.455 ± .001 1
Solubility AqSolDB 9,982 MAE (↓) 0.761 ± .025 0.792 ± .005 5 0.750 ± .012 1
HIA Hou 578 AUROC (↑) 0.989 ± .001 0.963 ± .019 7 0.994 ± .003 1
Pgp Broccatelli 1,212 AUROC (↑) 0.938 ± .002 0.915 ± .005 7 0.994 ± .002 1

D
IS

T
R

IB
. BBB Martins 1,975 AUROC (↑) 0.920 ± .006 0.903 ± .005 7 0.923 ± .002 1

PPBR AZ 1,797 MAE (↓) 7.526 ± .106 8.073 ± .335 6 7.807 ± .188 4
VDss Lombardo 1,130 Spearman (↑) 0.713 ± .007 0.654 ± .031 3 0.570 ± .015 7

M
E

TA
B

O
L

IS
M

CYP2C9 Veith 12,092 AUPRC (↑) 0.859 ± .001 0.801 ± .003 5 0.819 ± .001 4
CYP2D6 Veith 13,130 AUPRC (↑) 0.790 ± .001 0.682 ± .008 6 0.718 ± .003 5
CYP3A4 Veith 12,328 AUPRC (↑) 0.916 ± .000 0.867 ± .003 7 0.878 ± .001 5
CYP2C9 Substrate 666 AUPRC (↑) 0.441 ± .033 0.446 ± .062 2 0.481 ± .013 1
CYP2D6 Substrate 664 AUPRC (↑) 0.736 ± .024 0.699 ± .018 7 0.726 ± .006 2
CYP3A4 Substrate 667 AUROC (↑) 0.667 ± .019 0.670 ± .018 1 0.644 ± .006 6

E
X

C
R

E
T. Half Life Obach 667 Spearman (↑) 0.576 ± .025 0.549 ± .024 4 0.493 ± .002 7

Clearance Hepatocyte 1,102 Spearman (↑) 0.536 ± .020 0.381 ± .038 7 0.448 ± .006 4
Clearance Microsome 1,020 Spearman (↑) 0.630 ± .010 0.607 ± .027 6 0.652 ± .007 1

T
O

X
IC

IT
Y LD50 Zhu 7,385 MAE (↓) 0.552 ± .009 0.823 ± .019 7 0.588 ± .010 3

hERG 648 AUROC (↑) 0.880 ± .002 0.813 ± .009 7 0.849 ± .007 6
Ames 7,255 AUROC (↑) 0.871 ± .002 0.883 ± .005 1 0.856 ± .001 5
DILI 475 AUROC (↑) 0.925 ± .005 0.577 ± .021 7 0.944 ± .007 1

TDC Leaderboard Mean Rank: 5.4 3.6

5.1. Pre-training on LargeMix

We present our pre-training results for MiniMolwith GCN,
GINE and MPNN++ as backbone GNNs on LargeMix in
Table 3. Here, we observe that pre-training performance
is only marginally affected by the choice of the backbone
GNN. Moreover, the pre-training performance of a given
GNN backbone also varies with tasks. For example, on the
graph- and node-level regression tasks of PCQM4M G25 and
PCQM4M N4 the MPNN++ backbone performs consistently
better while GINE performs best on the classification tasks
of PCBA 1328. On L1000 VCAP we observe roughly
comparable results across all metrics with a slight advantage
of GINE in terms of AUROC. Finally, on L1000 MCF7,
GCN and GINE are largely on par with the MPNN++ show-
ing worse performance in terms of AUROC. Most impor-
tantly, no single backbone is superior to the other two. Next,
we present our results of fine-tuning these models to the

ADMET group benchmark of TDC using our fingerprinting
approach.

5.2. Downstream performance on TDC

Here, we present our fine-tuning results on the ADMET
group datasets of TDC; see Table 4 for a comparison of dif-
ferent backbone GNNs in terms of downstream performance.
GINE demonstrates a significant empirical advantage as the
GNN backbone for downstream tasks. Thus, in Table 2,
we compare MiniMol (GINE), to the TDC leaderboard
and the current state-of-the-art, MolE (Méndez-Lucio et al.,
2022). MiniMol with GINE backbone, achieves top 1
performance on 8 tasks, setting a new state-of-the-art on
these datasets. Moreover, MiniMol (GINE) achieves top-3
performance on 10 tasks. Therefore, MiniMol (GINE)
is shown to be a versatile model across a wide range of
tasks, competing with or exceeding the performance of the
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Table 3. Results for GNN 10M baselines on LARGEMIX dataset.
We report performance metrics on the test set for each dataset in
LARGEMIX separately. The best scores per metric per dataset are
marked in bold.

Model
Dataset Metric GCN GINE MPNN

PCQM4M G25
MAE ↓ 0.218 0.208 0.200
Pearson ↑ 0.884 0.889 0.892
R2 ↑ 0.790 0.799 0.803

PCQM4M N4
MAE ↓ 0.025 0.022 0.021
Pearson ↑ 0.975 0.979 0.980
R2 ↑ 0.952 0.959 0.961

PCBA 1328
CE ↓ 0.033 0.033 0.033
AUROC ↑ 0.777 0.784 0.782
AP ↑ 0.286 0.302 0.287

L1000 VCAP
CE ↓ 0.061 0.061 0.061
AUROC ↑ 0.500 0.514 0.500
AP ↑ 0.504 0.504 0.506

L1000 MCF7
CE ↓ 0.059 0.058 0.059
AUROC ↑ 0.533 0.531 0.519
AP ↑ 0.513 0.516 0.514

Table 4. The effect of specific GNN architectures in the backbone
of the fingerprinting model on the downstream performance. The
rank is determined for each dataset individually, on a set of 7 scores,
which include the test results from the TOP5 TDC leaderboard,
MolE and MiniMol. Here, all models used sum pooling, whereas
our best model uses max pooling.

MiniMol backbone Mean Rank # Top1 Results # Top3 Results

MPNN++ 4.8 3 6
GCN 4.4 4 8

GINE 3.9 5 10

best task-specialized architectures. We report TDC leader-
board results up until January 2024. In addition, MiniMol
(GINE) outperforms MolE on 17 datasets, indicating that
with only 10% of the parameters, our MiniMol approach
is favourable to MolE in downstream performance across
many molecular tasks. For our best model, we explored
different pooling methods, see Appendix A.3.

In Table 5, we compare MiniMol to other fingerprinting
methods using the same evaluation downstream adaptation
method as ours, so the only difference is the quality of
generated fingerprints.

5.3. Correlation analysis

We also conduct a comprehensive correlation analysis to
determine the impact of various pre-training datasets on the
performance across 22 ADMET-group benchmarks from the

Table 5. Comparison of MiniMol to other molecular fingerprint-
ing models using the same evaluation method as ours, including
ensembles.

Model Mean rank >MoIE TOP1 TOP3
MiniMol 3.6 17 8 10
AGBT (Chen et al., 2021a) 5.7 10 1 4
MolFormer (Ross et al., 2022) 5.7 7 0 4
BET (Chen et al., 2021b) 6.1 7 1 2

TDC benchmark. We checkpoint on two critical points in the
training process: the epoch with the lowest total validation
loss and at the end of training (of which these two epochs
can differ). This approach yielded 32 unique combinations
of pre-training validation and downstream test metrics.

Spearman’s rho correlation coefficients (Sedgwick, 2014)
were calculated for each pair of pre-training and downstream
metrics (see Tab. 6). The aim was to systematically iden-
tify which pre-training datasets have the most impact on
downstream task performance, either positively or nega-
tively. The p-value threshold was set at 0.1. Considering
that some metrics indicate improvement when either in-
creased or decreased, the correlation values were multiplied
by the sign indicative of the direction in which improvement
is registered for each metric. This adjustment provided a
more nuanced understanding of whether enhancements in
a pre-training metric are correlated with improvements in
downstream performance.

We find an overall positive impact of our pre-training met-
rics on downstream performance thus demonstrating the
effectiveness of MiniMol pre-training step. Interestingly
for graph-level tasks on PCQM4M G25, we find high pre-
training results to be inversely correlated with strong perfor-
mance on the ADMET group datasets. Specifically, a low
MAE on PCQM4M G25 results in negative effects across
many downstream tasks. At the same time, we also find
that the majority of pre-training metrics of LargeMix are
highly informative of downstream performance, including
the node-level tasks on PCQM4M. Further discussion is
provided in Section 6.2 on possible explanations for these
findings.

6. Discussion
Here, we discuss the differences in pre-training and fine-
tuning performance for the different backbone GNNs of
MiniMol as well as a discussion on the results of our cor-
relation analysis.

6.1. Effect of model complexity

For the fine-tuning results in Section 4.2, our analysis re-
veals that while the three GNN backbone, namely, GCN,

7



MiniMol: A Parameter Efficient Foundation Model for Molecular Learning

Table 6. Correlation analysis (Spearman’s rho) between pre-training validation and downstream performance. The green color indicates
positive correlation , and red a negative correlation. Results with a p-value over 10% are blank. See §5.3 for discussion.

Dataset Metric Overall Loss L1000 MCF L1000 VCAP PCBA PCQM4M G25 PCQM4M N4
Loss AUROC Loss AUROC Loss AUROC Loss MAE Loss (MAE)

Caco2 Wang MAE 0.590 0.651 0.762 0.718
Bioavailability Ma AUROC 0.397
Lipophilicity AZ MAE 0.459 0.561 0.568 0.539 0.683 0.627 -0.389
Solubility AqSolDB MAE 0.434 0.472 0.588 0.7 0.739 0.704
HIA Hou AUROC 0.427 0.489 0.603 0.382 0.548 0.768 0.645 -0.337
Pgp Broccatelli AUROC 0.444 0.577 0.361 0.497 -0.387
BBB Martins AUROC 0.634 0.436 0.583 0.378 0.481 0.483 0.364 -0.492
PPBR AZ MAE 0.476 0.436
VDss Lombardo Spearman 0.408 0.343 0.351
CYP2C9 Veith AUPRC 0.432 0.649 0.711 0.747 0.829 0.557 0.551
CYP2D6 Veith AUPRC 0.566 0.641 0.487 0.624 0.704 0.616 0.585
CYP3A4 Veith AUPRC 0.523 0.649 0.713 0.72 0.818 0.584 0.608
CYP2C9 Substrate AUPRC 0.523 0.558 -0.377 -0.445 -0.566 -0.586
CYP2D6 Substrate AUPRC
CYP3A4 Substrate AUROC 0.409 0.468
Half Life Obach Spearman 0.503 0.671 0.498
Clearance Hepatocyte Spearman 0.374
Clearance Microsome Spearman 0.599 0.496
LD50 Zhu MAE 0.501 0.543 0.522 0.586 0.617 0.339 0.342
hERG AUROC 0.57 0.42 0.453
AMES AUROC 0.791 0.591 0.486 0.629 0.643 0.604 -0.628 0.528
DILI AUROC 0.376 0.49 0.416 0.567 0.454

Sum 5.622 4.883 6.496 2.269 7.959 9.712 7.749 2.499 -2.232 2.028

GINE and MPNN++, all achieves similar pre-training per-
formance, the GINE backbone shows a significant advantage
when fine-tuning to downstream tasks. To give a potential
explanation for this finding, recall that we adjust hidden di-
mensions of the different backbone GNNs to roughly align
to 10M parameters. Here, the higher model complexity
of MPNN++ leads to substantially smaller hidden dimen-
sion sizes than GINE. Our results thus indicate that the
architectural complexity of the MPNN++ is less effective in
downstream performance than a simple increase in hidden
dimensions. If we match the hidden dimension size of GINE
in MPNN, the model would reach the size of roughly 50M
parameters.

At the same time, while less complex and allowing for even
larger hidden dimensions, GCN layers might be expressive
enough for strong downstream performance. Specifically,
the GCN omits the use of edge features and is shown to be
less powerful than the 1-WL test (Xu et al., 2019) while
GINE is as expressive as the 1-WL test. As such, we hy-
pothesize that the GINE allows for a trade-off between a
sufficient level of architectural complexity and more ef-
fective use of parameter budget in terms of larger hidden
dimensions that translate into stronger downstream perfor-
mance.

Finally, we want to highlight that our results also reveal
the general robustness of MiniMol pipeline to the choice
of backbone GNNs, where all three variants were better

than the current state-of-the-art foundation model MolE on
the ADMET group in many tasks (as seen in Table 4 and
Table 2) while having significantly fewer parameters and
being employed in an efficient fingerprinting pipeline, as
opposed to fine-tuning all weights.

6.2. Detrimental effect of training on PCQM4M g25

From the correlation analysis, results indicate that the
PCQM4M G25 dataset negatively impacts downstream per-
formance in the ADMET group benchmark. This dataset is
unique in that it is the only graph-level quantum task. As
a result, we might conclude that atomic and sub-atomic
properties of the molecules in PCQM4M G25 are only
marginally relevant in the context of biological tasks, re-
sulting in a detriment to performance on downstream tasks.

However, this explanation is insufficient, so far that the
PCQM4M N4 dataset, which is a node-level quantum task
that covers the same molecules as PCQM4M G25, demon-
strates positive downstream benefits. As a result, we hy-
pothesize that the issue rather lies in the training dynam-
ics. Concretely, models that perform well on PCQM4M G25
might do so at the expense of overfitting, which is expected
for multi-task learning on an unbalanced number of tar-
gets (Beaini et al., 2023). Indeed, as already described in
Section 4.1, reducing the influence of PCQM4M G25 on the
overall loss led to improved overall performance, supporting
our hypothesis.
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Our findings highlight the importance of carefully designing
the overall loss when pre-training on multi-task datasets
such as LargeMix. Such a design should consider data
imbalance to ensure positive impacts on downstream perfor-
mance. This is particularly important for foundation models
whose downstream applications are mostly unknown at the
time of pre-training.

7. Conclusion
In this work, we propose a novel parameter-efficient foun-
dation model for molecular learning called MiniMol.
MiniMol is pre-trained on over 3300 biological and quan-
tum tasks on graph- and node-level molecules and subse-
quently evaluated on the ADMET group of the TDC bench-
mark. MiniMol outperforms the previous state-of-the-art
foundation model on the ADMET group, MolE, with only
10M parameters, constituting only 10% of MolE’s 100M
parameters. In addition, fine-tuning with MLPs on the fin-
gerprints of pre-trained MiniMol, allows for efficient fine-
tuning.

Our empirical results showed that the molecular fingerprints
extracted from MiniMol are highly transferable to down-
stream tasks. MiniMol achieves top 1 performance on 8
tasks and top 3 performance on 10 tasks on the ADMET
group. In addition, our task correlation analysis highlighted
the importance of carefully designing the overall loss for
multi-task pre-training. With MiniMol, we showcased the
potential for parameter-efficient multi-task multi-level pre-
training and fine-tuning on fingerprints. One future direction
is to design pre-training datasets that align with a wider va-
riety of downstream tasks. We will open source MiniMol
and believe it will be an important tool for future research
on molecular foundation models.

8. Broader Impact
Releasing our Model may not have immediate direct societal
impacts. However, it is crucial to acknowledge the potential
implications that arise when providing access to a founda-
tion model for molecular graphs. One concerning possibil-
ity is the misuse of this technology for the development of
chemical weapons, toxins, or unregulated drugs. To address
these potential risks, we are committed to implementing
robust mitigation strategies. Central to our approach is the
active promotion of beneficial applications, particularly in
the fields of material and drug discovery. By highlighting
the positive utilization of this technology, we aim to channel
its potential toward scientific advancements that contribute
to societal well-being.
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A. Appendix
A.1. MPNN architecture

In what follows, we describe the MPNN architecture in (Masters et al., 2023b) in detail. Here, the embeddings are
incrementally updated with each MPNN layer in the model as:

xℓ+1, eℓ+1, gℓ+1 = MPNN(xℓ, eℓ, gℓ) (4)

The edge embedding is updated by concatenation of the edge feature with the node features at each end of the bond, with the
global features. This is processed with the edge MLP and then summed with the skip connection, shown in 5.

ēℓuv = MLPedge
( [
xℓu |xℓv | eℓuv | gℓ

] )
(5)

The node embedding, shown in eq.6 concatenates the node features with the summed edge features of all edges connected
(senders and receiver) and the global features before passing this vector through an MLP and finally adding the skip
connection.

x̄ℓi = MLPnode

xℓi
∣∣∣∣∣∣
∑

(u,i)∈E

ēℓui

∣∣∣∣∣∣
∑

(i,v)∈E

ēℓiv

∣∣∣∣∣∣
∑

(u,i)∈E

xℓu

∣∣∣∣∣∣ gℓ
 (6)

The global node is concatenated with the sum of all node and edge features in the graph (eq. 7).

ḡℓ =

gℓ
∣∣∣∣∣∣
∑
j∈V

x̄ℓj

∣∣∣∣∣∣
∑

(u,v)∈E

ēℓuv

 (7)

Where the final components are computed with skip-connections as:

xℓ+1
i = x̄ℓi + xℓi ; eℓ+1

uv = ēℓuv + eℓuv; gℓ+1 = ḡℓ + gℓ; (8)

This is represented diagrammatically in Fig. 3.

A.2. Hyperparameter selection

We select hyperparameters for our fine-tuning as follows. We compute a hyperparameter sweep over the maximum number
of epochs; the learning rate; the dropout rate and whether to use none, batch or layer normalization in the task head.
Optionally, we sweep over the width and depth of the task head MLP. Each configuration is run on the same random seed.
Following the instructions provided by TDC1, we use the provided scaffold splits for our train/validation splits via the
method get train valid split and take the benchmark test split also provided by TDC. Then, for each dataset, we
select the hyperparameters resulting from the model with the smallest validation loss and subsequently re-run this model
on k random seeds. Here, we distinguish between two sweep configurations. In the first configuration, we only sweep
over the learning rate ∈ {0.001, 0.0005, 0.0003, 0.0001, 5e−5} and set the number of epochs to 25, dropout to 0.1, hidden
dimension to 1024 and the number of layers to 3. In the second configuration, we set the number of epochs to 25 and
sweep over whether or not to use a skip connection, the learning rate ∈ {0.0005, 0.0003, 0.0001}, the hidden dimension
∈ {512, 1024, 2048}, the number of layers ∈ {3, 4}, dropout ∈ {0.0, 0.1}, the number of warmup epochs ∈ {0, 5} and the
learning rate schedule ∈ {constant, linear, cosine}.

1Available at https://tdcommons.ai/benchmark/overview/
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xℓ eℓ gℓ

MLPx

MLPe

gℓ+1
eℓ+1xℓ+1

×L

Figure 3. Example of the MPNN block architecture given in Eq.4. The edge update in Eq.5 gathers the nodes and edges before passing
through the MLP first, then this output is used for the node update in Eq.6, gathering all connected node features and updated edge
features. The global update in Eq.7 connects all nodes and edges, before finally the skip connections in Eq.8.
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A.3. Experimentation with pooling methods

We evaluated three different pooling strategies when going from the node level to graph level representation and summarized
our findings in A.3.

Mean rank MoIE TOP1 TOP3
sum 3.9 16 5 10
mean 3.8 16 6 11
max 3.6 17 8 10

A.4. Ensemble Strategy

The strategy used for evaluating and ensembling the models is explained in the form of pseudo-code below.

Algorithm 1 Ensembling Strategy
Input: hyperparameters hi, repetitions repi, fold foldi
for each hi in [hp1, ..., hp18] do

for repi in range(numreps) do
select seed
for foldi in range(numfolds) do

train a model on foldi
save best model based on val loss

end for
build ensemble of numfolds models
evaluate on ensemble
save mean and std of val and test scores

end for
end for
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