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Abstract—The widespread deployment of wireless and mobile
devices results in a proliferation of spatio-temporal data that
is used in applications, e.g., traffic prediction, human mobil-
ity mining, and air quality prediction, where spatio-temporal
prediction is often essential to enable safety, predictability, or
reliability. Many recent proposals that target deep learning for
spatio-temporal prediction suffer from so-called catastrophic
forgetting, where previously learned knowledge is entirely for-
gotten when new data arrives. Such proposals may experience
deteriorating prediction performance when applied in settings
where data streams into the system. To enable spatio-temporal
prediction on streaming data, we propose a unified replay-
based continuous learning framework. The framework includes
a replay buffer of previously learned samples that are fused
with training data using a spatio-temporal mixup mechanism in
order to preserve historical knowledge effectively, thus avoiding
catastrophic forgetting. To enable holistic representation preser-
vation, the framework also integrates a general spatio-temporal
autoencoder with a carefully designed spatio-temporal simple
siamese (STSimSiam) network that aims to ensure prediction
accuracy and avoid holistic feature loss by means of mutual
information maximization. The framework further encompasses
five spatio-temporal data augmentation methods to enhance the
performance of STSimSiam. Extensive experiments on real data
offer insight into the effectiveness of the proposed framework.

Index Terms—Spatio-Temporal Prediction, Continuous Learn-
ing, Streaming Data

I. INTRODUCTION

The continued digitization of societal processes and the
accompanying deployment of sensing technologies generate
increasingly massive amounts of spatio-temporal data. For
example, populations of in-road sensors provide data that
captures traffic flow in multiple locations across time. Fur-
ther, applications increasingly ingest large amounts of spatio-
temporal data that is being generated continuously, which is
called streaming spatio-temporal data. The data from in-road
sensors is an example of such data.

In this study, we focus on the novel problem of prediction
on streaming spatio-temporal data, where the general goal is

*Corresponding authors.

to learn a model from streaming spatio-temporal data with
spatial and temporal correlations while preserving learned
historical knowledge and capturing spatio-temporal patterns
to accurately predict future spatio-temporal observations.

Many spatio-temporal prediction applications, e.g., traffic
flow prediction [1]–[3], traffic speed prediction [4], [5] and
on-demand service prediction [6], exist along with accompa-
nying, well-customized prediction models. These models use
a variety of means to predict spatio-temporal data, including
approaches based on traditional statistics [7], [8] and con-
volutional [9]–[11] and recurrent [4], [12] neural networks.
However, existing models are trained statically and fail to
handle streaming data. Static models are often trained once to
fit a particular dataset and then make predictions that aim to
fit another dataset with the underlying assumption that the two
datasets follow the same distribution. However, concept drift,
meaning that data distributions change over time, occurs often
in streaming spatio-temporal data. Thus, direct application
of static models to streaming data may cause remarkable
performance degradation [13].

As a result, we need a new kind of continuous learning (CL)
model that can adapt continually to the data it sees and can
keep on learning spatio-temporal prediction tasks over time.
However, it is non-trivial to develop this kind of model, due
to the following challenges.

Challenge I: catastrophic forgetting. It is challenging to
alleviate catastrophic forgetting in CL for spatio-temporal
prediction. Catastrophic forgetting is the tendency to abruptly
forget previously learned knowledge, which occurs when static
models are simply retrained using newly arrived data [13].
When a model is retrained continuously based on incoming
data, the distributions of which are different (due to concept
drift), prediction performance on preceding tasks deterio-
rates [14]. This is because the model is always retrained on
new data obtained during one period and is then used to
predict for another period. When the data arrives continuously,
the knowledge learned by the model keeps drifting. Although
many efforts have been made to use CL techniques to address
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catastrophic forgetting in computer vision [15], [16] and
natural language processing [17], these techniques cannot be
applied to spatio-temporal prediction directly due to the unique
characteristics of spatio-temporal data. Specifically, no CL
model exists that can effectively capture spatial dependencies
or temporal correlations in streaming spatio-temporal data.

Challenge II: diversity of spatio-temporal data and pre-
diction applications. It remains a key problem to discover
the commonalities of diverse spatio-temporal data and pre-
diction applications. Although various well-customized static
models exist, it is time-consuming and unrealistic to convert
each such model to its continuous version since there are
different specific settings (e.g., network architectures, datasets,
and objective functions) to consider for each spatio-temporal
prediction model. It is thus highly desirable but also non-trivial
to achieve a model that is accurate and efficient across many
streaming spatio-temporal prediction applications.

Challenge III: holistic feature preservation. It is challeng-
ing for existing models to learn holistic features for spatio-
temporal prediction on streaming data. Specifically, holistic
features preserve semantic similarities across multiple time
periods. In continuous spatio-temporal prediction, preserving
previously learned semantic features may facilitate future pre-
diction. For example, traffic patterns learned during off-peak
hours on previous weekdays may be helpful for prediction
of subsequent weekdays. Most existing CL models focus
on learning discriminative features for a current task, while
ignoring previously learned features that may be useful for
future tasks [18], which often lead to unsatisfactory results for
future prediction and thus affect continuous spatio-temporal
prediction adversely.

This study addresses the above challenges by providing a
Unified Replay-based Continuous Learning (URCL) frame-
work for spatio-temporal prediction on streaming data. URCL
encompasses three main modules: data integration, spatio-
temporal continuous representation learning (STCRL), and
spatio-temporal prediction. To alleviate catastrophic forgetting
(Challenge I), we propose a spatio-temporal mixup (STMixup)
mechanism to fuse current sampled spatio-temporal observa-
tions with selected samples from a replay buffer that stores a
subset of previously learned observations. We also propose a
ranking-based maximally interfered retrieval sampling strategy
to select representative samples from the buffer.

To support diverse spatio-temporal data and prediction ap-
plications (Challenge II), we discover the commonalities of
existing methods that are typically based on an autoencoder
architecture. We propose a novel spatio-temporal prediction
network including a spatio-temporal encoder (STEncoder) and
a spatio-temporal decoder (STDecoder) to capture complex
spatio-temporal correlations to enable accuracy.

To address the issue of holistic-feature preservation (Chal-
lenge III), we propose a spatio-temporal simple siamese
(STSimSiam) network to avoid holistic feature loss in the
STCRL module. Specifically, the STSimSiam network con-
tains two STEncoders and a projection multi-layer perceptron
(MLP) head, where the STEncoders are shared with that of the

spatio-temporal prediction network. We first use mutual infor-
mation maximization to ensure holistic feature preservation
in streaming spatio-temporal prediction. In addition, consid-
ering that data augmentation can help the model learn more
effective representations [19], [20], we provide five spatio-
temporal data augmentation methods based on an exploration
of the exclusive characteristics of spatio-temporal data, thus
achieving effective holistic spatio-temporal feature learning.

The major contributions are summarized as follows.
• To the best of our knowledge, this is the first study to

systematically investigate continuous learning for spatio-
temporal prediction on streaming data. We propose a uni-
fied replay-based continuous learning framework entitled
URCL for spatio-temporal prediction on streaming data,
where a replay buffer and a spatio-temporal mixup mech-
anism are designed to alleviate catastrophic forgetting.

• To contend with the diversity of spatio-temporal data and
prediction applications, we design a spatio-temporal au-
toencoder including an STEncoder and an STDecoder for
effective spatio-temporal feature learning and prediction.

• A novel STSimSiam network is designed to make learned
features in latent spaces more holistic, by applying mu-
tual information maximization to preserve features for
continuous spatio-temporal prediction. We also provide
five data augmentation methods by considering unique
spatiotemporal properties.

• We report on experiments using real datasets, offering
evidence of the effectiveness of the proposed URCL.

The remainder of this paper is organized as follows. Section
II surveys the related work, and Section III introduces prelim-
inary concepts and the streaming spatio-temporal prediction
problem. We then present the URCL framework in Section IV,
followed by the experimental results in Section V. Section VI
concludes the paper.

II. RELATED WORK

We briefly review prior studies on spatio-temporal data
prediction and continuous learning.

A. Spatio-Temporal Data Prediction

Spatio-temporal data prediction attracts increasing interest
due to the increasing availability of spatio-temporal data and
rich applications, such as traffic prediction [1], [21]–[23], pre-
cipitation prediction [24], and air quality prediction [25]. Tra-
ditional spatio-temporal prediction models are mostly based
on statistical models [8], [26]. However, the statistical models
cannot capture complex spatial and temporal correlations of
spatio-temporal data effectively due to their limited learning
capacity.

With the advance of deep learning techniques, various
deep learning based methods address spatio-temporal data
prediction [4], [27]–[35], and outperform traditional statistical
models. One line of study [1], [2] treats the spatio-temporal
data of an entire city as images and applies convolutional neu-
ral network (CNN) to extract spatial correlations. Another line
of study [4], [9], [12], [36]–[39] employs graph neural network



to perform spatio-temporal prediction by modeling global
spatial dependencies and local spatial correlations effectively.
However, these methods cannot support stream setting and
suffer from catastrophic forgetting, which makes continuous
or lifelong learning difficult for spatio-temporal prediction.

B. Continuous Learning

Continuous learning, which is also called lifelong or incre-
mental learning, learns a sequence of tasks incrementally with
knowledge transfer and without catastrophic forgetting [40].
The goal of continuous learning is to extend knowledge
acquired gradually from an infinite data stream and use it for
future learning.

In the early stage, continuous learning studies target the
domain of object recognition [41], [42]. Thrun et al. [41]
propose several lifelong learning algorithms encompassing
memory-based and neural network-based approaches. Ruvolo
et al. [42] design an Efficient Lifelong Learning Algorithm for
online multi-task learning.

With the rapid development of deep learning techniques,
focus is on deep learning based continuous learning meth-
ods [15], [16], which can be divided into replay-based,
regularization-based, and architecture-based methods. Specif-
ically, replay-based methods [16] usually adopt an explicit
buffer to store a subset of training samples or learn a gen-
erator. Regularization-based methods include a regularization
term in the loss function [15], [43]. In architecture-based
methods [13], a different sub-network is dedicated to each
incremental learning task. However, most of the above meth-
ods are designed for computer vision and natural language
processing, and cannot be applied to spatio-temporal data
prediction directly due to complex spatio-temporal patterns
and unique spatio-temporal semantics.

Although previous studies [44], [45] predict streaming traf-
fic flow, their problem settings differ substantially from ours
that focusing on node incremental learning where the number
of traffic sensors varies across time. In our work, the number
of sensors does not vary, while the instances vary across time.

III. PROBLEM STATEMENT

We proceed to present necessary preliminaries and then
define the problem addressed.

Advances in hardware and wireless network technologies
have resulted in multi-functional sensor devices [46]. This de-
velopment enables systems, called sensor networks, consisting
of tiny sensor nodes spread across large geographical areas,
recording streaming spatio-temporal data.

Definition 1 (Sensor Network): A sensor network is denoted
by a graph G = (V,E), where V is a sensor node set, and
E is an edge set. Each node vi ∈ V represents a sensor, and
each edge ei,j ∈ E indicates connectivity between sensors vi
and vj .

Definition 2 (Spatio-temporal Observation): Given a sensor
network G, a spatio-temporal observation collected by all
sensors at time slot t (e.g., 9:00 a.m.–9:15 a.m.) with a
sampling interval ∆t (e.g., 15 minutes) is denoted by Xt ∈

R|V |×C , where |V | denotes the number of sensors and C is
the dimensionality of node features (e.g., traffic volume and
speed).

In the rest of the paper, we will use observation place of
spatio-temporal observation when meaning is clear from the
context.

Definition 3 (Streaming Spatio-temporal Data Sequence):
Given a sensor network G and a time period Ti containing n
consecutive time slots, i.e., Ti =

〈
t1i , t

2
i , · · · , tni

〉
, a streaming

spatio-temporal data sequence is a sequence of matrices, each
representing an observation at a specific time slot tji with one
sampling interval, where tj+1

i − tji = ∆t(1 ≤ j ≤ n − 1). In
particular, a streaming spatio-temporal data sequence Di is a
sequence of observations Di =

〈
Xt1i

, Xt2i
, · · · , Xtni

〉
, where

n is also the sequence length.
Based on the above definitions, we formally define the

Streaming Spatio-Temporal Prediction (SSTP) problem as
follows.

SSTP Problem. Consider a sensor network G that emits
a sequence D = ⟨D1, D2, · · · , Dm⟩ (m ≥ 1) of streaming
spatio-temporal data sequences, where Di denotes a sequence
of observations during time period Ti and |Di| = n (e.g., Ti

is a day, and n is 96 when having 15min interval). Given a
current observation Xtji

that is contained in Di (1 ≤ i ≤ m),
the SSTP problem aims to learn a function fi(·) to predict
N future observations based on the current observation and
its previous M − 1 (M < n) historical observations while
maximally preserving the learned knowledge from previous
streaming data sequences ⟨D1, · · · , Di−1⟩, i.e.,

[

M observations︷ ︸︸ ︷
· · · , X

t
j−1
i

, X
t
j
i
;G]

fi(·)−→ [

N observations︷ ︸︸ ︷
X

t
j+1
i

, X
t
j+2
i ,···], (1)

where the learned knowledge from ⟨D1, · · · , Di−1⟩ is pre-
served maximally.

IV. METHODOLOGY

We propose a framework, namely Unified Replay-based
Continuous Learning (URCL), for spatio-temporal prediction
on streaming data. We first give an overview of the framework
and then provide specifics on each module in the framework.

A. Framework Overview

The framework consists of three major modules: data in-
tegration, spatio-temporal continuous representation learning
(STCRL) and spatio-temporal prediction (STPrediction), as
shown in Figure 1.

Data Integration. Considering that we feed data into the
framework in a stream, we first sample data from the current
dataset Di and sample historical data from a replay buffer,
which stores a subset of previously learned observations,
by a ranking-based maximally interfered retrieval (RMIR)
sampling strategy. Then we integrate the two kinds of data with
the help of the proposed spatio-temporal mixup (STMixup)
mechanism, to goal being to better accumulate the spatio-
temporal knowledge and alleviate catastrophic forgetting.
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Fig. 1. URCL Framework Overview

Spatio-Temporal Continuous Representation Learn-
ing (STCRL). In this module, a spatio-temporal SimSiam
(STSimSiam) network, which is a variant of self-supervised
Siamese networks [19], is adopted for holistic representa-
tion learning by means of mutual information maximization.
For the assistance of self-supervised learning, we propose
five different data augmentation methods, i.e., DropNodes
(DN), DeleteEdges (DE), SubGraph (SG), AddEdge (AE),
and TimeShifting (TS), based on the specific characteristics
of spatio-temporal data. Then, the augmented data generated
by two randomly selected augmentation methods are inserted
into two spatio-temporal encoders (STEncoders) that share
parameters with each other, followed by a projection MLP
(projector).

Spatio-Temporal Prediction (STPredition). We use an
STEncoder that shares the same parameters with that in
STCRL to learn latent hidden features from the original data,
where the learned data are then stored in the replay buffer.
Finally, the learned features are input into a spatio-temporal
decoder (STDecoder) for prediction.

B. Data Integration

To sample more representative samples from replay buffer
B, we design a novel ranking-based maximally interfered
retrieval (RMIR) sampling method. Given the current data
sequence Di, we first sample M observations XM =〈
Xtk−M+1

i
, · · ·Xtki

〉
starting at time slot tk−M+1

i from Di

and select samples XB stored in the replay buffer B, where
B is designed to act as an explicit memory to maintain a
subset of previously learned observations (i.e., the previously
trained observations without STMixup). Then, the selected
samples are combined with the current observations through
a proposed spatio-temporal mixup (STMixup) mechanism to
alleviate catastrophic forgetting by benefiting from historical
observations. We can formulate the process of data integration
as follows.

XB = RMIR(B, size = |S|)
Xmix = STMixup(XM ,XB),

(2)

where |S| is the sampling size.
We proceed to elaborate the RMIR sampling method and

the STMixup mechanism.
1) RMIR Sampling Method: We design an RMIR sampling

method to select |S| representative observations XB from the
replay buffer. Typically, most methods in existing replay-based
continuous learning methods randomly select observations
from the replay memory, which leads to unsatisfied results
about accuracy, due to the fact that they may ignore represen-
tative observations for replay. To select more representative
samples, we first retrieve |N | observations XN which will be
the most negatively impacted that suffer from an increase in
loss by the update of foreseen parameters, where |N |>|S|.
Specifically, given observation XtBi

in B and a standard
objective function min

θ
LRMIR(fθ(XtBi

), YtBi
), where fθ(·)

represents the URCL model, we update the parameters θ from
XtBi

by gradient descent, as shown in Equation 3.

θv = θ − α▽LRMIR(fθ(XtBi
), YtBi

), (3)

where LRMIR denotes sampling loss, fθ(·) represents the
model, and YtBi

is the ground truth. Note that Mean Absolute
Error (MAE) is adopted as sampling loss. We select the top-N
values.

Considering temporal correlations (e.g., trend and periodic-
ity) of spatio-temporal data, data from a long time ago (peri-
odic data) have a significant impact on the current prediction
due to similarities. We then calculate the similarities between
observations in XN and XM by Pearson coefficient. Finally,
we sample top-S observations of XN that are most similar
to XM . In this way, we can not only select samples that
can alleviate catastrophic forgetting, but also select samples
to enhance temporal dependency capturing.

2) STMixup Mechanism: To benefit from historical obser-
vations, we introduce STMixup mechanism to fuse current
observations XM and observations XB sampled in B. In partic-
ular, STMixup interpolates between XM and XB to encourage
the model to behave linearly across streaming spatio-temporal
data sequences to minimize catastrophic forgetting.



Typically, assuming that (xi, yi) and (xj , yj) are two
randomly selected feature-target pairs in the training data,
STMixup generates virtual training examples by interpolation
based on the principle of Vicinal Risk Minimization [47] to
enlarge the support of the training distribution that overcomes
concept drift. In STMixup, we use observation-groundtruth
pairs to represent feature-target pairs in training. We use (x̃, ỹ)
to denote the interpolated feature-target pair in the vicinity of
the raw two pairs.

x̃ = λ · xi + (1− λ) · xj

ỹ = λ · yi + (1− λ) · yj ,
(4)

where λ ∼ Beta(α, α), and α ∈ (0,∞). We design STMixup
by interpolating between current observations XM and ob-
servations XB sampled from the replay buffer B by RMIR
sampling. The interpolated observations Xmix after STMixup
are formulated as follows:

Xmix = λ · XM + (1− λ) · XB (5)

The interpolated observations Xmix can enhance a model’s
ability to learn continuously by revisiting past instances in
the replay buffer B, that would be most negatively impacted
by foreseen parameters. Moreover, STMixup can introduce an
approximation of a regularized loss minimization [48] to avoid
overfitting.

C. Spatio-temporal Continuous Representation Learning

The interpolated observations Xmix are input into the
spatio-temporal continuous representation learning (STCRL)
module for holistic feature learning. STCRL is a carefully
designed self-supervised learning module, which consists of
two parts: spatio-temporal data augmentation and an STSim-
siam network. To enable effective spatio-temporal learning,
we propose five customized spatio-temporal data augmentation
methods by considering unique properties of spatio-temporal
data, which transform a sample (i.e., observations in a sensor
network) G = [Xmix;G] to its corresponding perturbation
G′. We randomly select two different perturbations G′1 and
G′2, and then input them into an STSimSiam network, which
consists of two STEncoders fθSTE

and a projection MLP
head h(·). The aim of STSimSiam is to better capture spatio-
temporal dependencies. Finally, STSimSiam maximizes the
mutual infomation between the representations of two selected
perturbations to ensure holistic feature preservation.

We proceed to elaborate the spatio-temporal data augmen-
tation and the STSimSiam network.

1) Spatio-Temporal Data Augmentation: We augment the
interpolated observations Xmix using five carefully designed
spatio-temporal augmentation methods, which builds seman-
tically similar pairs and improves the quality of the learned
representations by defeating perturbations. Although existing
studies propose several data augmentation methods on graph
data [49]–[51], they do not work well for spatio-temporal data
due to complex spatial and temporal correlations, especially
temporal correlations (e.g., closeness). Thus, we propose five
spatially oriented data augmentation methods (i.e., DropNodes

a 𝐷𝑁

𝑋𝑡𝑚−1+1𝑋𝑡𝑖
𝑛

b 𝐷𝐸

𝑋𝑡𝑚−1+1𝑋𝑡𝑖
𝑛

c 𝑆𝐺

𝑋𝑡𝑚−1+1𝑋𝑡𝑖
𝑛

d 𝐴𝐸

𝑋𝑡𝑚−1+1𝑋𝑡𝑖
𝑛

e 𝑇𝑆

𝑋𝑡𝑚−1+1𝑋𝑡𝑖
𝑛−𝑀+1

Fig. 2. Spatio-temporal Data Augmentation

(DN), DropEdge (DE), SubGraph (SG), and AddEdge (AE))
and a temporally oriented method (i.e., TimeShifting (TS)).
We cover each method next.

• DN. As shown in Figure 2(a), given a sample G =
[Xmix;G], DN randomly discards a certain proportion
(e.g., 10%) of the nodes in G to get G′ = [Xmix;G

′]
following a definite distribution (e.g., a uniform distri-
bution), which ensures that the missing nodes have no
impact on the semantics (e.g., distribution) of G. In
particular, we mask the entries in adjacency matrix A
of that correspond to the discarded nodes to pertube the
graph structure.

A′
i,j =

{
0, if vi is discarded

Ai,j , otherwise,
(6)

where A′
i,j is an entry of the augmented matrix A′.

Ideally, DN can promote model robustness by being
less affected by missing data caused, e.g., sensor or
communication failures.

• DE. DE randomly drops a part of edges, as shown in
Figure 2(b). As the weights of sensor network G are im-
portant to describe the spatial correlations between nodes
(e.g., distance and similarity). We first sample a certain
ratio of edges E from G following a specific distribution,
and then set a threshold θDE . If the weights of edges in E
are lower than θDE , we delete the corresponding edges,
formulated as follows.

a
′
i,j =

{
0, if ai,j < θDE

ai,j , otherwise,
(7)

where ai,j denotes the weight of the edge between nodes
vi and vj , and a′i,j is the updated weight. The aim of the
threshold is to retain important connectives of edges.

• SG. SG samples a subgraph G′ = (V ′, E′) from
G = (V,E) by random walk to maximally preserve the
semantics of a sensor network (cf. Figure 2(c)), where
V ′ ⊆ V and E′ ⊆ E. Through SG, we aim at improving
local spatial correlations capturing by feature learning on
the subgraph.

• AE. AE randomly selects a certain ratio of distant node
pairs (e.g., more than three hops) and add edges between
each node pair, which is shown in Figure 2(d). The
weights of these added edges are set as the dot product
similarities of corresponding node pairs. Considering



a node pair (vi, vj), the corresponding weight wi,j is
calculated as follows.

wi,j = X⃗ i
mix · X⃗ j

mix, (8)

where X⃗ i
mix is a vector that represents features of node vi.

The aim of AE is to strengthen the power of our model to
capture global spatial correlations by connecting distant
node pairs that are similar to each other.

• TS. As shown in Figure 2(e), TS, including time slicing,
time warping, and time flipping, transforms current ob-
servations Xmix in G in the time domain. Note that we
randomly select one of TS for model training.

1) Time Slicing. Time slicing sub-samples the current
observations Xmix in the time domain by randomly
extracting continuous slice X slice

mix with length l.
Formally,

X slice
mix =

〈
X

mix,ts−l+1
i

, · · · , Xmix,tsi

〉
, (9)

where tk−M+1
i ≤ ts−l+1

i ≤ tsi ≤ tki , tki is current
time slot, M is the length of observations, and
Xmix,tsi

denotes observations after STMixup at time
slot tsi

2) Time Warping. Time warping upsamples sliced ob-
servations X slice

mix by linear interpolation to generate
warped observations Xwarp

mix , the length of it is equal
to that of Xmix.

Xwarp
mix =

〈
X ′

mix,tk−M+1
i

, · · · , X ′
mix,tki

〉
, (10)

where X ′
mix,tki

represents the generated observa-
tions at time slot tki .

3) Time Flipping. Time flipping TF (·) flips the sign
of warped observations Xwarp

mix to generate a new
sequence X flip

mix in time domain as follows.

X flip
mix =

〈
X ′

mix,tki
, · · · , X ′

mix,tk−M+1
i

〉
, (11)

We randomly apply two different data augmentation meth-
ods to the integrated observations Xmix (generated by
STMixup) to obtain two augmented observations X aug1

mix and
X aug2

mix .
2) STSimSiam Network: Inspired by exciting feature learn-

ing ability of self-supervised learning, we design a novel
STSimSiam network under the guidance of self-supervised
learning to capture holistic spatio-temporal representations,
inputting two randomly augmented observations X aug1

mix and
X aug2

mix . More specifically, STSimSiam consists of two STEn-
coders to learn spatio-temporal representations of X aug1

mix and
X aug2

mix , respectively, and a projection head to project latent
embeddings of X aug1

mix into the latent space of X aug2
mix . Finally,

considering that mutual information maximization is proven
to learn holistic features and thus improves continuous learn-
ing [18], we maximize the mutual information between the
representations learned from X aug1

mix and X aug2
mix by GraphCL

loss.

As shown in the upper-right corner of Figure 1, we input
two randomly augmented observations X aug1

mix and X aug2
mix into

the STSimSiam network. We first encode the two augmented
observations as two fixed vectors z1 and z2 by STEncoders fθE
which are made of a specific spatio-temporal network, i.e.,
GraphWaveNet in this work, to capture the complex spatio-
temporal dependencies. Next, we feed z1 into a projection
MLP head to map it into the latent space of z2, which contains
several MLP layers denoted as h(·). The process can be
formulated as follows.

z1 = fθE (X
aug1
mix ), p1 = h(z1), z2 = fθE (X

aug2
mix ) (12)

We use stopgrad operation SG(·) [52] to prevent the trivial
solution obtained by STSimSiam. For example, SG(z2) de-
notes that the STEncoder on X aug2

mix receives no gradient from
z2.

To enhance holistic feature preservation, we employ mu-
tual information maximization to maximize the similarities
between representations of X aug1

mix and X aug2
mix . First, for the

current two augmented observations, we use cosine similarity
to measure similarities C(·) between their output vectors p1
and z2, formulated as follows.

C(p1, z2) =
p1

||p1||2
· SG(z2)

||SG(z2)||2

=
h(fθX aug1

mix )

||h(fθ(X aug1
mix )||2

· SG(fθ(X aug2
mix ))

||SG(fθ(X aug2
mix ))||2

,

(13)

where || · ||2 is l2-norm.
We let (X aug1

mix ,X aug2
mix ) denote an augmented observation

pair. For a minibatch of S augmented observation pairs,
we adopt a GraphCL [49] loss to maximize their mutual
information. The GraphCL loss Ls

ssl for the s-th augmented
observation pair is defined as follows.

Ls
ssl = −log

exp(C(ps,1, zs,2)/τ)∑S
s′=1,s′ ̸=s exp(C(ps,1, zs′,2)/τ)

, (14)

where ps,1 and zs,2 denotes the output vectors of the s-th
augmented observation pair (X aug1

mix,s,X
aug2
mix,s), C(·) is cosine

similarity, and τ is the temperature parameter. To extract
more effective features [19], we define a symmetric similarity
function and obtain final Ls

ssl.

Ls
ssl = −log

exp(( 1
2
C(ps,1, zs,2) + 1

2
C(ps,2, zs,1))/τ)∑S

s′=1,s′ ̸=s exp((
1
2
C((ps,1, zs′,2) + 1

2
C(ps,2, zs′,1))/τ)

,

(15)
where ps,2 = h(fθE (X

aug2
mix,s)) and zs,1 = fθE (X

aug1
mix,s).

The final GraphCL loss is computed across all augmented
pairs in the minibatch as follows.

Lssl =
1

S

S∑
s=1

Ls
ssl (16)

where S is the batch size.
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Fig. 3. Illustation of STEncoder

D. Spatio-Temporal Prediction

We design a spatio-temporal prediction network including
a spatio-temporal encoder (STEncoder) and a spatio-temporal
decoder (STDecoder). In particular, we input the interpolated
observations Xmix into STEncoder fθE (·) to learn high-
dimensional representations through capturing complex spatio-
temporal dependencies. The STEncoder shares parameters
with the STEncoder in STSimSiam. The learned representa-
tions are input into STDecoder fθD for prediction. Meanwhile,
the recently learned data are stored in the replay buffer. The
process can be formulated as follows.

hθ = fθE (Xmix), Ŷ = fθD (hθ), (17)

where Ŷ is the prediction.
One of the advantages of our framework is its generality.

It can easily serve as a plug-in for most existing spatio-
temporal prediction models that follow the autoencoder ar-
chitecture. GraphWaveNet [9] is one of the state-of-the-art
spatio-temporal prediction models to capture precise spatial
dependencies and long-term temporal dependencies, but which
is not developed under the autoencoder architecture. Inspired
by its excellent performance on deep spatio-temporal graph
modeling, we take it as an example of spatio-temporal pre-
diction models in our work to show how to reorganize its
architecture so as to conform to the autoencoder architecture
(i.e., STEncoder and STDecoder). Specifically, in STEncoder,
graph convolution layers integrated with gated temporal con-
volution layers are employed to capture spatio-temporal de-
pendencies, as shown in Figure 3, while several feed-forward
networks are applied to map high-dimensional features into
low-dimensional outputs for prediction in STDecoder, which
is shown in Figure 4. It is particularly noticeable that we
study the effect of different spatio-temporal prediction mod-
els (including RNN-based DCRNN [4] and attention-based
GeoMAN [53]) in our experimental part in Section 5.2.4.
The studies show that our framework can adapt to different
prediction models. For existing spatio-temporal prediction
networks that lack an STDecoder, we employ stacked MLPs
as the STDecoder.

1) STEncoder: The architecture of STEncoder is shown in
Figure 3. Taking Xmix as input, an MLP layer maps it into
a high-dimensional latent space, and the learned features are
then input into a Gated Temporal Convolution Network (TCN)
layer to learn temporal correlations among observations of the
input. Next, a Graph Convolutional Network (GCN) layer is
used to capture spatial correlations among the observations,
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Fig. 4. Illustation of STDecoder

where a residual operation is used to ensure accuracy. The
learned features of the i-th spatio-temporal layer can be
formulated as follows.

hi
θ = fG(GatedTCN (W i

θ · hi−1
θ + biθ), A), (18)

where fG(·) denotes GCN, A is the adjacency matrix, W i
θ is

a learnable parameter, biθ denotes the bias, and h0
θ is euqal to

Xmix. The Gated TCN layer is composed of two parallel TCN
layers (i.e., TCNa and TCNb).

Graph Convolution Layer. Recent studies pay considerable
attention to generalize convolution networks for graph data.
In this work, we use spectral convolutions on the constructed
sensor network, which can be simply formulated as follows:

fG(X,A) = σ(ÃXW t), (19)

where fG represents the GCN operation, X denotes the node
features, Ã = A+IN is the adjacency matrix of G with added
self-connections after normalizing, W t denotes the learnable
weight matrix, and σ(·) is the activation function.

Based on the first law of Geography: ”Near things are
more related than distant things” [1], we first construct a
local spatial graph by considering the geographical distance
between nodes. If two nodes vi and vj are connected with
each other geographically, an edge between them exists, and
the corresponding weight is set as follows:

Ai,j =

{
1

dis
, if vi connects to vj

0, otherwise, (20)

where dis denotes the geographical distance between two
nodes vi and vj . Following Diffusion Convolutional Recurrent
Neural Network (DCRNN) [4] that adopts diffusion GCN,
we generalize the diffusion convolution layer into the form
of Equation 19 by modeling the diffusion process of graph
signals with K finite steps, shown in Equation 21.

fG(X,A) = σ(
K∑

k=0

PkXWk), (21)

where Pk denotes the power series of the transition matrix.
For an undirected graph, we can get P = Ã/rowsum(Ã),
while for a directed graph, there are two directions of the dif-
fusion process: forward direction P f = Ã/rowsum(Ã) and
backward direction P b = ÃT /rowsum(ÃT ). The diffusion
graph convolution layer for a directed graph is derived as:

fG(X,A) = σ(

K∑
k=0

P f
k XWk1 + P b

kXWk2), (22)

However, the first law of geography may not fully reflect
the spatial correlation in urban areas, especially global spatial



correlations (e.g., POI similarity) [2], [6]. To tackle this
problem, we construct a self-adaptive adjacency matrix Ãadp

by multiplying two randomly initialized node embeddings with
learnable parameters E1 and E2:

Ãadp = Softmax (ReLU(E1E
T
2 )), (23)

where Softmax is used to normalize the self-adaptive ad-
jacency matrix. By comprehensively considering local and
global spatial correlations, the final graph convolution layer
is given in Equation 24.

fG(X,A) = σ(

K∑
k=0

P f
k XWk1 + P b

kXWk2 + Ãadp
k XWk3), (24)

If the sensor network is unknown, we adopt the self-adaptive
adjacency matrix alone to capture the spatial dependencies.

Gated Convolution Layer. To capture temporal depen-
dencies, we employ the dilated causal convolution [54] as
our TCN due to its ability of modeling long-term temporal
correlations and parallel computation. Specifically, given a
data sequence X and a filter f , the dilated causal convolution
operation of x at j-th step is represented as:

X ◦ f(j) =
K−1∑
m=0

f(m)X (j − d×m), (25)

where d denotes the dilation factor that reflects skipping steps,
and K is the length of filter f .

Gating mechanism is proven to be useful to control infor-
mation flow through layers for TCN [55]. We adopt a simple
form of Gated TCN in our work to model complex temporal
correlations, where the Gated TCN only consists of an output
gate. Given the observations X , the Gated TCN is illustrated
in Equation 26.

h = g(W1 ×X + b)⊙ σ(W2 ×X + c), (26)

where h is the learned features of input modeled by the first
MLP layer, W1 and W2 are the learnable parameters, and b, c
are the bias, ⊙ denotes the element-wise product, g(·) and
σ(·) represent activation functions (e.g., tanh and sigmod).

2) STDecoder: The learned features are then input into the
STDecoder to decode the data representations for prediction.
As shown in Figure 4, the STDecoder contains several stacked
feed-forward layers (i.e., MLPs) followed by activation func-
tions (i.e., ReLU) to learn a projection function for future
prediction. It can be formulated as follows.

Ŷ = WθD (α(hθ) + bθD )), (27)

where Ŷ denotes the prediction, WθD is a learnable parameter,
α(·) is the ReLU activiation function, and bθD is the bias.

E. Overall Objective Function

The overall objective of URCL is to minimize the prediction
error by Mean Absolute Error (MAE) for each data stream Di.
The objective function is given in the following:

Ltask =
1

L

L∑
l=1

|Ŷ l − Y l|, (28)

Algorithm 1 The URCL Framework
Input: Historical streaming spatio-temporal data sequences D

from D1 to Dm and a sensor network G
Output: i-th URCL model θi

1: for Di in D do
2: Dtrain

i , Dval
i , Dtest

i −→ ∅
3: put training, validating and testing instances into

Dtrain
i , Dval

i and Dtest
i , respectively

4: while not converge do
5: Sequentially select a batch of observations Dbatch

i

from Dtrain
i

6: Sample previous observations XB from the replay
buffer B

7: Xmix ←− data fusion with STMixup by Equation
2

8: X aug1
mix ,X aug2

mix ←− spatio-temporal data augmen-
tation by DN,DE, SG,AE and TS

9: hθ ←− holistic feature learning by STEncoder(·)
and GraphCL loss (i.e., Equation 15)

10: Ŷ ←− prediction with STDecoder(·) by Equation
27

11: Update θi based on Equation 29
12: end while
13: Return the learned i-th learned model θi
14: end for

TABLE I
Statistics of Datasets

Dataset METR-LA PEMS-BAY PEMS04 PEMS08

Area Los
Angeles California San

Francisco Bay
San

Bernaridino
Time span 4 months 5 months 2 months 2 months
Sampling interval 15 mins 15 mins 5 mins 5 mins
No. of Nodes 207 325 307 170
Input steps 12 12 12 12
Output steps 1 1 1 1

where L is the training sample size, Ŷ l is the prediction, and
Y l is the ground truth.

The final loss contains two parts: a prediction loss of the
prediction task Ltask and a GraphCL loss Lssl for holistic
feature learning. We combine them together and the overall
loss is as follows.

Lall = Ltask + Lssl (29)

The whole process of the URCL is shown in Algorithm 1,
where lines 2–3 state the data preprocessing and lines 4–12
show the training process of URCL.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Datasets: The experiments are carried out on four
widely-used graph-based urban spatio-temporal datasets:
METR-LA, PEMS-BAY, PEMS04 and PEMS08, where METR-
LA and PEMS-BAY are related to traffic speed prediction, and
PEMS04 and PEMS08 are related to traffic flow prediction.



TABLE II
Performance of Training on Streaming Data on Two Datasets

Method
PEMS-BAY PEMS08

MAE RMSE MAE RMSE
Bset I1

set I2
set I3

set I4
set Bset I1

set I2
set I3

set I4
set Bset I1

set I2
set I3

set I4
set Bset I1

set I2
set I3

set I4
set

OneFitAll 1.21 2.76 2.72 3.75 3.63 2.17 5.82 4.88 7.28 6.86 18.15 38.75 39.32 44.22 27.21 26.28 44.29 57.34 63.01 37.19
FinetuneST 1.21 3.57 3.57 3.48 3.52 2.16 7.68 7.59 7.66 7.58 18.17 32.60 33.75 34.13 33.15 26.99 37.63 39.79 33.29 35.67

URCL 1.12 1.09 1.21 1.19 1.15 1.91 1.86 2.08 2.01 1.99 18.13 18.07 17.45 17.38 17.20 26.44 26.02 25.65 24.86 24.52

• METR-LA. METR-LA is collected in Los Angeles
County and contains the traffic data from March to June
2012 as collected by 207 sensors.

• PEMS-BAY. PEMS-BAY is collected in the Bay Area in
California and contains data from 325 sensors. The time
span is from January to May in 2017.

• PEMS04. PEMS04 is collected from highways in the San
Francisco Bay Area and contains 3848 detectors on 29
roads. The time span is from January to February in 2018.

• PEMS08. PEMS08 is collectd in SanBernaridino from
July to August in 2016. It contains the traffic data
collected from 1,979 detectors on eight road segments.

We choose traffic prediction as a representative case of
spatio-temporal prediction, as traffic prediction is a popular
spatio-temporal prediction tasks. Dataset statistics are provided
in Table I and includes area, time span, sampling interval,
number of nodes, and input and output steps.

2) Evaluation Methods.: We compare URCL with the fol-
lowing baseline methods.

• ARIMA. The Auto-Regressive Integrated Moving Aver-
age (ARIMA) method is a classic statistic-based method
for time series prediction [8].

• DCRNN. The Diffusion Convolutional Recurrent Neural
Network (DCRNN) method employs graph convolution
networks to capture spatial correlations and the enocoder-
decoder architecture with scheduled sampling to learn
temporal correlations for traffic prediction [4].

• STGCN. The Spatio-Temporal Graph Convolutional Net-
works (STGCN) method applies ChebNet-GCN and 1D
convolution to extract spatial and temporal dependencies
for traffic prediction [56].

• MTGNN. The MTGNN model utilizes a graph-based
deep learning method to exploit the inherent dependency
relationships among multiple time series for multivariate
time series forecasting [10].

• AGCRN. The Adaptive Graph Convolutional Recurrent
Network (AGCRN) model captures the fine-grained spa-
tial and temporal correlations automatically in traffic
series data for traffic prediction [12].

• STGODE. The Spatial-Temporal Graph Ordinary Differ-
ential Equation Networks (STGODE) method adopts a
tensor-based graph ordinary differential equation network
to capture spatio-temporal dynamics and further is inte-
grated with the temporal dilation convolution for traffic
prediction [5].

3) Metrics: Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are adopted as the evaluation metrics,
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Fig. 5. Illustration of Replay-based Streaming Spatio-Temporal Data Predic-
tion

which are defined as follows.

MAE =
1

M

M∑
m=1

|Ŷm − Ym|

RMSE =

√√√√ 1

M

M∑
m=1

||Ŷm − Ym||2,

(30)

where M is the testing data size, ŷt is the prediction and
yt represents the ground truth. The smaller the AME and
the RMSE are, the more accurate the method is. We also
evaluate the efficiency of the models, including the training
and inference (i.e., testing) time.

4) Other Implementation Details: We implement our model
with the Pytorch framework on NVIDIA Quadro RTX 8000
GPU.

Continuous Learning Settings. We denote D1 as a
base set and D2 to Dm as incremental sets, where D =
⟨D1, D2, · · · , Dm⟩ (m ≥ 1) is a sequence of streaming
spatio-temporal data sequences as defined in Section III. In
the experiments, we use a base set, denoted as Bset, and
four incremental sets, denoted as I1set to I4set, to facilitate
continuous training. Specifically, we use 30% of each dataset
as the base set and the remaining data in each dataset into
four equal parts to form the incremental sets. The base set and
incremental sets are provided sequentially with time evolving.

Training Process. We have tried to establish fair com-
parisons among the baseline methods (see Section V-A2)
by mapping their original training process into a continuous
training processes, as shown in Figure 5. We first train an
initial spatio-temporal (ST) model on base set D1 and then
re-train a new ST model on incremental sets (D2–D5) based
on the last learned model.



TABLE III
OVERALL ACCURACY ON FOUR DATASETS

Dataset Metric ARIMA DCRNN STGCN MTGNN AGCRN STGODE URCL

METR-LA

Bset
MAE 4.99 4.01 3.92 4.01 3.83 7.39 3.82

RMSE 8.82 6.22 7.98 6.89 6.33 11.42 6.19
I1
set

MAE 5.87 10.55 9.99 5.83 6.78 7.11 3.73
RMSE 9.77 14.41 14.77 9.71 12.42 11.62 6.14

I2
set

MAE 5.88 7.59 3.83 4.33 4.30 7.35 3.72
RMSE 10.49 8.44 5.63 6.89 7.59 11.77 6.06

I3
set

MAE 4.88 4.77 4.96 3.74 4.32 6.45 3.60
RMSE 10.49 6.81 7.00 5.91 7.59 10.17 5.69

I4
set

MAE 5.00 4.13 3.89 4.31 4.32 7.40 3.74
RMSE 10.99 6.25 5.63 6.94 7.53 11.78 6.01

PEMS-BAY

Bset
MAE 1.98 1.30 1.31 1.39 1.25 4.89 1.12

RMSE 3.85 2.24 2.28 2.53 2.51 7.93 1.92
I1
set

MAE 3.88 1.11 2.57 1.30 1.14 4.66 1.09
RMSE 4.98 1.87 5.58 2.22 2.23 7.61 1.86

I2
set

MAE 3.67 1.30 2.20 1.47 1.74 2.44 1.21
RMSE 4.89 2.34 4.55 2.53 2.24 3.69 2.08

I3
set

MAE 3.24 1.21 3.33 1.20 1.62 5.31 1.19
RMSE 6.77 2.11 7.06 2.13 2.01 8.64 2.00

I4
set

MAE 5.92 1.22 3.49 1.17 1.73 4.84 1.15
RMSE 10.22 2.00 7.53 2.10 2.05 7.84 1.99

PEMS04

Bset
MAE 56.79 24.46 31.67 22.99 22.09 36.54 19.77

RMSE 77.89 33.85 45.33 32.99 36.32 51.70 31.26
I1
set

MAE 65.78 24.34 46.29 24.76 24.65 48.55 21.56
RMSE 87.94 39.33 62.39 35.33 40.22 67.01 34.10

I2
set

MAE 67.93 23.27 59.07 29.70 21.93 49.60 21.61
RMSE 79.02 36.68 79.47 39.64 35.97 67.40 34.04

I3
set

MAE 63.92 25.95 29.08 26.04 21.34 49.99 20.97
RMSE 75.02 35.28 33.26 35.76 32.86 68.32 32.12

I4
set

MAE 62.76 23.89 23.10 25.81 20.81 49.81 20.48
RMSE 78.22 33.42 31.14 35.79 32.66 67.69 32.20

PEMS08

Bset
MAE 45.98 23.07 18.33 20.70 23.03 28.58 18.08

RMSE 67.28 32.24 27.68 30.38 38.44 38.54 27.03
I1
set

MAE 55.22 20.35 18.35 20.66 19.47 36.55 17.82
RMSE 75.33 27.92 24.30 29.82 31.74 46.04 26.37

I2
set

MAE 49.33 22.15 39.32 20.27 17.45 36.06 17.45
RMSE 59.89 29.63 57.34 28.97 27.35 45.25 26.02

I3
set

MAE 58.99 19.94 44.22 22.68 17.70 36.12 16.42
RMSE 65.79 27.04 63.01 30.24 27.56 45.04 24.88

I4
set

MAE 62.89 19.87 27.21 18.92 18.35 36.05 16.44
RMSE 71.36 27.91 37.19 26.99 28.80 45.30 24.16

Parameter Settings. The model parameters are set as
follows. The input sizes for METR-LA and PEMS-BAY are
12×207×2 and 12×325×2, respectively, where 12 denotes
the number of the previous time slots used for prediction, 307
and 325 are the numbers of the nodes, and 2 is the number
of channels representing traffic speed and flow. Moreover,
the input size for PEMS04 and PEMS08 are 12 × 307 × 3
and 12 × 170 × 3, respectively, where 3 denotes channels
representing flow, speed, and occupancy. The STEncoder in
URCL contains five layers, the hidden feature dimensions of
which are 32, 32, 32, 32, and 256. The STDecoder contains
two layers with 512 and 12 hidden features, respectively. The
output of METR-LA, PEMS-BAY, PEMS04, and PEMS08 are
1×207×1, 1×325×1, 1×307×1, and 1×170×1, respectively.
We organize the buffer as a queue, whose size is set to 256.
The parameters of the baseline methods are set based on their
original papers and any accompanying code. Note that we
normalize the streaming data into [0, 1] to facilitate the feature
learning.

B. Experimental Results

1) Performance of Training on Streaming Data: Our URCL
proposes a replay-based strategy for training on streaming
data, where a replay buffer is given to store previously learned
samples that fuse with the training data by a spatio-temporal

mixup mechanism to preserve historical knowledge effectively.
To evaluate the performance of training on streaming data,
two representative training strategies are used to replace the
replay-based strategy in URCL and are compared with URCL:
1) OneFitAll that trains a model with the base set and then
predicts all the testing data in the stream of spatio-temporal
datasets; and 2) FinetuneST that trains an initial model on
the base set and then fine-tunes the model with incremental
sets repeatedly. GraphWaveNet is used as the base model
of OneFitAll and FinetuneST. We report the MAE and
RMSE results on the PEMS-BAY and the PEMS08 datasets in
Table II, where the overall best performance is marked in bold.
To save space, we do not report results on the METR-LA and
PEMS04 datasets, as these are similar to those obtained for
PEMS-BAY and the PEMS08. The results on other datasets
are included in the technical report??.

We can see that URCL shows the best performance in terms
of MAE and RMSE when compared with other methods on
both datasets. More specifically, URCL outperforms the best
among the baselines by 14.5%–67.3% and 15.5%–72.4% for
MAE and RMSE on PEMS-BAY, respectively, and 1.2%–
49.1% and 8.9%–35.5% for MAE and RMSE on PEMS08,
respectively. OneFitAll and FinetuneST offer acceptable MAE
and RMSE results on the base sets on both datasets, but their
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Fig. 6. RMSE and MAE of URCL and Its Variants

performance deteriorates on incremental sets. OneFitAll shows
that as time goes, the new data can be different from the train-
ing data, showing that concept drift happens and a static model
does not work, calling for a CL model. While a simple CL
based FinetuneST is not enough, as it has forgetting problems.
URCL achieves relatively stable performance on both base sets
and incremental sets demonstrating its superiority.

2) Overall Accuracy: We report the MAE and RMSE
values of the methods in Table III. The best performance by
an existing method (ARIMA, DCRNN, STGCN, MTGNN,
AGCRN, and STGODE) is underlined, and the overall best
performance is marked in bold. Note that we repeatably train
each original baseline on each base and incremental to enable
fair comparison with the replay-based strategy (like Figure 5).
The observations are in the following.

• The proposed URCL achieves the best results among
all baselines in most cases, performing better than the
best among the baselines by up to 36.0% and 34.1%
in terms of MAE and RMSE, respectively. In most
cases, URCL outperforms the best among the baselines
in terms of MAE and RMSE on the traffic speed datasets
(i.e., METR-LA and PEMS-BAY) except for I4set on
METR-LA. Moreover, URCL also outperforms the best
among the baselines in terms of MAE and RMSE on the
traffic flow datasets (i.e., PEMS04 and PEMS08) except
for I1set on PEMS08. We observe that the performance
improvements obtained by URCL on the traffic speed
datasets exceed those on the traffic flow datasets. This is
because because much more traffic flow data is available
than traffic speed data. Thus, the baselines using the
replay-based training strategy with sufficient data can get
comparable results.

• ARIMA, a traditional statistical method, performs worse
than all methods except STGODE on METR-LA and
PEMS-BAY and has the worst performance among all
baselines on PEMS04 and PEMS08. This is because
ARIMA only uses the time-series data of each region and
ignores spatial dependencies. On METR-LA and PEMS-
BAY, STGODE performs the worst since it is customized
for speed prediction instead of flow prediction.

• As a popular spatio-temporal prediction model, AGCRN
performs the best among all the baselines in most cases,
due to its powerful ability to capture spatial and temporal
correlations.

From the above observations, we can see that URCL can be
applied on both traffic speed and traffic flow prediction tasks,
which indicates generality across prediction tasks.

3) Ablation Study: To gain insight into the effects of key
aspects of URCL, including the STMixup mechanism, the
RMIR sampling strategy, the data augmentation methods, and
the GraphCL loss, we evaluate four URCL variants:

• w/o STMixup (w/o STU). w/o STU is the URCL model
without the STMixup module. We directly concatenate
the original observations and sampled observations from
the replay buffer.

• w/o RMIR Sampling (w/o RMIR). w/o RMIR replaces
the RMIR sampling mechanism from URCL with a
random sampling one.

• w/o STAugmentation (w/o STA). w/o STA is the URCL
model without the STAugmentation.

• w/o GraphCL (w/o GCL). w/o GCL is the URCL model
without the GraphCL loss.

Figure 6 shows the MAE and RMSE results on METR-
LA and PEMS08. Regardless of the datasets, URCL always
outperforms its counterparts without the STMixup mechanism,
the RMIR sampling strategy, the data augmentation methods,
or the GraphCL loss. These four components all improve the
prediction accuracy of URCL, as removing any one of them
increases the MAE and RMSE values on both base sets and
incremental sets. Further, on both datasets, w/o STA performs
the worst among all variants in most cases. URCL outperforms
w/o STA, reducing the MAE and RMSE values by up to 41.5%
and 47.8%, respectively, thus showing the benefit of spatio-
temporal data augmentation. It is noteworthy that we include
all the results in the technical report.

4) Effect of Different Backbones: Next, we study the effect
of using different backbones, which are base models. For
example, the backbone of URCL is the CNN-based Graph-
WaveNet [10] (see Section IV-D). In addition to CNN-based
models, two main streams of existing graph-based spatio-
temporal prediction models exist, including RNN-based and
attention-based models that adopt RNNs and the attention
mechanism to learn temporal dynamics, respectively, and em-
ploy graph neural networks to capture spatial correlations. We
select two representative models as the backbones of URCL,
i.e., DCRNN [4] that is based on RNNs. GeoMAN [53] that
is based on the attention mechanism, We then compare them
with URCL. For simplicity, we use the names of the backbones
as the names of the compared methods. Table IV shows the



TABLE IV
EFFECT OF VARIOUS BACKBONES ON METR-LA AND PEMS04

Dataset Metric DCRNN GeoMAN URCL

METR-LA

Bset
MAE 4.97 5.11 3.82

RMSE 8.18 8.47 6.19
I1
set

MAE 4.76 4.87 3.73
RMSE 8.07 8.28 6.14

I2
set

MAE 4.64 4.41 3.72
RMSE 7.80 7.09 6.06

I3
set

MAE 4.61 4.39 3.60
RMSE 7.86 7.28 5.69

I4
set

MAE 5.54 5.27 3.74
RMSE 9.59 8.77 6.01

PEMS04

Bset
MAE 19.97 19.78 19.77

RMSE 32.25 31.19 31.26
I1
set

MAE 21.55 20.82 21.56
RMSE 35.35 33.15 34.10

I2
set

MAE 22.06 21.07 21.61
RMSE 35.92 33.48 34.04

I3
set

MAE 21.78 21.49 20.97
RMSE 32.21 34.34 32.12

I4
set

MAE 21.24 21.54 20.48
RMSE 34.21 34.75 32.20

prediction results on METR-LA and PEMS04. DCRNN and
GeoMAN are neck-to-neck in terms of MAE and RMSE on
both datasets. URCL has the best performance in most cases,
but the performance of the other two models are comparable
especially on PEMS04, demonstrating the generality of URCL
for adopting different backbones.
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Fig. 7. Training and Inference Time on PEMS04

5) Efficiency: As efficiency is important for spatio-temporal
prediction on streaming data, we study the training time (of
each epoch) and inference (testing) time (of each observation)
for all the deep-learning-based methods on PEMS04. Figure 7
shows the training and inference time of the base sets, as
well as the averages of those of all the incremental sets. One
can see that the training time of URCL is lower than that
of DCRNN, as shown in Figure 7(a). Although the baselines
(except DCRNN) take less time for training, they perform
worse than URCL in terms of prediction accuracy. Figure 7(b)
shows that the inference time of URCL is far lower than that of
DCRNN and is comparable with those of the other baselines,
which indicates the feasibility of URCL for model deployment
in real streaming spatio-temporal prediction scenarios.

6) Convergence Analysis of Training: We study the train-
ing convergence of URCL on MATR-LA and PEMS08—
see Figure 8. The number of epochs for training each
base/incremental set is 100, which means that we use the
first 100 epochs for training Bset, the second 100 epochs for
training I1set, the third 100 epochs for training I2set, and the
rest can be done in the same manner. We observe that URCL
converges after approximately 90 epochs on Bset of both
datasets, which shows that it converges quickly. Moreover,
URCL converges after around 60 epochs on all incremental
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Fig. 8. Training Convergence of URCL on MATR-LA and PEMS08

sets of both datasets, meaning that it converges faster than on
the base set. This shows that URCL can reduce the training
time on the unseen data substantially and thus can reduce
computational costs. In addition, the training loss curves drop
smoothly, after which there are minor fluctuations on the
training loss. This is mainly because the proposed STMixUp
mechanism brings the benefits of regularization.

VI. CONCLUSION

We propose a unified replay-based continuous learning
framework for spatio-temporal prediction on streaming data,
that aims to capture the complex patterns in spatio-temporal
data. To embrace historical knowledge, an STMixup mecha-
nism is designed to integrate training data with representative
data sampled from a replay buffer. By coupling a spatio-
temporal SimSiam network with a spatio-temporal prediction
autoencoder, the holistic features are extracted through mutual
information maximization. In addition, five spatio-temporal
data augmentation methods are proposed to cope with the
SimSiam network. An empirical study with real datasets offers
evidence that the paper’s proposals improve on the state of
the art in terms of prediction accuracy. An interesting research
direction is to attempt to further improve the training efficiency
of the proposed URCL.
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