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Abstract— We propose a novel pipeline for unknown object
grasping in shared robotic autonomy scenarios. State-of-the-art
methods for fully autonomous scenarios are typically learning-
based approaches optimised for a specific end-effector, that
generate grasp poses directly from sensor input. In the domain
of assistive robotics, we seek instead to utilise the user’s cogni-
tive abilities for enhanced satisfaction, grasping performance,
and alignment with their high level task-specific goals. Given
a pair of stereo images, we perform unknown object instance
segmentation and generate a 3D reconstruction of the object of
interest. In shared control, the user then guides the robot end-
effector across a virtual hemisphere centered around the object
to their desired approach direction. A physics-based grasp
planner finds the most stable local grasp on the reconstruction,
and finally the user is guided by shared control to this grasp.
In experiments on the DLR EDAN platform, we report a grasp
success rate of 87% for 10 unknown objects, and demonstrate
the method’s capability to grasp objects in structured clutter
and from shelves.

I. INTRODUCTION

The ability to grasp a wide variety of objects is crucial for
independent living. Daily activities such as eating, drinking,
dressing, grooming, and others all rely on the underlying
capability to retrieve and interact with objects. This ability
is often compromised in individuals with motor impairment,
which can arise from spinal cord injury, traumatic brain
injury, multiple sclerosis, muscular atrophy, and various other
neuromuscular diseases. A review of surveys, reflecting the
views of over 200 people with motor impairments, found that
tasks relating to picking up, fetching, and carrying objects
were of highest priority for an assistive technology [1].
There is a large body of research concerning the grasping of
known objects, for which full object information and models
are available to assist with grasp planning. For assistive
technologies however, the first application environment is the
home, which may have thousands of items. In a given day,
an individual may need to interact with food, clothes, hy-
giene products, electronics, personal belongings, appliances,
kitchenware, all of which are likely to vary and update
through time. The ability to grasp only known objects greatly
reduces the potential applications, and thus the focus of this
work is the grasping of completely unknown rigid objects.

This problem has seen recent success with deep neural
networks that can generate grasp poses directly from RGB
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Fig. 1: Grasping an unknown object in structured clutter with the
DLR EDAN assistive robotic system. After selecting an object, the
user guides the end-effector across a virtual hemisphere to their
desired approach direction. Depicted is an author, not a target user.

or point cloud input, e.g. [2]. While fully autonomous
methods could be applied in this setting, we argue that
user satisfaction would be lower. A study with 10 traumatic
spinal cord injured subjects [3] found that autonomy did not
provide more satisfaction for a robotic pick-and-place task.
The authors conclude that there is a need to appropriately
channel the autonomy provided, to enhance user satisfaction:

“While able-bodied users may prefer to cede au-
tonomy to robots, we believe that disabled users
tend to see the robot not merely as an agent to
retrieve objects but also as a quintessential tool
to reassert their domain of interaction with their
environment as well as engage and exercise their
cognitive faculties to the fullest.”

Moreover, the user already has intuition of where the
best grasp might be, and they may wish to align the
grasp with high level task-specific goals, e.g. transporting
an empty mug compared to drinking from a full mug. In
light of these findings, we aim to design a system that (i)
requires the user to actively interact with the environment
and (ii) utilises their cognitive abilities for decision-making.
Yet, using manual control to perform goal-directed multi-
fingered object manipulation is complex and difficult due to
the high number of Degrees of Freedom (DoF) in robotic
manipulators. Hence, our system uses shared control so the
user can more intuitively control the end-effector [4][5].

Our pipeline (Fig. 2) performs Unknown Object Instance
Segmentation (UOIS) on a pair of stereo images, and gen-
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Fig. 2: Our unknown object grasping pipeline. The perception module transforms a pair of rectified stereo images to the completed
mesh of an unknown object. Unknown object instance segmentation is performed using INSTR [6], and for shape completion we use the
method presented in [7] which applies a Vector Quantized Deep Implicit Function (VQDIF) [8] trained on simulated Kinect data. In shared
control [4], the user guides the end-effector across a virtual hemisphere centered around the unknown object, selects their desired approach
position, and a physics-based grasp planning simulation finds the best local grasp at which the actual grasp is executed automatically.

erates a 3D mesh reconstruction of the object using a deep
implicit function network. The user then guides the robot
end-effector across a virtual hemisphere centered around the
unknown object, and selects their desired approach position.
Next, a physics-based grasp planning simulation is run on
the reconstructed mesh to find the most stable grasp near
the user’s selected approach. Finally, the user is guided by
shared control to the planner’s best grasp pose.

The main advantages of the pipeline are outlined below.
i) Human-centred: The user is established as an active

cognitive agent for enhanced satisfaction, grasping
performance, and alignment with task-specific goals.

ii) End-effector agnostic: There is no additional time or
effort cost for changing or altering the end-effector.

iii) Customisable: The number and region of local grasps
sampled can be adjusted according to user ability.

iv) Scalable: The system can be extended to more com-
plex scenes, relying on human intuition to overcome
difficulties (e.g. collision-avoidance, Fig. 1&5).

The novel contribution of this work is a pipeline for
grasping unknown objects in shared autonomy or assistive
settings, that utilises the valuable cognitive abilities of the
user. We provide experimental verification of the method on
the DLR EDAN assistive robotic system with the CLASH
hand [9][10], showing high grasping success rates for singu-
lated rigid objects and extensions to more complex scenes.

II. RELATED WORK

A. Robotic grasping of unknown objects

Robotic grasping is the task of planning and executing
grasp poses and associated finger configurations for a given

object and end-effector. Analytic methods directly analyze
the object geometry, and data-driven methods typically em-
ploy machine learning. Many learning-based methods predict
planar grasps (2D position, 1D rotation), suited for scenarios
like bin picking [11] [12]. In complex environments however,
such as the home, additional task and collision constraints
make 6D grasp prediction crucial. [13] review the application
of deep learning to 6D grasp pose synthesis, identifying the
major methods to be sampling, regression, and reinforcement
learning (RL). Sampling methods learn a function to evaluate
the quality of a sampled grasp [14], regression (or end-to-
end) methods learn a function to predict high-quality grasps
from visual information [2][15], and RL aims to learn a
policy that maximises total reward [16][17].

We did not explicitly use one of these approaches, in
order to meet two criteria: the incorporation of user in-
tent and scalability to complex end-effectors. As end-to-
end methods simultaneously reason on perception, grasp
planning, and control, it was unclear how to integrate a
user’s input for further reasoning, which we deemed to be
essential for this shared-autonomy system as discussed in
Section I. Since these systems can not provide feedback on
individual modules, this may also potentially result in lower
user satisfaction and acceptance. We considered extending
approaches such as Contact-GraspNet [2] to generate grasp
candidates that the user could choose between, but found
that many works were heavily optimised for simple rigid
end-effectors. For example, [2] exploit the symmetry of a
parallel-jaw gripper to formulate a simple loss function and
reduce the problem dimensionality from 6D to 4D. These
methods can not be trivially replicated for complex end-
effectors such as our CLASH [10], an intrinsically compliant



7 DOF hand inspired by the tendon routing in humans.
Moreover, end-effectors may be updated through time for
different requirements (e.g. EDAN previously used the DLR-
HIT hand [18]). Thus, learning-based methods typically
require problem reformulation, revised data collection, and
retraining for different end-effectors. While it may appear
that our proposed pipeline is complex with several failure
points, we note that many other approaches also rely on
RGB and pointcloud input, e.g. [2][15]. Finally, the recent
realisation of semantic manipulation e.g. “Grab the left ear
of the elephant” [19] provides interesting opportunities for
human-centred grasping. However, we believe our method
offers finer-grained grasp selection and increased satisfaction
through active interaction for users in assistive settings.

B. Shape completion enabled grasping

Reconstructing a 3D model of an object using only a
partial point cloud is a promising method for enabling
robotic grasping. [14] use a 3D Convolutional Neural Net-
work (CNN) for shape completion, trained on simulated
depth images from 484 objects and achieve a 93% grasp
success rate (GSR) on 15 YCB objects, most of which were
already used during training. [20] propose a transformer-
based encoder for shape completion, trained on real depth
images from the YCB-Video dataset and achieve an 83%
GSR across 6 YCB objects, all of which were seen during
training. [21] propose a transformer-based encoder-decoder
network for shape completion trained on the data from [14],
and achieve a 76% GSR across 10 YCB objects, which also
have been used at least partially during training. [7] recognise
the challenges of reconstruction from partial and noisy depth
data, and train an implicit function network [8] on simulated
Kinect camera depth images to further bridge the simulation
gap to real sensing conditions. We implement this method of
shape completion in our work, and refer the reader to [7] for
further information and related work. In order to recover an
unknown object point cloud from a scene, we initially per-
form UOIS. In this context, [6] present a novel stereo-based
transformer approach, addressing corrupted depth maps in
real-world scenarios. To our knowledge, this is the first
work combining RGB-based UOIS with shape completion
for robotic grasping.

C. Assistive robotic grasping

Shared control grasping in assistive robotic systems has
been studied previously. [22] focus on known objects with
predefined grasp poses and approach vectors. [23] use a
dense grasp database to provide the user with more freedom
in selection, but also for known objects. Most similar to
our work, [24] study grasping for unknown objects, but
their approach is limited to objects that fall into shape
primitive categories. Their system autonomously selects a
single grasp for execution from semantic candidates (e.g.
top, side, pinch) based on the user’s teleoperation of the
end-effector. While this method also incorporates user intent,
we believe our approach allows greater unknown object

generalisation and user autonomy through finer-grained grasp
direction selection beyond pre-defined semantic categories.

III. METHOD

Our proposed pipeline covers all relevant modules – from
detecting object instances up to the prediction of robust grasp
poses – for unknown object grasping. Given a pair of stereo
images, the goal of perception is to create a complete mesh
for each object in the scene (see upper part of Fig. 2).
One should note that the use of mesh reconstruction limits
this method to rigid objects. To this end, we perform UOIS
and employ Instance Stereo Transformer (INSTR) [6] that
creates pixel-wise instance masks for all arbitrary objects
visible in the current view. Next, for higher robustness,
each of the binary segmentation masks is filtered by con-
tour area for noise. The user is presented with the filtered
instances, and they select a target object by cycling through
the options. We then construct an instance-specific point
cloud by masking the Semi-Global Matching (SGM) [25]
created depth map with the binary mask of the object of
interest. After down sampling and outlier removal, the point
cloud is reconstructed using the method presented in [7]
which applies a VQDIF [8] trained on simulated Kinect
data. Finally, we decimate the completed mesh to ∼1000
triangular faces using the Quadric Error Metrics [26] for
improved collision computation in the physics simulator. The
completed mesh is then forwarded to the grasping module.
As shown in Fig. 2, the grasping module consists of three
parts: hemisphere selection, grasp evaluation, and picking up
the object. For both hemisphere selection and object picking,
we employ Shared Control Templates (SCTs), previously
developed for the EDAN system [4]. An SCT maps low-
dimensional user input to end-effector motions and provides
task space constraints, acting as as regional constraints as
defined by [27], to guide the robots end-effector within the
task. In this case a 3 DOF joystick is used to control the
end-effector. The end-effector is constrained on a virtual
hemisphere centered around the object of interest, as well as
constrained to point towards the hemisphere origin. Those
constraints allow the user to select their desired approach
pose: they can toggle between moving the end-effector
across the hemisphere surface (translational control), and
rotating the end-effector around its axis pointing towards the
hemisphere origin (rotational control). When satisfied with
the approach pose, the user triggers a button.

Given this approach pose, we use the grasp planning
simulation GraspIt! [28] on the reconstructed mesh to find the
best local grasp. For a more realistic physics simulation, we
used the PyBullet implementation [29] of GraspIt! to exploit
the improved Bullet dynamics, kinematics, and collisions.
We place the object on a surface and apply gravity instead
of being fixed in space, to simulate object-surface dynamics.
The unknown object is defined by a Unified Robot Descrip-
tion Format (URDF) file. By default, PyBullet uses a convex
hull for mesh collision detection, which means that objects
with concavities are (incorrectly) approximated as convex. To
deal with this, we used the in-built Hierarchical Approximate



(a) Power grasp hemisphere (b) Precision grasp hemisphere

Fig. 3: Grasp approach hemispheres, decided by object height. The
power grasp allows for side-on grasps, and the precision grasp
allows for greater sampling around the center point.

Convex Decomposition (v-HACD) [30] to decompose the
reconstructed mesh into multiple convex hull objects. The
default mass is set to 0.3 kg. The lateral, rolling, and
spinning friction coefficients are set to 0.3, 0.01, and 0.01
respectively. The inertia is recomputed by Bullet based on
mass and volume of the collision shape. For grasp planning,
we define a hemisphere from which approach positions are
sampled from. We split the grasping strategy into power and
precision grasps, depending on the object height (Fig. 3).
The power grasp hemisphere is raised by 12 cm to allow for
“side-on” grasps (without our end-effector colliding with the
table). The original GraspIt! generates grasp approach angles
evenly spaced across a sphere but we only sample local
positions, which drastically reduces the amount of sampling
positions and thus required sampling time. We generate a set
of circumferences at different angular offsets from the user’s
pose, and sample points from them. An example sampling
is illustrated in Fig. 2 on the blue hemisphere in grasp
evaluation, with 3 circumferences evenly spaced between a
0-10° angular offset from the user’s approach pose, which is
shown in red. Note that the approach poses which exceed the
hemisphere surface are filtered out. The final parameter we
sample is how bent the fingers are on approach, which we
call finger flexion: a value of 0 is where each finger is fully
outstretched, and a value 1 corresponds to completely closed
fingers. For power grasps, we sample finger flexions {0, 0.1}
per approach pose. For precision grasps, finger flexion is
much more consequential to grasp success, and as such we
sample {0.1, 0.2, 0.25, 0.3, 0.35}.

For each approach pose and finger flexion, the hand moves
towards the center of the hemisphere until it has sufficient
contact points (2 with the object for power grasps, 3 with
object and/or world for precision grasps). Note that the object
is fixed here. The position of the hand with a small “back-
off” margin applied is then saved. The hand is then fixed, and
the object is unfixed. Gravity is applied to the object, and the
hand is closed with velocity control. Finally, the surface is
moved vertically downwards. If there are hand-object contact
points after 3 seconds, the grasp pose is deemed successful.
Finally, the grasp with the highest ϵ value is selected (Fig. 4.
If no grasp is found, the user is asked to select another
approach position. The ϵ quality measure is the radius of
the largest sphere that fits in the convex hull of the Grasp
Wrench Space, and represents how robust the grasp is to
external disturbance [28]. We calculate ϵ of the grasp pose

Fig. 4: Visualisation of GraspIt! simulation output for a soup can.
From the user’s selected approach (top-down), local approach poses
are sampled from 3 circumferences spaced between 0-10° from
the input (blue crosses) projected onto the hemisphere. The hand
approaches the soup from these poses but will keep moving until
3 contacts are reached, causing it to envelope around the object.
Successful grasps are shown in circles, where the circle size is
proportional to finger flexion (i.e. the smallest circles correspond
to finger flexion 0.35, largest 0.1), and colour shows grasp quality.

at 0.5 seconds after the surface is moved rather than at 3
seconds, as a more accurate representation of grasp quality.

IV. RESULTS

We implement our method on EDAN, the EMG-controlled
Daily AssistaNt, a robotic wheelchair mounted with a torque-
controlled, 8 DOF version of the DLR lightweight robot
(LWR-III) [9]. The robot can be controlled by a joystick or
via electromyographic (EMG) signals, and is designed to per-
form activities of daily living. We evaluate our method using
3 DOF joystick control, operated by one of the authors. Prior
research shows that people with severe motor impairment can
perform three-dimensional tasks from neural signals [31] or
EMG [32]. Thus, we hypothesise that our method will also
work with target users requiring alternative interfaces, but
with longer control times. We believe that accuracy can be
maintained if the sampling scheme is customised according
to the precision abilities of the user, e.g. sample 0-30° from
the selected approach for users with less control.

For stereo vision we use 2x Point Grey Chameleon
CMLN-13S2C-CS cameras with 1/1.8” 4.5mm C-Mount
wide angle lenses. For grasping we use the CLASH hand,
a 7 DOF Compliant Low-cost Antagonistic Servo Hand
also developed at DLR [10]. Our GraspIt! implementation
is parallelised and run on a computer with 55 cores. For
grasping, we select 10 objects from the YCB dataset [33].
The primary experiment is grasping singulated objects on
a surface. Additionally, we compare autonomy modes and
demonstrate the capability to grasp objects in structured
clutter and from a shelf. We do not compare our results
against baselines, e.g. Contact-GraspNet [2], because most



related works have been trained on or optimised for parallel-
jaw grippers, which would be non-trivial to re-implement for
the CLASH hand (see Section II-A).

A. Singulated objects

For each of the 10 YCB objects we run 10 grasping trials,
where the object’s position and orientation are randomised
within an area the size of an A4 sheet of paper. A trial is
successful if the object remains in the air 5 seconds after
being grasped, lifted, and held stationary. The experimental
results are presented in Table II. To evaluate INSTR, the
mean Intersection over Union (IoU) and standard deviation
for each object is provided. The shape completion metrics we
use are the volumetric IoU and Chamfer-L1 distance (CD)
mean and standard deviation. The mean GraspIt! success rate
refers to the percentage of approaches that maintained object
contact 3 seconds post gravity in simulation. Finally, the
Grasp Success Rate (GSR) is the fraction of successful phys-
ical trials. To test the effectiveness of the complete pipeline,
we only proceeded with attempts where a reconstructed mesh
was recovered. As such, we discarded 5 attempts (2 Banana,
3 Strawberry) where INSTR failed to detect or severely
under-segmented the object.

B. Autonomy modes

We show the benefits of our pipeline in an assistive setting
and compare our approach (SC+GraspIt!) against varying
degrees of autonomy (Table I). In manual mode, the user
can toggle between controlling the end-effector translation,
rotation, and closing the gripper. In Shared Control (SC)
only mode, we remove GraspIt! from the pipeline and the
user instead guides the end-effector along a line segment
between their approach pose pose and the hemisphere origin,
and manually triggers the gripper closing.

TABLE I: Comparison of results with different levels of autonomy.

Autonomy Cracker Box Strawberry Bowl Mean
Time GSR Time GSR Time GSR Time GSR

Manual 62 90% 50 90% 57 100% 56 93%
SC 36 100% 33 60% 43 30% 37 63%

SC+GraspIt! 41 90% 36 80% 55 60% 44 77%

C. Complex scenes

We also demonstrate the scalability of our pipeline to more
complex scenes. In structured clutter (Fig. 1), we grasped 5/5
objects (Spam tin, Lemon, Pringles, Pear and Cracker box)
from the scene on the first trial. From the shelf (Fig. 5), we
demonstrate grasping of the Cracker box despite degraded
visual conditions. Both these scenes relied on the user’s
intuition to select collision-free grasp directions for success.

V. DISCUSSION

A. Singulated objects

From Table II, we see that the UOIS method performed
well with all objects having a mean IoU above 90. The
applied shape completion approach is able to faithfully
reconstruct most objects, but struggles with small ones

1

2

3

4

5

Fig. 5: Shelf grasping experiment. 1. INSTR prediction 2. Comple-
tion prediction 3. User’s selected hemisphere approach 4. GraspIt!
predicted grasp 5. Successful grasp. More complex grasping sce-
narios utilise the user’s intuition for collision avoidance.

(Strawberry, Banana), as they are relatively more affected
by imprecise segmentation and noise. The volumetric IoU
metric is deceptively small for objects with small volume
(Mug, Bowl), as even small pose discrepancies can lead to
negligible overlap. The CD metric is not affected by this
phenomenon and provides a more faithful representation of
shape completion performance in these cases. Comparing
Spam tin with an IoU of 77.2 and CD of 0.325 to Bowl
with an IoU of 2.8 and CD of 0.379, we observe a signifi-
cant difference in IoU but only a modest increase in CD.
To see how segmentation performance impacts the shape
completion, we look to Fig. 6. There appears to be no clear
correlation between segmentation IoU and shape completion
IoU, except for a dense cluster of high IoUs in the upper
right. This suggests that the shape completion model is
robust to minor under- or over-segmentation. The GraspIt!
success rate is moderately stable across objects, except the
Strawberry, Banana, and Bowl. This indicates that for these
objects the finger flexion parameter is very influential to
success, where only small finger spreads during approach led
to successful grasps. Considering run time, we can see that
the major time is taken by the user to select a satisfactory
approach pose (24s). Note that the timings do not include
perception and object selection, which took <10s.

In the physical trials, we see reliable grasping across
many objects. The worst performing object was the Bowl
with a 6/10 GSR, followed by the Banana, Strawberry, and
Master Chef can with 8/10 GSR. Therefore, does poor shape
completion lead to grasp failure? Not necessarily, as in Fig. 7
we see that grasp failures and successes occurred throughout
entire completion IoU range. Most successful grasps had a
high shape completion IoU (>80), but there were also many
successful grasps at low completion IoUs. For example, the
Mug had a low mean completion IoU of 23.4 (likely due
to its shiny surface and concavity), but since the overall



TABLE II: Experimental results on robot for 100 grasping trials of singulated objects. For each object, the mean and variance across 10
trials are presented for the segmentation IoU, completion volumetric IoU and Chamfer-L1 distance. The mean GraspIt! simulation success
rate, and grasp pipeline times are also reported. The GSR is the physical trial result.

YCB Object
Segmentation Completion GraspIt! Timings

GSR (10 trials)IoU IoU CD×10 Success rate (%) Select GraspIt! Pick
x̄ σ x̄ σ x̄ σ

Pringles 96.4 0.6 87.0 2.3 0.091 0.012 59 15s 4s 10s 100%
Master Chef can 93.5 6.2 83.9 3.0 0.232 0.045 72 28s 5s 12s 80%

Cracker box 93.9 6.0 80.1 10.6 0.195 0.076 68 29s 4s 8s 90%
Tomato soup can 94.4 1.2 82.3 2.6 0.226 0.036 70 17s 9s 11s 90%

Spam tin 93.8 1.3 77.2 5.3 0.325 0.072 69 23s 9s 12s 100%
Strawberry 92.1 2.2 56.5 15.7 0.672 0.188 10 29s 6s 11s 80%

Banana 90.3 3.5 48.2 12.1 0.300 0.103 10 27s 6s 13s 80%
Mug 94.6 1.8 23.4 7.3 0.527 0.219 57 22s 9s 10s 100%
Bowl 92.0 3.7 2.8 1.7 0.379 0.144 33 28s 7s 20s 60%

Softball 94.5 1.5 82.8 3.9 0.314 0.067 57 22s 7s 10s 90%
Averages 24s 7s 12s 87%

80 85 90 95
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Fig. 6: Segmentation and completion IoU for the 100 trials of
singulated objects.

object perimeter was preserved had 10/10 GSR for top-down
grasping. For the bowl however, an accurate completion
was likely very important for grasp planning as a specific
approach position and contacts are required for success.
Thus, object complexity is likely an important confounding
factor to both completion IoU and grasping success.

B. Autonomy modes

The autonomy experiments in Table I highlight interesting
comparisons between time taken and reliability. Manual
mode was the most reliable grasping method (28/30 GSR),
but also took the most time (56s). The SC only mode was the
fastest (37s), but had the lowest reliability (19/30 GSR). This
is because when approaching the object with outstretched fin-
gers along the hemisphere radius, it was difficult to visualise
how the fingers would establish contact with the object at the
resulting grasp pose. For example, there was a small window
in which the strawberry could be grasped: too low and the
outstretched fingers would collide with the surface, too high
the strawberry would slip. Finally, SC+GraspIt! balanced the
time and reliability of the other methods. Note that we do
not include the timing of the perception pipeline (<10s) to
contrast timings where the user is under assumed cognitive
load. Considering the full pipeline, SC+GraspIt! becomes
44+10=54s, which is very close to the manual average of
56s. This result, in combination with the higher manual
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Fig. 7: Histogram of shape completion IoU showing number of
successful and failed trials for each region.

grasping reliability, may appear to undermine our pipeline.
However, these measurements do not consider the duration
spent under cognitive load. The user is assumed to be under
high cognitive load throughout the full length of manual
mode (56s), but only during the hemisphere select phase in
our method (24s), ∼ 44% of the full pipeline time. Future
work should explore methods of improving the grasping
performance in order to reach the high reliability of manual
mode, and quantify the differences in cognitive load between
the approaches, e.g. using the NASA Task Load Index.

VI. CONCLUSION

In this work we present a novel pipeline for grasping
unknown objects in an assistive setting, combining UOIS
with shape completion. Importantly, our grasping methodol-
ogy utilises the cognitive abilities of the user for enhanced
satisfaction, grasping performance, and alignment with high
level task-specific goals. We report a grasping success rate of
87% across 10 singulated objects, and demonstrate capability
to grasp objects in structured clutter and from shelves. We
find that the shape completion model is robust to minor
segmentation failures, but can struggle with poor sensor data.
In experiments comparing autonomy modes, we find that
our pipeline reduces the time spent in assumed cognitive
load by more than half, compared to manual mode. Future



work could explore entire scene reconstruction and inte-
grating collision-avoidance for dense clutter scenarios, and
quantifying cognitive load across autonomy modes.
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