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We present an in-depth analysis of a single-electron box (SEB) biased through a floating node technique that is common
in charge-coupled devices (CCDs). The device is analyzed and characterized in the context of single-electron charge-
sensing techniques for integrated silicon quantum dots (QD). The unique aspect of our SEB design is the incorporation
of a metallic floating node, strategically employed for sensing and precise injection of electrons into an electrostatically
formed QD. To analyse the SEB, we propose an extended multi-orbital Anderson impurity model (MOAIM), adapted
to our nanoscale SEB system, that is used to predict theoretically the behaviour of the SEB in the context of a charge-
sensing application. The validation of the model and the sensing technique has been carried out on a QD fabricated
in a fully depleted silicon-on-insulator (FD-SOI) process on a 22-nm CMOS technology node. We demonstrate the
MOAIM’s efficacy in predicting the observed electronic behavior and elucidating the complex electron dynamics and
correlations in the SEB. The results of our study reinforce the versatility and precision of the model in the realm of
nanoelectronics and highlight the practical utility of the metallic floating node as a mechanism for charge injection and
detection in integrated QDs. Finally, we identify the limitations of our model in capturing higher-order effects observed
in our measurements and propose future outlook to reconcile some of these discrepancies.

Single-electron boxes (SEB) are a type of nanoscale elec-
tronic devices comprising a quantum dot (QD) coupled to
a metallic lead through a tunneling junction1. The chem-
ical potential of the QD is controlled by a gate, coupled
capacitively to it (implying no current flowing from the
gate to the QD). The distinctive properties of single-electron
boxes emerge as a consequence of their nanoscale dimen-
sions, where the quantum nature of charge carriers becomes
pronounced, giving rise to phenomena such as Coulomb
blockade and quantum tunneling, especially at low tempera-
tures2,3.

Quantum properties of SEBs make them extremely
charge-sensitive, and these devices can be fabricated with
precision engineering. In the light of the immense progress
in semiconductor qubit technologies4, there is an increasing
interest in sensitive electrometers for silicon spin qubits that
would take up a small area and be compatible with large-
scale integration. SEB electrometers have been proposed to
be used as charge sensors for qubits5–9 or even as quantum
thermometers10. For that reason, probing the state of a SEB
device made on a commercial process will be of particularly
great benefit for developing quantum sensing applications.

In this paper, we present a SEB which is formed by a
metallic node (lead) coupled to an electrostatically formed
semiconductor QD. The key feature of this study is that the
biasing and detecting of the SEB charge states is carried out
through a scheme that is inspired by a technique common to
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the output stage of charge-coupled devices (CCDs)11. It is
worth noting that CCDs might also be addressing the prob-
lem of single-electron detection but in the context of dig-
ital imaging12,13. Being essentially large-scale integrated
systems, CCDs are particularly compatible with commer-
cial and non-commercial semiconductor processes, and the
measurement in CCDs are carried out in the charge domain.
The feasibility of such biasing schemes has been demon-
strated in Ref.5. Moreover, quantum nanoelectronics devices
lithographically defined in semi-conducting 2D electron gas
(2DEG) structures have been integrated recently with charge
sensors to measure entropy changes in QD devices14,15.

The device is implemented in a commercial fully depleted
silicon-on-insulator process on a 22-nm CMOS technology
node by GlobalFoundries. Since the QD of the SEB is
controlled electrostatically, we are interested in deriving its
quantum mechanical model taking into account effective or-
bitals and potential shape formation fluctuations and asym-
metries which are the aspects of realistic QDs. For this
reason, we develop a type of multi-orbital Anderson impu-
rity model16 (MOAIM) to predict the observed voltage from
the SEB under the CCD biasing and measurement scheme.
We then compare the SEB experimental characterization at a
temperature of 3.5 K with the model and show that the SEB
responds to individual charge transitions. This illustrates that
it is possible to utilize SEB-CCD electrometers in integrated
semiconductor QDs.

The system is presented in Fig. 1. The scheme of the SEB
and its biasing principle are illustrated in Fig. 1(a). The SEB
consists of an electrostatically defined semiconductor QD
whose chemical potential is controlled by the gate voltage
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FIG. 1: (a) Schematic of the SEB device with its biasing scheme. (b) Scanning electron microscope (SEM) top-view image of
sample B (more in the next figure). Inset picture shows the part of the device we are utilizing. The floating node is the electron
reservoir (lead) coupled via a tunneling barrier to the QD. The tunneling barrier is effectively regulated by Gate 1; Gate 2 on
its right is used to form the QD and to control its electrochemical potential. (c,d) QTCAD17 self-consistent simulation of the
conduction band, charge density and Fermi level. On the horizontal, we plot the distance x (nm) and on the vertical axis the
energy E (eV). One well (colored) is formed under Gate 1 adjacent to the lead; it is filled with electrons and forms an extended
reservoir. The SEB well is formed under Gate 2. Raising Vg1 lowers the tunneling barrier between the lead and the SEB QD.
Subfigure (c) shows the tunneling barrier change with Vg1 . Vg2 manipulates the depth of the QD well. Subfigure (d) shows the
QD depth change with Vg2 .

Vg2. There is a (metal) lead whose Fermi energy EF is ly-
ing above the edge of its conduction band. The lead is con-
nected to the QD through a tunneling junction. The Fermi
energy of the lead is controlled by the biasing circuit in the
following way. A switch is activated to connect the lead to a
voltage source that elevates the potential of the lead to some
Vpre-charge. The switch is deactivated after this, and the node
is disconnected from the voltage source — it is in a “float-
ing” state where any change in the number of electrons will
result in a significant change of its electric potential due to
its small capacitance. Next, the voltage Vg1 at the gate ter-
minal is adjusted to tune the alignment of the Fermi energy
of the lead to the chemical potential of the dot, allowing the
tunneling of an electron from the lead to the QD. The second

switch is then activated to measure if the electric potential
of the lead has changed compared to the original state due
to an electron tunneling to the QD. The capacitance of the
lead is estimated (via parasitic extraction) to be 0.8 fF. The
target design gain of the voltage amplifier is 80 (the gain is
subject to process variability). This results in an expected
∼16 mV step at the output of the voltage amplifier per one
electron removed from the lead to the QD. The temperature
of the set-up is 3.5 K.

The SEM image of the lead and the QD is shown in
Fig. 1(b). While it is a part of a large QD array, we apply
low voltages at all the gates. This results in a very large po-
tential energy barrier separating the quantum dots from each
other. We then can control the tunnelling junction between
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the reservoir of electrons (lead) and the first quantum dot,
while keeping the other dots isolated. The parameters of the
devices are given in the figure caption.

The top view of the system is shown in Fig. 1(b). The thin
Si-film results in a transversal confinement causing a 2DEG
behavior of electrons in the film and the in-plane confine-
ment is controlled by the gates. In this class of devices, the
formation of wells of the conduction band is defined electro-
statically. The dot can form either below the gates or in the
spaces between the gates depending on Vg j and other con-
trolled voltages (such as the common-mode voltage Vcm). In
the test presented in this paper, at Vpre-charge =−410 mV (af-
ter the pre-charge stage, the lead acquires a negative poten-
tial) and Vg j ranging up to 0.3 V, a shallow well is formed
below the gates (except for the very first one, adjacent to the
lead that forms an extended electron reservoir due to diffu-
sion on electrons). The self-consistent simulation of the con-
duction band and charge carrier density at 3.5 K, presented
in Fig. 1(c) and (d), confirms this assumption. (A single-
gate test device was also tested by the means of transport
measurement to confirm this.) In this study, we present the
results of two different samples that have some variations in
the shape of the lead, the spacer and the gate.

In order to perform QD injection, spectroscopy and char-
acterization of its underlying physics, we firstly need to build
a theoretical quantum model that can describe and predict the
system’s behavior. For the purpose of capturing the physical
interactions and factors that contribute to the many-body dy-
namics of the QD, we employ an extended Fermi-Hubbard
model for N effective quantum orbitals. The quantum model
that describes the QD is expressed by the following Hamil-
tonian:

HQD =
N

∑
i=1

∑
σ∈{↑,↓}

εiσ niσ +∑
i≤ j

∑
σ ,σ ′

Ui j,σσ ′ niσ n jσ ′

where εiσ is the on-site potential for orbital i, Ui j,σσ ′ is
the electrostatic Coulomb coupling between an electron at
orbital i and spin σ and another electron at orbital j and
spin σ ′ with (i,σ) ̸= ( j,σ ′), c(†)iσ is the Fock space fermionic
annihilation (creation) operator for a fermion at orbital i
and spin σ and niσ = c†

iσ ciσ is the number operator. The
creation/annihilation operators satisfy the fermionic algebra
anti-commutation relations {c†

jσ ,ckσ ′} = δ jk δσσ ′ and

{c†
jσ ,c

†
kσ ′}= {c jσ ,ckσ ′}= 0 and act upon the system’s Fock

space; for M fermions it is defined as FM ≡
⊕M

m=0 Hm,
with Hm ≡ H ⊗m being the m−fermion Hilbert subspace.

For the physical specifications of our system we have
taken the QD to be of volume vQD = (80× 30× 6.25) nm3

and to be composed of N = 2 effective orbitals for sample
A and N = 3 for sample B; these are chosen phenomeno-
logically and ad-hoc. The dimensions of the dot are taken
from the physical parameters of the system, and will pro-
vide a very good correspondance to the observed energy
levels. Since d(z) = 6.25 nm ≪ d(x),d(y) and so ∆ε(z) ≫
∆ε(x),∆ε(y), we restrict ourselves to the orbitals formed due

to confinement in the smaller x̂, ŷ−dimensions. The con-
tributing energies are the Coulomb intra and inter-orbital
coupling energies Ui j ,σσ ′ = 3.1 meV (Si), and the effec-
tive on-site confinement energies ε A

iσ ∈ {1.56,5.63} (meV)
and ε B

iσ ∈ {1.56,5.63,10.91} (meV), with εiσ < ε jσ for
i < j. These are derived from a symmetric finite quan-
tum well calculation, fine-tuned by a common-mode volt-
age Vcm ≈ −427 mV (which is close to the −440 mV used
in QTCAD) and since our formed QD need not be com-
pletely symmetrical, we add a random fluctuation of the en-
ergy levels to account for potential imperfections in our elec-
trostatically formed QD. That is, we have εX

iσ = ε
X (ideal)
kσ

+

δε
X (asym)
kσ

, with δε
X (asym)
kσ

sampled from a normal distribu-
tion N (µ,σ2) with mean µ = 0 and standard deviation
σ = 20%. Finally we utilize the transversal and longitudi-
nal electron masses18 as mt = 0.19me (Si) and ml = 0.98me
(Si), respectively.

In addition to the above Hamiltonian which describes the
dynamics of the isolated QD, we employ a lead Hamilto-
nian Hlead, which corresponds to the metallic floating node
in the actual structure. We treat it as a semi-classical reser-
voir of electrons, from which they can jump in and out, with
different energies {λrσ} and a Fermi level EF controlled ex-
ternally through manipulation of a tunable electrochemical
potential µch. We include only a left lead (L ) coupled to the
QD. In addition, we add the coupling between the lead and
the QD (hybridization), so the total Hamiltonian for our SEB
will have the form of a MOAIM:

Hsys = Hlead + HQD + ∑
r σ ∈L

(
τr σ w†

r σ cσ + h.c.
)

(1)

with Hlead = ∑r σ ∈L λr σ w†
r σ wr σ with λrσ the energy of the

r level and spin σ of the metallic node Hamiltonian, w(†)
r σ the

fermionic annihilation (creation) operator of an electron of
energy r level and spin σ in the lead, τr σ the hybridization
(coupling) energy between each lead level and the QD and
h.c. is the Hermitian conjugate counterterm.

We consider a uniform hybridization τrσ = τ which is also
manipulated via gate voltages ∆Vg1 in the device. In our
simulation, its values range in the τrσ = 3–40 µeV regime,
which satisfies τrσ ≪ E for any energy scale E of our sys-
tem. The full Hamiltonian Hsys can then be used to model the
quantum transport properties of the system, and how the QD
electronic occupation depends on applied potentials19–21.

We treat the QD in FMmax Fock space, allowing up to
Mmax = 4 and Mmax = 6 electrons to occupy the structure
for sample A and sample B, respectively. Our density ma-

trix ρ =
{

Qmm′

MM ′

}mm′

MM ′
, with Qmm′

MM ′ = |M , m⟩⟨M ′ , m′|,
the Hubbard operator has diagonal elements PM m, with
∑M ,m PM m = 1, and we show them symbolically in Ta-
ble I. Each of the Fock eigenstates with M electrons

will be a superposition of m states, with m =

(
Mmax
M

)
=

Mmax!
(Mmax−M )!M ! .

We assume that the lead is weakly coupled to the QD
and therefore keep up to second-order hybridization terms
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FIG. 2: Fock state occupancy probabilities PN n at T = 3.5 K and hybridization energy τkσ = 20 µeV. Probability plots as
functions of different system parameters. (a) Fock states’ occupancies PN n as a function of applied voltage Vg sweep for sample
A for t ≈ 0.6 ns. (b) Dynamical evolution of Fock states occupancies as a function of time, for Vg ≈ 0.18 V for sample A. (c)
Same as (a) but for the model corresponding to sample B. We see more plots, because we consider N = 3 orbitals in the model
for this sample, so we can have up to a maximum of Nmax = 6 electrons present in the QD and a total of 64 states. (d) Same as
(b) but for the model corresponding to sample B.

TABLE I: Table of the allowed Fock eigenstates |M ,m⟩ of the QD Hamiltonian HQD of each Fock subspace. The states’
coefficients αmk,βmk, . . . , depend on the parameters of the system εiσ ,U jk,σσ ′ which are in turn dependent on the physical
architecture and characteristics of the QDs and control voltages vQD ,Vg , ∆Vg1 ; we include here the compact expressions, since
the full ones are very complex and long to write out explicitly. The states are denoted as |s1;s2; . . . ;sN⟩ ≡

⊗N
n=1 |sn⟩, with sk the

ẑ−spin projection of the kth−QD level occupation. We label with m∗
i the maximum value of mi for Fi and with m∗ its overall

maximum value.

Number of electrons νe− Fock space eigenstate |M ,m⟩

0 |0,1⟩= |0;0; . . . ;0⟩

1 |1,m1⟩= ∑
m1
k=1 αm1k |s1m1k ;s2m1k ; . . . ;sNm1k ⟩ , m1 ∈

{
1, ...,

(
Mmax

1

)}
2 |2,m2⟩= ∑

m2
k=1 βm2k |s1m2k ;s2m2k ; . . . ;sNm2k ⟩ , m2 ∈

{
m∗

1 +1, ...,m∗
1 +

(
Mmax

2

)}
... ...

Mmax |Mmax,m∗⟩= |↑↓;↑↓; . . . ;↑↓⟩

O(τ2
kσ
), so we can ignore off-diagonal elements in ρ and

significant mixing of Fock space states. Consequently, the
dynamical evolution of the population numbers PM m =
PM m(t) is simplified to a set of partial differential master

equations22:

∂P00

∂ t
=−1

h̄

Mmax

∑
m=1

Γ
res
00 ,1m

[
n̄+

res (∆1m ,00)P00 − n̄−
res (∆1m ,00)P1m

]
(2)
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∂PM m

∂ t
=

1
h̄ ∑

m′

{
Γ

res
M−1m′ ,M m

[
n̄+

res
(
∆M m ,M−1n′

)
PM−1m′

− n̄−
res

(
∆M m ,M−1m′

)
PM m

]
−Γ

res
M m ,M+1n′

[
n̄+

res
(
∆M+1m′ ,M m

)
×PM m − n̄−

res
(
∆M+1n′ ,M m

)
PM+1m′

]}
(3)

∂PMmax m∗

∂ t
=

1
h̄

Mmax

∑
m=1

Γ
res
Mmax−1m ,Mmax m∗

[
n̄+

res
(
∆Mmax m∗ ,Mmax−1m

)
×PMmax−1m − n̄−

res
(
∆Mmax m∗ ,Mmax−1m

)
PMmax m∗

]
(4)

where Γres
M m ,M ′ m′ = 2π ∑rσ ∈L |τrσ α mm′

MM ′ |2 δ
(
∆M ′ m′ ,M m−

λrσ

)
is the tunneling rate between the metallic lead

and the QD with ∆M m ,M ′m′ ≡ EM m − EM ′m′ is
the energy difference between the two Fock eigen-
states, α mm′

MM ′ ≡ ⟨M ,m| cσ |M ′,m′⟩ are the transi-
tion elements, δ (x − εrσ ) is the Dirac delta function,
n̄+

res(x) =
1

e(x−µch)/kB T+1
is the Fermi-Dirac statistical func-

tion and n̄−
res(x) = 1− n̄+

res(x).

Initializing our system with no electrons in it, P00(t = 0) =
1, we show the dependence of the population numbers close
to equilibrium (steady state), with respect to µch of the lead
in Fig. 2(a) for sample A and Fig. 2(c) for sample B, re-
spectively. We can see the dynamic evolution of the Fock
states to approach thermal equilibrium in Fig. 2(b) for sam-
ple A and in Fig. 2(d) for sample B. Given some initial condi-
tions, there is a clear threshold electrochemical lead potential
(i.e. gate voltage Vg) µch, th for which we have a many-body
stochastic injection in the structure which is related to the en-
ergy level spacing between the lead and the first non-trivial
Fock state of the QD. Using the population numbers and the
corresponding electron number ν(µch) of each Fock state,
we can compute an average:

⟨νT (µch)⟩≡E [νT (µch)]=
Mmax

∑
M=0

mmax

∑
m

νM m(µch,T )×PM m(µch,T )

(5)
where νM m(µch,T ) and PM m(µch,T ) is the number of elec-
trons and occupational number of state |M ,m⟩ in the QD for
an electrochemical potential µch and temperature T , respec-
tively.

We can connect ν(µch) to the actual voltage measure-
ments in our detectors using the transformation functions
⟨V A

out⟩ ≈ −23⟨νT ⟩ mV and ⟨V B
out⟩ ≈ −16⟨νT ⟩ mV, where

V X
out is the experimentally measured voltage on structure X ,

as we show in Fig. 3. Here, we plot the obtained ⟨V X
out⟩

as a function of the applied gate voltage Vg in order to de-
scribe approximately the measured voltage drop. We use
the transformation function Vg = 8 µch (V/eV ) obtained from
QTCAD simulations. Moreover, to account for the effects
of noise in the measurement, we use a Gaussian noise fil-
ter in our calculated output observable. That is we plot:
⟨Ṽ X

out⟩= ⟨V X
out⟩×Gnoise, where Gnoise ∈N (µ,σ2) with µ = 1

and σ = 4%, for both structures. Sweeping over Vg1 and

∆Vg1 voltages in the experiment corresponds to sweeping
over µch and τ in our model.

As a conclusion, we would like to highlight some key
points of this work. Firstly, we showed that the resolution
of our device is sensitive to single-electron injection within
some variance induced by thermal noise due to the finite op-
erating temperature. This shows that both the device and
the incorporation of a metallic floating node with standard
CCD circuitry are efficient in relevant quantum charge sens-
ing applications. Moreover, the agreement between our sim-
ulations from QTCAD and MOAIM with the experimen-
tally measured data further hints at the device behaving as
an SEB and a QD forming under Gate 2. The predictions of
the MOAIM are compatible both with the applied voltages
and the QD geometry in the actual device and it captures
effectively the most significant aspects of the experiment.
These are the measured voltage at electron injection plateaus
(quantized charge, Coulomb blockade), the stretching of the
curves when the coupling between metallic node and the QD
is varied

(
∂ ⟨V X

out⟩/∂τ > 0
)

and the average decrease in the
variation between curve gaps

(
∂ 2⟨V X

out⟩/∂τ2 < 0
)
.

On the other hand, there are some potentially interesting
physics that our model does not capture. Some of these are
the small "S" shaped bumps in the experimental data which
are located where injection happens (more apparent in sam-
ple B) and the voltage-dependent drift in the experimental
curves (more apparent in sample A). Finally, one can in prin-
ciple go beyond the semi-classical rate-equation treatment
presented above to include QD-lead entanglement effects23,
renormalization phenomena at low-temperatures, and spin-
flip scattering producing more subtle quantum behavior such
as the Kondo effect24. We leave all of the aforementioned as
interesting outlooks for future research.
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