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ABSTRACT

Conformal Predictive Systems (CPS) offer a versatile framework for constructing predictive distribu-
tions, allowing for calibrated inference and informative decision-making. However, their applicability
has been limited to scenarios adhering to the Independent and Identically Distributed (IID) model
assumption. This paper extends CPS to accommodate scenarios characterized by covariate shifts. We
therefore propose Weighted CPS (WCPS), akin to Weighted Conformal Prediction (WCP), leveraging
likelihood ratios between training and testing covariate distributions. This extension enables the
construction of nonparametric predictive distributions capable of handling covariate shifts. We
present theoretical underpinnings and conjectures regarding the validity and efficacy of WCPS and
demonstrate its utility through empirical evaluations on both synthetic and real-world datasets. Our
simulation experiments indicate that WCPS are probabilistically calibrated under covariate shift.

Keywords Conformal prediction · Conformal predictive systems · Predictive distributions · Regression · Covariate shift

1 Introduction

Conformal Predictive Systems (CPS) are a relatively recent development in Conformal Prediction (CP) [Vovk et al.,
2019, 2020a]. CPS construct predictive distributions by arranging p-values into a nonparametric probability distribution.
This distribution satisfies a finite-sample property of validity under the Independent and Identically Distributed (IID)
model, i.e., the observations are produced independently from the same probability measure. CPS can be seen as a
generalization of point and conformal regressors since they can easily produce point predictions and prediction intervals
by leveraging the generated predictive distributions. They allow for more informative and trustworthy decision-making
[Vovk et al., 2018].

In alignment with the inception of conformal regressors, several adaptations, and enhancements have emerged in the
literature after the initial work of Vovk et al. [2019]. These include more computationally efficient variants [Vovk et al.,
2020a], adaptive versions [Vovk et al., 2020b, Boström et al., 2021, Johansson et al., 2023, Jonkers et al., 2024a], and
proving the existence of universal consistent CPS [Vovk, 2022].

The exchangeability assumption, which allows for provably valid inference for CP and is a weaker assumption than the
IID assumption [Shafer and Vovk, 2008], and similarly, the IID assumption for CPS, are standard in machine learning.
However, distributional shifts between training and inference data are common in time series, counterfactual inference,
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and machine learning for scientific discovery but violate these assumptions. While a growing amount of literature has
been contributed to extending CP beyond the exchangeability assumptions [Tibshirani et al., 2019, Gibbs and Candes,
2021, Prinster et al., 2022, Yang et al., 2022, Gibbs and Candès, 2023], allowing (conservatively) valid inference under
various types of distributional shifts, no contribution has been made towards extending CPS beyond the IID model.
For example, in treatment effect estimation, this extension could allow calibrated predictive distribution beyond the
randomized trial setting [Jonkers et al., 2024b], as in a nonrandomized setting, the covariate distributions for treated
and control subjects differ from the target population. Therefore, this work extends CPS beyond the IID model by
proposing weighted CPS that constructs valid nonparametric predictive distributions for problems where the covariate
distributions of the training and testing data differ, assuming their likelihood ratio is known or can be estimated.

The remainder of this paper is organized as follows: in Section 2, we will give some background and restate propositions
around CP, CPS, and covariate shifts. Section 3 presents our modification of CPS to deal with covariate shift, followed
by Section 4 and Section 5, which discusses and summarizes the main findings, respectively.

2 Background

Let Z := X × R be the observation space where each observation z = (x, y) ∈ Z consist of an object x ∈ X and its
label y ∈ R. Additionaly, lets z1, ..., zn be the training sequence and zn+1 = (xn+1, yn+1) be the test observation.

2.1 Conformal Prediction

Conformal Prediction (CP) [Vovk et al., 2022] is a model-agnostic and distribution-free framework that allows us to
give an implicit confidence estimate in a prediction by generating prediction sets at a specific significance level α. The
framework provides (conservatively) valid non-asymptotic confidence predictors under the exchangeability assumption.
This exchangeability assumption assumes that the training/calibration data should be exchangeable with the test data.
The prediction sets in CP are formed by comparing nonconformity scores of examples that quantify how unusual a
predicted label is, i.e., these scores measure the disagreement between the prediction and the actual target.

To do so, we define a prediction interval Ĉ(xn+1), for test object xn+1 ∈ X, by calculating following conformity
scores Ry

i , based on conformity measure A, for each y ∈ R:

Ry
i = A(zi, z1:n\i ∪ (xn+1, y)), i = 1, ..., n (1)

and
Ry

n+1 = A((xn+1, y), z1:n). (2)

The label y is then included in prediction interval Ĉ(xn+1) if,

|i = 1, ..., n+ 1 : Ry
i ≥ Ry

n+1|
n+ 1

> α (3)

The procedure above is referred to as full or transductive conformal prediction and is computationally heavy. Therefore,
Papadopoulos et al. [2002] proposed a more applicable variant of full CP, called Inductive or split CP (ICP). ICP is
computationally less demanding and allows the use of CP in conjunction with machine learning algorithms, such as neu-
ral networks and tree-based algorithms. ICP starts by splitting the training sequence (x, y) = {(x1, y1), ..., (Xn, yn)}
into a proper training sequence {(x1, y1), ..., (xm, ym)} and a calibration sequence {(xm+1, ym+1), ..., (xn, yn)}. The
proper training sequence is used to train a regression model. We then generate nonconformity scores Ri for (xi, yi)
with i = m + 1, ..., n from the calibration set, such as for the absolute error, Ri = |yi − ŷi|. These nonconformity
scores are sorted in descending order: R∗

1, ..., R
∗
n−m. For a new test object xn+1, point prediction ŷn+1, and a desired

target coverage of 1− α, ICP outputs the following prediction interval:

[ŷn+1 −R∗
s , ŷn+1 +R∗

s ] (4)

where s = ⌊α(n−m+ 1)⌋.

2.2 Covariate Shift

A covariate shift is a distributional shift where the test object (xn+1, yn+1) is differently distributed, i.e. xn+1 ∼ P̃X ,
than the training data zi = (xi, yi), i = 1, ..., n where xi ∼ PX , thus P̃X ̸= PX . However, the relationship between
inputs and labels remains fixed.

(xi, yi)
iid∼ P = PX × PY |X , i = 1, ..., n

(xn+1, yn+1) ∼ P̃ = P̃X × PY |X
(5)
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2.3 Weighted Conformal Prediction

Tibshirani et al. [2019] was one of the first works to extend conformal prediction beyond the exchangeability assumption
to deal with covariate shifts. Specifically, they propose Weighted Conformal Prediction (WCP) to deal with covariate
shifts where the likelihood ratio between the training PX and test P̃X covariate distributions is known. In WCP, the
empirical distribution of nonconformity scores at the training points gets reweighted, and thus each nonconformity
score Ri gets weighted by a probability pwi (x) proportional to the likelihood ratio w(xi) =

dP̃X(xi)
PX(xi)

:

pwi (x) =
w(xi)∑n

j=1 w(xj) + w(x)
, i = 1, ..., n, (6)

pwn+1(x) =
w(x)∑n

j=1 w(xj) + w(x)
. (7)

This results in an adjusted empirical distribution of nonconformity scores depicted in Table 1. Tibshirani et al. [2019]

Table 1: Empirical distribution of nonconformity scores (δa denotes a point mass at a).
Regular Weighted

1
n+1

∑n
i=1 δRi

+ 1
n+1δ∞

∑n
i=1 p

w
i (x)δRi

+ pwn+1(x)δ∞

showed that the validity of WCP remains even for the computational less-demanding split conformal prediction.
However, this all does not come for free; we are reducing the sample size by weighting nonconformity scores and
consequentially losing some reliability, i.e., variability in empirical coverage, compared to CP without covariate shift
and the same number of samples. Tibshirani et al. [2019] pointed out a popular heuristic from the covariate shift
literature [Gretton et al., 2008, Reddi et al., 2015] to determine the effective sample size n̂ of X1, ..., Xn training points,
and a likelihood ratio w:

n̂ =
[
∑n

i=1 |w(xi)|]2∑n
i=1 |w(xi)|2

=
||w(x1:n)||21
||w(x1:n)||22

(8)

where w(x1:n) = (w(x1), ..., w(xn)). Note that it is possible to learn the likelihood ratio w(xi) =
dP̃X(xi)
PX(xi)

between
training and test covariate distribution, as showed by Tibshirani et al. [2019], if it is reasonably accurate.

2.4 Conformal Predictive Systems

Conformal Predictive Systems (CPS) allow the construction of predictive distributions by extending upon full CP. CPS
produces conformal predictive distributions by arranging p-values into a probability distribution function [Vovk et al.,
2019]. These p-values are created with the help of specific types of conformity measures. Vovk et al. [2019] defines
a CPS as a function that is both a conformal transducer (Definition 1) and a Randomized Predictive System (RPS)
(Definition 2).
Definition 1 (Conformal Transducer, Vovk et al. [2022]). The conformal transducer determined by a conformity
measure A is defined as,

Q(z1, ..., zn, (x, y), τ) :=

n+1∑
i=1

[Ry
i < Ry

n+1]
1

n+ 1
+

n+1∑
i=1

[Ry
i = Ry

n+1]
τ

n+ 1

where (z1, ..., zn) is the training sequence, τ ∈ [0, 1], xn+1 is a test object, and for each label y the corresponding
conformity score Ry

i is defined as

Ry
i := A(z1, ..., zi−1, zi+1, ..., zn, (xn+1, y), zi), i = 1, ..., n

Ry
n+1 := A(z1, ..., zn, (xn+1, y)).

Definition 2 (RPS, Vovk et al. [2019]). A function Q : Zn+1 × [0, 1] → [0, 1] is an RPS if it satisfies the following
requirements:

R1.1 For each training sequence (z1, ..., zn) ∈ Zn and test object x ∈ X, the function Q(z1, ..., zn, (x, y), τ) is
monotonically increasing both in y and τ . Put differently, for each τ ∈ [0, 1], the function

y ∈ R → Q(z1, ..., zn, (x, y), τ)

3
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is monotonically increasing, and for each y ∈ R, the function
τ ∈ [0, 1] → Q(z1, ..., zn, (x, y), τ)

is also monotonically increasing.

R1.2 For each τ, τ ′ ∈ [0, 1] and each test object x ∈ X,
Q(z1, ..., zn, (x, y), τ) > Q(z1, ..., zn, (x, y

′), τ ′), if y > y′

R1.3 For each training sequence (z1, ..., zn) ∈ Zn and test object x ∈ X,
lim

y→−∞
Q(z1, ..., zn, (x, y), 0) = 0

and
lim
y→∞

Q(z1, ..., zn, (x, y), 1) = 1

R2 As a function of random training observations z1 ∼ P, ..., zn ∼ P , and a random number τ ∼ Uniform(0, 1),
all assumed to be independent, the distribution of Q is uniform:

∀α ∈ [0, 1] : P{Q(z1, ..., zn, zn+1, τ) ≤ α} = α

Definition 2 that defines an RPS is in verbatim from Vovk et al. [2019], except requirement R1.2, which is appended to
the definition as we believe this is a requirement which is implicitly assumed by Vovk et al. [2019].

Note that a conformal transducer satisfies R2 by its validity property (see Proposition 2.11 in Vovk et al. [2022]).
Additionally, in Vovk [2022] (Lemma 1), they show that a conformal transducer defined by a monotonic conformity
measure A is also an RPS and thus a CPS if A follows the following three conditions:

• for all n, all training data sequences (z1, ..., zn), and all test objects xn+1,
inf
y
A(z1, ..., zn, (xn+1, y)) = inf An (9)

sup
y

A(z1, ..., zn, (xn+1, y)) = supAn; (10)

• for each n, the infy in Equation 9 is either attained for all (z1, ..., zn) and xn+1, or not attained for any
(z1, ..., zn) and xn+1;

• for each n, the supy in Equation 10 is either attained for all (z1, ..., zn) and xn+1, or not attained for any
(z1, ..., zn) and xn+1.

2.4.1 Split Conformal Predictive Systems

Like CP, CPS has been adapted and made more computationally efficient by building upon ICP, namely Split Conformal
Predictive Systems (SCPS) [Vovk et al., 2020a]. Here, the p-values are created by a split conformity measure that needs
to be isotonic and balanced. A good and standard choice of split conformity measure, according to Vovk et al. [2020a],
is a (normalized) residual. In Appendix A, we present and discuss, similarly as for CPS, definitions and propositions
related to SCPS.

3 Weighted Conformal Predictive System

As WCP extends upon CP, we propose to reweigh the conformity scores with a probability pwi (x) proportional to the
likelihood ratio w(xi) =

dP̃X(xi)
PX(xi)

, to present a weighted conformal transducer where the output is defined by conformity

measure A and likelihood ratio w(x) = dP̃X(x)
PX(x) ,

Q(z1, ..., zn,
dP̃

P
, (x, y), τ) :=

n+1∑
i=1

[Ry
i < Ry

n+1]p
w
i (x) +

n+1∑
i=1

[Ry
i = Ry

n+1]p
w
i (x)τ (11)

where τ is a random number sampled from a uniform distribution between 0 and 1. Note that under the absence of a
covariate shift, the probability weights become equal, pwi (x) = pwn+1 = 1

n+1 . In this scenario, the weighted conformal
transducer (11) will become equivalent to a conformal transducer.

A function is a Weighted Conformal Predictive System (WCPS) if it is both a weighted conformal transducer and an
RPS. To prove that under specific conformity measures A, e.g., monotonic conformity measures, a weighted conformal
transducer is also an RPS, we need to prove Conjecture 1, i.e., that the weighted conformal transducer is probabilistically
calibrated.

4
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Conjecture 1. Assume that

• zi = (xi, yi) ∈ X× R, i = 1, ..., n are produced independently from P = PX × PY |X ;
• zn+1 = (xn+1, yn+1) ∈ X× R, is independently drawn from P̃ = P̃X × PY |X ;
• P̃X is absolutely continuous with respect to PX ;
• random number τ ∼ Uniform(0, 1);
• z1:n, zn+1, and τ to be independent.

Then the distribution of the weighted conformal transducer, defined by (11), is uniform:

∀α ∈ [0, 1] : Pz1:n∼P,zn+1∼P̃ {Q(z1, ..., zn,
dP̃

P
, zn+1, τ) ≤ α} = α (12)

We leave this proof for future work. However, if proven, Conjecture 2 can be easily proven by following the same
procedure as the proof of Lemma 1 in Vovk [2022] using Conjecture 1 instead of the property of validity of a conformal
transducer.
Conjecture 2 (Weighted Version of Lemma 1 in Vovk [2022]). Suppose a monotonic conformity measure A satisfies
the following three conditions:

• for all n, all training data sequences (z1, ..., zn), and all test objects xn+1,

inf
y
A(z1, ..., zn, (xn+1, y)) = inf An (13)

sup
y

A(z1, ..., zn, (xn+1, y)) = supAn; (14)

• for each n, the infy in Equation 13 is either attained for all (z1, ..., zn) and xn+1 or not attained for any
(z1, ..., zn) and xn+1;

• for each n, the supy in Equation 14 is either attained for all (z1, ..., zn) and xn+1 or not attained for any
(z1, ..., zn) and xn+1.

Then, the weighted conformal transducer corresponding to A is an RPS.

In other words, a weighted conformal transducer based on a monotonic conformity measure satisfying the aforemen-
tioned requirements is also an RPS.

3.1 Weighted Split Conformal Predictive Systems

Besides bringing WCPS to CPS, we also propose a more computationally efficient approach to construct calibrated
predictive distribution based on SCP by presenting a weighted split conformal transducer determined by the split
conformity measure A and likelihood ratio w(x),

Q(z1, ..., zn,
dP̃

P
, (x, y), τ) :=

n∑
i=m+1

[Ri < Ry]pwi (x) +
n∑

i=m+1

[Ri = Ry]pwi (x)τ + pwn+1(x)τ (15)

Similarly to WCPS, a function is a Weighted Split Conformal Predictive System (WSCPS) if it is both a split conformal
transducer and a randomized predictive system. Thus, we also need to prove a notion of validity in the form of
calibration in probability, see Conjecture 3. We leave this proof for future work, but we show in Section 4 with
simulation experiments that this empirically seems to be the case.
Conjecture 3. Assume that

• the training sequence z1, ..., zn is split into two parts: the proper training sequence z1, ..., zm and the
calibration sequence zm+1, ..., zn;

• zi = (xi, yi) ∈ Rd × R, i = m+ 1, ..., n are produced independently from P = PX × PY |X ;
• zn+1 = (xn+1, yn+1) ∈ X× R, is independently drawn from P̃ = P̃X × PY |X ;
• P̃X is absolutely continuous with respect to PX ;
• random number τ ∼ Uniform(0, 1);
• zm+1:n, zn+1, and τ to be independent.

Then is the distribution of weighted split conformal transducer, defined by (15), uniform:

∀α ∈ [0, 1] : Pzm+1:n∼P,zn+1∼P̃ {Q(z1, ..., zn,
dP̃

P
, zn+1, τ) ≤ α} = α (16)

5
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Conjecture 4. The weighted split conformal transducer (15) is an RPS if and only if it is based on a balanced isotonic
split conformity measure.

A proof of Conjecture 4 will follow the same procedure as the proof of Proposition 1 and 2 in Vovk et al. [2020a] using
Conjecture 3 instead of the property of validity of a split conformal transducer.

4 Experiments

We evaluate (weighted) CPS under a covariate shift on empirical and synthetic data, and use (weighted) split CPS
approaches for efficiency. For implementing WSCPS, we made an extension of the python package crepes [Boström,
2022], named weighted-crepes. A more detailed description can be found in Appendix B. The Python code to
reproduce the simulation results can be found at https://github.com/predict-idlab/crepes-weighted.

4.1 Data

4.1.1 Empirical Data

We consider the airfoil dataset from the UCI Machine Learning Repository [Dua and Casey, 2017], which contains
N = 1503 observation, where each observation consists of a response value Y (scaled sound pressure level of NASA
airfoils) and a vector of covariates X with dimension 5 (log frequency, angle of attack, chord length, free-stream
velocity, and suction side log displacement thickness). We use the same experimental setting as Tibshirani et al. [2019]
to demonstrate the use of CPS under covariate shifts.

In total, we run 1000 experimental trials. For a single trial, the dataset is split into three sets Dtrain, Dcal, Dtest, which
are IID and respectively contain 25%, 25%, and 50% of the data and have the following roles:

• Dtrain is used as proper training dataset for the CPS, i.e., to train a regression model µ̂.
• Dcal is used as calibration set to create conformity scores, we will use the residual as conformity measure.
• Dtest is used as our test set and has no covariate shift compared to the other sets.

To simulate a covariate shift, Tibshirani et al. [2019] propose to construct a fourth set Dshift that samples with
replacement from Dtest, with probabilities proportional to

w(x) = exp(xTβ), where β = (−1, 0, 0, 0, 1). (17)

We can view w(x) as the likelihood ratio of covariate distributions between the shifted test set Dshift and training set
Dtrain, since Dtrain and Dtest follow the same IID model. Consequentially, w(x) is used to account for the covariate
shift when using a WSCPS.

4.1.2 Synthetic Data

We also evaluate our approach on synthetic data to evaluate the assumed validity property, i.e., calibrated in probability,
of the WSCPS. We use the setting from Kang and Schafer [2007], which is also used in Yang et al. [2022], where each
observation i is generated in the following way:

• (xi1, xi2, xi3, xi4)
T is independently distributed as N(0, I4) where I4 represents the 4× 4 identity matrix.

• yi = 210 + 27.4xi1 + 13.7xi2 + 13.7xi3 + 13.7xi4 + εi, where εi ∼ N(0, 1)
• w(x) = exp(−xi1 + 0.5xi2 − 0.25xi3 − 0.1xi4), which represents the likelihood ratio of the covariate

distributions of the shifted test set Dshift and training set Dtrain.

We also run 1000 experimental trials for the synthetic data experiments.

4.2 Results

To evaluate the proposed WSCPS, we perform three different experiments on the empirical and synthetic data. These
evaluate the coverage of WSCPS-generated prediction intervals, the quality of predictive distributions, and probabilistic
calibration under covariate shift.

First, we evaluate the coverage of 80% prediction intervals generated with CPS under the IID model and covariate shift,
similarly as Tibshirani et al. [2019] for CP. We can construct prediction intervals by extracting specific percentiles from
the conformal predictive distributions, e.g., the 10th and 90th percentile, which are the lower and upper bound of the
80% prediction interval.

6
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Next, we evaluate the performance of the predictive distributions generated by CPS under the IID model and covariate
shift. We consider the Continuous Ranked Probability Score (CRPS) to evaluate this, as it is a proper scoring rule for
probabilistic forecasting [Gneiting and Raftery, 2007, Gneiting et al., 2007]. The CRPS is defined as

CRPS(F, yi) =

∫ ∞

−∞
(F (y)− 1{y≥yi})

2dy (18)

where F is the distribution function F : R → [0, 1], yi is the observed label, and 1 represents the indicator function.
The CRPS most minimal value, 0, is achieved when all probability of the predictive distribution is concentrated in yi.
Otherwise, the CRPS will be positive. Since SCPS and WSCPS are somewhat fuzzy, the CRPS cannot be computed
directly. Therefore, we use the modification of SCPS, proposed by Vovk et al. [2020a], and adapt it to WSCPS, which
ignores the fuzziness represented by the random variable τ ∼ Uniform(0, 1).

Finally, we validate by simulation Conjecture 3 by producing p-values with the (W)SCPS by setting y to the label yn+1

and checking if their histogram follows a uniform distribution. In the probabilistic forecasting literature, this is often
referred to as Probability Integral Transforms (PIT) histograms [Gneiting et al., 2007].

Coverage of intervals under covariate shift The results are depicted in Figure 1. We observe similar results as WCP
[Tibshirani et al., 2019]; in row 1 of Figure 1) we observe undercoverage for SCPS under covariate shift. The WSCPS
brings the average coverage to the desired level under covariate shift for both experiments, while the SCPS constructed
intervals considerably undercover; see row 2 of Figure 1. We also observe that the heuristic for the reduced (effective)
calibration set size due to the weighting operation of WCP, see Equation 8, is also a good heuristic for WSCPS. This is
shown in the third row of Figure 1, where we observe similar dispersion of coverage over experiment trials for WSCPS
and SCPS with a reduced calibration set.

Quality of predictive distribution under covariate shift Figure 2 shows the performance of different SCPS in terms
of CRPS across the different trials. We see a performance difference when a covariate shift is present and not. The
WSCPS consistently (slightly) outperforms the SCPS under covariate shift for both datasets. However, it is difficult
to see in the second row of Figure 2. Therefore, we also perform a post-hoc Friedman-Nemenyi test (see Figure 3).
The SCPS under no shift with a calibration set size equal to the effective sample size of WSCPS has a significantly
better CRPS score than WSCPS. This is expected since under covariate shift, the model µ̂ is trained on training data
differently distributed as the test set, as Tibshirani et al. [2019] also indicated. Ideally, µ̂ should be adjusted for the
covariate shift; however, we leave this for future work.

Probabilistic calibration under covariate shift We validate by simulation Conjecture 3, which states that under
covariate shift, the weighted split conformal transducer produced p-values are distributed uniformly on [0, 1] when
we know the likelihood ratio of the covariate distribution of the training and test set. The results of the simulation
experiments, depicted in Figure 4, indicate that Conjecture 3 is empirically valid and that it breaks when we do not
account for the covariate shift.

5 Conclusion

We have introduced a novel extension to Conformal Predictive Systems (CPS) to address covariate shifts in predictive
modeling. Covariate shifts are a common challenge in real-world machine learning applications. Our proposed approach,
Weighted (Split) Conformal Predictive Systems (W(S)CPS), leverages the likelihood ratio between training and testing
data distributions to construct calibrated predictive distributions.

We outlined the theoretical framework of WCPS and WSCPS, demonstrating their formal definition and properties.
Similarly, as Tibshirani et al. [2019], we built upon the foundation of CPS and extended the concept to handle covariate
shifts effectively. Our theoretical analysis included conjectures regarding the probabilistic calibration of WCPS under
covariate shift, paving the way for future research in this area. Additionally, we successfully validated these conjectures
with simulation experiments.

In future work, we aim to provide rigorous proofs for the conjectures presented in this paper to establish the theoretical
underpinnings of our proposed methods. Additionally, we will evaluate our proposed framework for counterfactual
inference and incorporate it into our recently proposed Conformal Monte-Carlo meta-learners [Jonkers et al., 2024b],
which opens the possibility of giving validity guarantees for predictive distributions of individual treatment effect
beyond the randomized trial setting. Overall, our contributions offer a promising avenue for addressing covariate shifts
in predictive modeling, with potential applications in diverse fields such as healthcare, finance, and climate science.
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(a) Airfoil data
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Figure 1: Empirical coverage of 80% prediction intervals from (W)SCPS, computed using 1000 different random splits
of the airfoil and synthetic dataset.
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Figure 2: Empirical CRPS of (W)SCPS, computed using 1000 different experiment trials for both airfoil and synthetic
datasets.
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Figure 3: Post-hoc Friedman-Nemenyi test for CRPS.
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Figure 4: Distribution of p-values of SCPS under IID model (blue), covariate shift (orange), and WSCPS (green). The
red dashed line represents the uniform distribution the p-values need to follow so that the (W)SCPS is probabilistically
calibrated.
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A Split Conformal Predictive System

For Split CPS (SCPS), the same procedure is followed as a split conformal prediction; the training sequence z1:n is split
into two: a proper training sequence z1:m and calibration sequence zm+1:n. Similarly as an CPS, an SCPS is defined as
a function that is both a split conformal transducer (Definition 4) and an RPS (Definition 2) [Vovk et al., 2020a].

Definition 3 (Inductive (Split) Conformity Measure, Vovk et al. [2022]). A split conformity measure is a measurable
function A : Zm × Z → R that is invariant with respect to permutations of the proper training sequence z1:m.

Definition 4 (Split Conformal Transducer, Vovk et al. [2020a]). The split conformal transducer determined by a split
conformity measure A (see Definition 3) is defined as,

Q(z1, ..., zn, (x, y), τ) :=

n∑
i=m+1

[Ri < Ry]
1

n−m+ 1

+

n∑
i=m+1

[Ri = Ry]
τ

n−m+ 1

+
τ

n−m+ 1

(19)

where conformity scores Ri and Ry are defined by

Ri := A(z1, ..., zm, (xi, yi)), i = m+ 1, ..., n,

Ry := A(z1, ..., zm, (x, y)), y ∈ R.

Vovk et al. [2020a] proofs that any split conformal transducer is an RPS if and only if it is based on a balanced isotonic
split conformity measure (Definition 6).

Definition 5 (Isotonic Split Conformity Measure, Vovk et al. [2020a]). A split conformity measure A is isotonic if, for
all m, z1:m, and x, A(z1, ..., zm, (x, y)) is isotonic in y, i.e.,

y ≤ y′ ⇒ A(z1, ..., zm, (x, y)) ≤ A(z1, ..., zm, (x, y′))

Definition 6 (Balanced Isotonic Split Conformity Measure, Vovk et al. [2020a]). An isotonic split conformity measure
A (see Definition 5) is balanced if, for any m and z1, ..., zm, the set

conv A(z1, ..., zm, (x,R)) := conv {A(z1, ..., zm, (x, y))|y ∈ R}

where conv stands for the convex closure in R.
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B Python Package: crepes-weighted

For the simulation experiments in this work, we implemented the proposed WSCPS and the WCP [Tibshirani et al., 2019]
in crepes-weighted, which is an extension of crepes [Boström, 2022], a Python package that implements conformal
classifiers, regressors, and predictive systems on top of any standard classifier and regressor. crepes-weighted relies
on the same classes and functions as crepes, with the slight modification that for the ConformalRegressor and
ConformalPredictiveSystem classes, the methods fit and predict needs to include the likelihood ratios of each
calibration and test object respectively.

The source code of crepes-weighted is made open-source and can be found at https://github.com/
predict-idlab/crepes-weighted.
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