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In this Letter, we fill in the blanks in the theory of drops under shear flow by unifying analytical
predictions for steady-state behavior proposed by Flumerfelt [R. W. Flumerfelt, J. Colloid Interface
Sci. 76, 330 (1980)] for unconfined drops with interface viscosity with the one of Shapira & Haber
[M. Shapira and S. Haber, Int. J. Multiph. Flow. 16, 305 (1990)] for confined drops without
interface viscosity. Our predictions for both steady-state drop deformation and inclination angle are
broadly valid for situations involving confined/unconfined drops, with/without interface viscosity
and viscosity ratio, thus making our model so general that it can include any of the above conditions.
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Complex fluids, such as blood, emulsions, and immiscible
polymer blends, are familiar to people ordinary-life since
they are implemented in several engineering applications,
ranging from pharmaceutical [1–3] to petroleum [4, 5]
and food industry [6–8]. During their processing, the
micro-constituents of these systems, namely red blood
cells, drops, and single polymers may undergo deforma-
tion, turning into a specific system morphology, up to the
interface rupture. Studying the final (steady-state) shape
of the system is crucial in defining the mechanical proper-
ties and rheology of such systems [9–12]. For this reason,
precise control of the behavior of every single constituent
under specific conditions is a critical aspect for enhanc-
ing and regulating manufacturing procedures. The most
streamlined situation consists in a single drop undergo-
ing a shear flow at low Reynolds numbers, which has
garnered extensive scrutiny through analytical [13–17],
experimental [18–20], and numerical investigations [21–
23]. In particular, the pioneering work of Taylor [14] laid
the foundation for predicting the steady-state behavior
of both drop deformation and inclination angle with re-
spect to the flow direction under these conditions. How-
ever, when the drop is placed in confined geometries, the
latter quantities suffer from significant variations with re-
spect to bulk systems [24–28]. In this scenario, Shapira &
Haber [24] provided an analytical prediction for steady-
state drop deformation as a function of the confinement
degree, which has been experimentally confirmed [25–27].
Their calculations also accounted for the relative distance
between the drop’s center of mass (CM) and the lower
wall. However, no claim is stated on the dependence
of the inclination angle on drop confinement. Besides
confinement effects, it has been observed that the pres-
ence of an interface viscosity represents an additional dis-
criminating factor in determining the steady-state drop
shape [10, 29–33]. Indeed, Flumerfelt [29] extended Tay-
lor’s theory to account for the drop interface viscosity by
providing analytical predictions for both drop deforma-
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FIG. 1. We consider a single drop under simple shear flow,
i.e., confined in a channel with two walls placed at distance H
that move with velocity uw(x, y, z = ±H/2) = (±uwall, 0, 0).
We vary the degree of confinement χ, the drop relative height
ĥ, the Boussinesq (Bq) and capillary (Ca) numbers. For each
parameter combination, we measure the time-evolution of the
drop deformation D(t) and the inclination angle θ(t) (upper-
right panel). The deformation is computed as D(t) = (a(t)−
b(t))/(a(t)+b(t)), where a and b are the drop main axes in the
xz plane. The steady-state value D∞ (solid black line) and θ∞
(solid red line) are then considered. Data in the upper-right
panel correspond to the situation with Ca= 0.33, Bq= 40,
χ = 0.7, and ĥ = 0.5.

tion and inclination angle. In this landscape, a unified
analytical expression predicting the steady-state value of
deformation and inclination angle of a confined drop with
interface viscosity in shear flow is still missing, despite
the necessity coming from practical applications involv-
ing drops and suspensions of droplets.

In this Letter, we present a unified analytical prediction
for the steady-state deformation and inclination angle of
a confined/unconfined drop with/without interface vis-
cosity. At this level of investigation, numerical simula-

ar
X

iv
:2

40
4.

15
01

9v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

4 
A

pr
 2

02
4



2

0 10 20 30 40
0

1

2

3
D
∞
/D

F
(a)(a)(a)

χ = 0.3, ĥ = 0.25
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FIG. 2. For three representative combinations of χ and ĥ with
λ = 1, we show data for the measured steady-state value of
the drop deformation D∞, normalized with the correspond-
ing value of DF, as a function of Bq. Dotted black line re-
ports the corresponding value of the function Ψ. Different
colors/symbols correspond to different values of Ca.

tions are crucial in exploring all possible parameter com-
binations with precise control, which is challenging in
experiments.
Specifically, we perform immersed boundary – lattice
Boltzmann numerical simulations of a single confined
drop under shear flow [34, 35]. Such a hybrid method
has largely been employed to simulate the dynamics of
drops [32, 33, 36, 37] and capsules [12, 38, 39] with
and without interface viscosity. In particular, our in-
house GPU code has already been extensively vali-
dated [33, 36, 40, 41] (see these works for further de-
tails). We consider a drop of radius R immersed in a
fluid with viscosity µ, characterized by a viscosity ratio
between inner and outer fluid viscosity λ, surface tension
σ, and interface viscosity µint. The drop is placed be-
tween two walls in the xy plane, located at z = ±H/2
and separated by a distance H. The drop’s CM is fixed
at a distance h from the lower wall. We apply a shear
rate γ̇ = 2uwall/H by moving the walls with a velocity
uw(x, y, z = ±H/2) = (±uwall, 0, 0) (see Fig. 1). The
Reynolds number Re = ργ̇R2/µ keeps values smaller
than 10−2 to avoid inertial effects. We measure the drop
steady-state deformation D∞ and the inclination angle
θ∞ by varying the capillary number Ca = γ̇µR/σ, the
Boussinesq number Bq = µint/Rµ, the degree of confine-

ment χ = 2R/H, and the relative height of the drop’s CM

ĥ = h/H. In this work, the drop is modeled via a trian-
gular mesh with 1.8 × 104 faces and radius R = 20 δx,
with δx = 1 being the lattice spacing. The fluid do-
main is a three-dimensional rectangular box with sizes
Lx = Ly = 128 δx and Lz = H, which varies to explore
different χ.

To derive a unified analytical prediction for steady-
state drop deformation and inclination angle under shear
flow, we start considering the deformation theory from
Shapira & Haber [24] for confined pure drops, which

reads DSH(λ, ĥ, χ,Ca) = DT(λ,Ca)Ψ(λ, ĥ, χ), where
DT(λ,Ca) = Ca(19λ+16)/(16λ+16) is the Taylor defor-

mation for an unconfined pure drop [13], and Ψ(λ, ĥ, χ) =
1+Cs(ĥ)(χ/2)

3(1+2.5λ)/(1+λ) is a function accounting

for the degree of confinement. The coefficient Cs(ĥ) [42]
represents the shape factor [24]. It is worth noting that
for χ = 0 (unconfined drop), Ψ = 1 and DSH = DT, as
expected.

To extend the result by Shapira & Haber to in-
clude the effect of interface viscosity, we first replace
DT(λ,Ca) with the deformation DF(λ,Ca,Bq) computed
by Flumerfelt for an unconfined drop with interface vis-
cosity [29] (see Eq. (7a) in Appendix), thus obtaining

D(λ, ĥ, χ,Ca,Bq) = DF(λ,Ca,Bq)Ψ(λ, ĥ, χ). Indeed,
the latter must recover Flumerfelt’s result in the case
χ = 0. To verify that Ψ(λ, ĥ, χ) does not depend on the
interface viscosity, we performed simulations with λ = 1
for different combinations of Ca, χ, and ĥ and we re-
port the ratio D∞/DF as a function of Bq in Fig. 2. The

black-dashed line represents Ψ(λ, ĥ, χ). Our analysis con-
firms the assumption that Ψ does not depend on Bq. A
small dependence only shows for high capillary numbers
(Ca = 0.33). As already observed experimentally for
pure drops [25], we notice that Ψ slightly underestimates
the measured values when the confinement is high (panel
(c)).

As a result, we obtain a unified analytical expression for
the steady-state deformation of a confined drop with in-
terface viscosity:

D(λ, ĥ, χ,Ca,Bq) =
19λ+ 16 + 32Bq

(16λ+ 16 + 32Bq)
√
Ca−2 + 19F

20 (λ+ 2Bq)

[
1 + Cs(ĥ)

χ3

8

1 + 2.5λ

1 + λ

]
, (1)

with F reported in Appendix (see Eq. (8)), and the first
factor on the r.h.s being DF (see Eq. (7a) in Appendix).
In the two limit cases of an unconfined drop with interface
viscosity (χ = 0, Bq > 0) and a confined pure drop
(χ > 0, Bq = 0), Eq. (1) exactly recovers Flumerfelt’s
and Shapira & Haber’s predictions, respectively.

To further validate Eq. (1), we compare it with numer-
ical simulation data. Since drop deformation in Eq.(1)

depends on five parameters (λ, ĥ, χ, Ca, Bq), we start by
fixing λ = 1 and varying the remaining parameters. We
do not show data in either the case of an unconfined drop
with interface viscosity or the confined pure drop because
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results have already been widely explored [24, 29].

Fig. 3 reports the measured steady-state deformation D∞
as a function of Bq for different drop relative height ĥ
(columns) and different degrees of confinement χ (rows).
Symbols represent numerical simulation data, while solid
lines show the theoretical prediction given by Eq. (1).
The overall effect of increasing confinement is to enhance
the drop deformation, as already known for the pure
drop [24]; on the other hand, the effect of interface vis-
cosity is to reduce the deformation [29]. The combination
of both ingredients holds the same qualitative scenario.
Numerical results and analytical predictions are in good
agreement, showing a slight difference for the combina-
tion of strong confinement (χ = 0.7), large values of in-
terface viscosity (Bq ≥ 30), and low relative drop height

(ĥ = 0.35). Such differences have also been observed ex-
perimentally for pure drops [25, 43], where experiments
for high values of capillary number (Ca ≈ 0.3) and high
degrees of confinement (χ > 0.5) show that the predic-
tion by Shapira & Haber underestimate the measured
values. Notice that simulation data for the case χ = 0.7
and ĥ = 0.25 does not exist because the distance h would
be smaller than R (see Fig. 1). Further, we remark that
the correction that our model provides on the already ex-
isting theories is sensible: indeed, dashed lines in Fig. 3
refer to Flumerfelt’s prediction (DF) for the unconfined
drop with interface viscosity. As expected, Eq. (1) is close
to DF only for small values of χ. To visually capture the
effect of both interface viscosity and confinement on drop
shape, bottom panels (1-8) of Fig. 3 show snapshots of
the steady-state configurations for selected and relevant
combinations of Ca, ĥ and χ, spanning from the less con-
fined drop with a small interface viscosity (panel (1)) to
the most confined case with the highest considered value
of Bq (panel (8)). The effect of interface viscosity can
be appreciated by comparing left (Bq = 5) and right
(Bq = 40) panels, while the effect of the proximity to
the wall is reflected in a not-symmetric drop shape (pan-
els (3-4)). This asymmetry is mitigated by the effect of
interface viscosity.

We now move our attention to the derivation of an an-
alytical prediction for the drop inclination angle. With
this aim, as a starting point, we consider the model pro-
posed by Maffettone & Minale (MM) [44], where the
shape evolution of an unconfined pure ellipsoidal drop
(χ = 0, Bq = 0) is described in terms of two functions,

f1(λ) = f
(MM)
1 = 40(λ + 1)/[(2λ + 3)(19λ + 16)] and

f2(λ) = f
(MM)
2 = 5/(2λ + 3), which have been chosen

to recover the first-order expansion in Ca of the shape-
evolution equation computed by Rallison [16]. In the
limit of small Ca, the steady-state deformation D and
the inclination angle θ can be computed as D = Caf2/2f1
and tan(2θ) = f1/Ca, respectively [44]. To include the
effect of interface viscosity, we match f1 and f2 with
the first-order expansion computed by Narsimhan [10],
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ĥ = 0.25

(b)(b)(b)
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ĥ
=

0.
5

χ
=

0.
3,

ĥ
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FIG. 3. Top panels: Measured steady-state value of the drop
deformation D∞ as a function of Bq for λ = 1. Symbols show
simulation data, while solid and dotted lines correspond to
Eq. (1) and Flumerfelt’s prediction (Eq. (7a)), respectively.
Different colors/symbols correspond to different values of Ca.
Bottom panels: steady-state shape of droplets undergoing pa-
rameters’ combination that are marked in top panels with in-
dex i = 1, . . . , 8.

which is analogous to Rallison’s calculations but account-

ing for the interface viscosity, thus obtaining f1 = f
(N)
1

and f2 = f
(N)
2 (see Eqs. (6) in Appendix). To also add the

effect of confinement, we follow Minale’s approach [43]

and we extend fi as f1 = f
(N)
1 /ψ1(λ, ĥ, χ,Bq) and f2 =

f
(N)
2 ψ2(λ, ĥ, χ,Bq), with ψi = 1 + Cs(ĥ)(χ/2)

3f̃i(λ,Bq)
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and i = 1, 2. Hence, we first write the first-order expan-
sion in Ca of Eq. (1) as:

D(1) = Ca
19λ+ 16 + 32Bq

16λ+ 16 + 32Bq

[
1 + Cs(ĥ)

χ3

8

1 + 2.5λ

1 + λ

]
; (2)

then, we compute the deformation for small Ca as D =
Caf2/2f1, thus obtaining (O(χ6) have been neglected):

f2
2f1

=
f
(N)
2

2f
(N)
1

ψ1ψ2 =
f
(N)
2

2f
(N)
1

[
1 + Cs(ĥ)

χ3

8
(f̃1 + f̃2)

]
. (3)

By comparing Eq. (3) with Eq. (2), it is straightfor-
ward to see that f̃1 + f̃2 = (1 + 2.5λ)/(1 + λ). This
implies that, once f̃2 is determined, f̃1 is fixed. Fi-
nally, we extend Minale’s results by assuming the most
straightforward dependence of f̃i on Bq, i.e., f̃2(λ,Bq) =
−(10−9λ+k1Bq)/(12+λ+k2Bq), with k1 and k2 being
two parameters to be fitted with experimental or numer-
ical results [43]. By fitting the numerical values for drop
deformation and inclination angle, we found k1 = −10
and k2 = 7/2, leading to the final form of f̃i:

f̃1(λ,Bq) =
22 + 32λ− 13

2 λ
2 − 1

4Bq(26 + 5λ)

12 + 13λ+ λ2 + 7
2Bq(1 + λ)

, (4a)

f̃2(λ,Bq) = −10− 9λ− 10Bq

12 + λ+ 7
2Bq

. (4b)

We can now compute the inclination angle as:

tan 2θ =
[40 (λ+ 1) + 80Bq] (ψ1Ca)

−1

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)
.

(5)

When Bq = 0, Minale’s results are retrieved.
In Fig. 4, we compare the prediction from Eq. (5) with
numerical simulation data. Unlike the deformation, the
effect of the confinement is not pronounced, as emerged
from the marginal difference between Eq. (5) (solid line)
and Flumerfelt’s results (Eq. (7b), dashed lines). How-
ever, it is interesting to notice that a strong non-linear
behavior emerges for large values of Ca, regardless of the
degree of confinement: for a given Ca (e.g., Ca = 0.33),
we observe a non-monotonic behavior of θ as Bq in-
creases. However, this result is not surprising since we
derived Eq. (5) in the limit of small Ca. Furthermore,
this behavior is qualitatively in agreement with numerical
simulations of other works concerning unconfined drops
with interface viscosity [33] and unconfined capsules with
membrane viscosity [45].
All results hitherto discussed refer to the case of λ = 1.
To prove the robustness of the unified analytical expres-
sions for both D (Eq. (1)) and θ (Eq. (5)), we also explore
a situation with λ = 5.2, which is usually encountered
in experiments [26, 43]. In Fig. 5, D∞ (panel (a)) and
θ∞ (panel (b)) are reported as functions of Bq for the

most confined simulated case (i.e., χ = 0.7 and ĥ = 0.5).
While D∞ shows a perfect agreement between simulation
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FIG. 4. Steady-state value of the drop inclination angle θ∞
as a function of Bq for λ = 1. Symbols show simulation
data, while solid and dotted lines correspond to Eq. (5) and
Flumerfelt’s prediction (Eq. (7b)), respectively. Different col-
ors/symbols correspond to different values of Ca.
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data and Eq. (1), θ∞ behaves as in Fig. 4, with a good
agreement with Eq. (5) for small values of Ca and a mis-
alignment for Ca = 0.33. This result further confirms the
validity of our analytical predictions.

In conclusion, in this Letter, we fill the literature blanks
concerning the estimation of steady-state behavior of
drop under simple shear flow by presenting a unified an-
alytical prediction describing the deformation (Eq. (1))
and inclination angle ((5)) of a confined/unconfined drop
with/without interface viscosity. Since there are no avail-
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able experiments for this system, in order to validate the
quality and robustness of the proposed predictions, we
performed immersed boundary-lattice Boltzmann simu-
lations, which have already been validated in a series
of previous works [32, 33, 36, 37]. We also compared
Eqs. (1) and (5) with the already known analytical pre-
dictions computed by Flumerfelt [29] for the unconfined
drop with interface viscosity, showing that the account-
ing of confinement effects in Flumerfelt’s prediction is
fundamental to quantitatively describe the correct defor-
mation of a drop under these conditions. The robustness
of our unified analytical predictions is strengthened by its
application to different values of the drop viscosity ratio.
We hope this result can open a new route to experiments
of confined/unconfined drops with interface viscosity.
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APPENDIX

Functions f
(N)
1 and f

(N)
2

To include the interface viscosity, one can match the val-
ues of f1,2 with the first order expansion of Eq.(3.1) in
Ref. [10], obtaining:

f
(N)
1 =

40 (λ+ 1) + 80Bq

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)
,

(6a)

f
(N)
2 = 5

19λ+ 16 + 32Bq

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)
.

(6b)

Flumerfelt’s prediction

The steady-state deformation DF and inclination angle
θF predicted by Flumerfelt [29] are:

DF(λ,Ca,Bq) =

=
19λ+ 16 + 32Bq

(16λ+ 16 + 32Bq)
√
Ca−2 + 19F

20 (λ+ 2Bq)
, (7a)

θF(λ,Ca,Bq) =

=
π

4
− 1

2
arctan

(
19F

20
(λ+ 2Bq)Ca

)
, (7b)

with

F = 1− 9λ+ 18Bq− 2

8(λ+ 2Bq)2
. (8)
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[38] T. Krüger, F. Varnik, and D. Raabe, Efficient and ac-
curate simulations of deformable particles immersed in a
fluid using a combined immersed boundary lattice Boltz-
mann finite element method, Computers & Mathematics
with Applications 61, 3485 (2011).
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