
Quantum study of the CH+
3 photodissociation in full dimension Neural Networks potential energy surfaces

Pablo del Mazo-Sevillano,1 Alfredo Aguado,1 Javier R. Goicoechea,2 and Octavio Roncero2, a)
1)Unidad Asociada UAM-IFF-CSIC, Departamento de Qúımica F́ısica Aplicada,
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CH+
3 , a cornerstone intermediate in interstellar chemistry, has recently been detected for the first time by the

James Webb Space Telescope. The photodissociation of this ion is studied here. Accurate explicitly correlated
multi-reference configuration interaction ab initio calculations are done, and full dimensional potential energy
surfaces are developed for the three lower electronic states, with a fundamental invariant neural network
method. The photodissociation cross section is calculated using a full dimensional quantum wave packet
method, in heliocentric Radau coordinates. The wave packet is represented in angular and radial grids allowing
to reduce the number of points physically accessible, requiring to push up the spurious states appearing
when evaluating the angular kinetic terms, through a projection technique. The photodissociation spectra,
when employed in astrochemical models to simulate the conditions of the Orion Bar, results in a lesser
destruction of CH+

3 compared to that obtained when utilizing the recommended values in the kinetic database
for astrochemistry (KIDA).

I. INTRODUCTION

The long-sought-after CH+
3 cation has been recently

detected for the first time in a protoplanetary disk (d203-
506) illuminated by the strong far ultraviolet (FUV) radi-
ation field from nearby massive stars in Orion’s Trapez-
ium cluster1. This detection was only possible in the
infrared, through vibrational spectroscopy, at ≈ 1400
cm−1, within the PDRs4All program using the James
Webb Space Telescope (JWST). This highly symmetric
cation, with a planar D3h configuration, has no per-
manent dipole moment and thus cannot be observed
through microwave rotational spectroscopy. On the con-
trary, the rotational spectra of its deuterated isotopo-
logues, such as CH2D

+ or CHD+
2 , has been experimen-

tally characterized2–4, but only a tentative detection of
CH2D

+ has been reported so far5.
Hydrides are the first molecules to form in the inter-

stellar medium (ISM) and provide crucial information on
the physical conditions, such as the cosmic-ray ioniza-
tion rate and H2/H abundance ratios6. The precise de-
termination of their abundances is key to the following
chemistry in the ISM. Carbon hydrides are of paramount
importance because the allotropy of carbon triggers the
molecular complexity in space: from organic and pre-
biotic molecules, to polycyclic aromatic hydrocarbons
(PAH’s), amorphous carbon and many different miner-
als. CH+

n cations are particularly important because ion-
molecule reactions are typically faster and the low ion-
ization energy of carbon (11.3 eV), below that of hydro-
gen (13.6 eV), produces high C+/C abundance ratios in
molecular gas irradiated by FUV (6 eV < E < 13.6 eV).

a)Electronic mail: octavio.roncero@csic.es

Carbon cations present very anomalous properties, giv-
ing rise to the development of the field of the carbocation
chemistry7,8, where the spectroscopic characterization of
these species, pioneered by Takeshi Oka9–12, plays an im-
portant role not only in astrochemistry but also in com-
bustion chemistry.

The smallest CH+ carbocation is formed in C + H+
3 or

C+ + H2 reactions. The reaction C+ + H2 is endother-
mic by ≈ 0.5 eV13, but it becomes exothermic for vibra-
tionally excited H2(v > 1)14. It is known that enhanced
abundances of FUV-pumped vibrationally excited H2 sig-
nificantly increase the reactivity of H2 in FUV-irradiated
molecular clouds15–17, so-called photodissociation regions
(PDRs). Indeed, observations of PDRs reveal the pres-
ence of vibrationally excited H2 up to v = 12 in several
interstellar PDR’s18,19. The use of quantum state-to-
state rate constants in chemical formation and excitation
models applied to the formation of CH+ describes very
well the observed rotational emission lines detected in
PDRs20,21.

Once CH+ is formed, the successive addition of hy-
drogen atoms occurs via reactive collisions with H2, in
exothermic or nearly thermoneutral reactions of the type
H2 + CH+

n → H + CH+
n+1. This sequence stops at CH

+
3 ,

because the reaction H2 + CH+
3 is very slow and no CH+

4

products are observed in several experiments22–24. The
reaction to form the floppy methane cation25,26, CH+

4 , is
endothermic and is not expected to be formed in this hy-
drogenation sequence. Instead, CH+

4 is probably formed
from neutral CH4 by photoionization or electron impact,
and this cation can react again with H2 to form CH+

5
27,

a very floppy cation whose infrared spectra have been
widely studied11,28,29.

The relative stability of CH+
3 with H2 makes this cation

play an important role in the formation of more com-
plex molecules30–32. The deuteration of CH+

3 is relatively
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fast22–24 and its deuterated isotopologues are considered
to be determinant in the gas phase formation of complex
deuterated molecules, whose observed abundance is sev-
eral orders of magnitude higher than expected based on
the cosmic D/H ratio. Moreover, since the rovibrational
spectra of CH+

3 can be observed by JWST, CH+
3 is ex-

pected to be a useful diagnostic to determine the physical
conditions of FUV-irradiated environments (from clouds
to protoplanetary disks1,33).
The vibrational spectroscopy of CH+

3 has been the sub-
ject of many theoretical34–37 and experimental9,10,24,38

studies. The photoionization of the neutral methyl radi-
cal has also been studied using several techniques37,39–46,
which also gives information of the rovibrational struc-
ture of the CH+

3 cation.
The photodissociation cross sections of CH+, CH+

2 and
CH+

4 have been reported previously47. However, there is
only one study on the photodissociation of CH+

3 carried
out nearly 50 years ago48, in which vertical excitation was
considered from the planar D3h equilibrium geometry on
the ground electronic state. It was concluded that the os-
cillator strength leading to dissociation from the ground
electronic state is very low. It is worth mentioning that,
in the kinetic data base for astrochemistry (KIDA), the
recommended rate constant for the photodissociation of
CH+

3 under the local mean interstellar radiation field is
2 · 10−9 s−1 (see also Ref.49). The value of 2 · 10−9 s−1 is
rather high according to the previous study48, and it is
therefore important to determine the photodissociation
rate of CH+

3 more accurately.
The objective of this work is to study the photodisso-

ciation cross-section of CH+
3 using quantum full dimen-

sion dynamics to properly assess the destruction of this
cation under different FUV radiation fields. The work is
distributted as follows. In section II the ab initio calcula-
tions of the first electronic states of CH+

3 are described.
The neural network fitting of the first three electronic
states are described in section III. The vibrational bound
states of the ground electronic states are described in sec-
tion IV. The transition dipole moments and their fit are
described in section V. The calculation of the photodis-
sociation cross section are described in section VI, and
their use in astrochemical models in section VII. Finally,
section VIII is devoted to extract some conclusions.

II. ELECTRONIC STATES

The three lower electronic states of CH+
3 are calcu-

lated using the explicitly correlated internally contracted
multi-reference configuration interaction (ic-MRCI-F12)
method50,51, with the MOLPRO suite of programs52 and
the cc-pCVTZ-F12 electronic basis set53. The molecular
orbitals are optimized using the state-averaged complete
active space self-consistent field (SA-CASSCF) method,
with 7 active orbitals, for the three lower singlet elec-
tronic states. Hereafter, the origin of energy is set at the
planarD3h equilibrium configuration of the ground state,

FIG. 1: Energy diagram of the lower electronic states of
CH+

3 obtained with the ic-MRCI-F12 method. The

double degenerate CH+
2 (X

2Πu) +H, split in the bent X̃

and Ã states, produced by a strong Renner-Teller
interaction. Black, blue and red lines refer to the
ground, first and second excited electronic states,

respectively

with a C–H distance of 1.0892 Å, in very good agreement
with previous calculations34,35,48,54. An energy diagram
of the three first electronic states is shown in Fig. 1.

The ground electronic state correlates adiabatically
with the CH+

2 (X̃
2A1) + H and CH+(X1Σ+) + H2

asymptotes, which are both located at ≈ 6 eV over the
equilibrium configuration. The ground and first excited
electronic states tend to the linear CH+

2 (X
2Πu) + H frag-

ments, presenting a Renner-Teller interaction. The path
towards the formation of CH+ + H2 can be seen as a
subsequent step after the formation of CH+

2 + H, where
the H approaches one of the CH+

2 ’s hydrogens, which is
in an almost linear configuration. The C–H bond breaks
while the H–H forms towards the CH++H2 geometry.
Due to the proximity of these geometries to the CH+

2 lin-
ear configuration, the process occurs close to a conical
intersection (CI). The first adiabatic excited electronic
states does not lead to CH+ in the ground X1Σ+ state
but in the excited A1Π, a degenerate state towards which
the second excited state also correlates.

Considering a vertical excitation, the first electronic
state corresponds to the double degenerate 1E′′, at the
highly symmetric geometry of the ground equilibrium ge-
ometry, as reported previously48,54. The next excited
states in the Franck-Condon region, the 1A′′

2 and 1E′,
are ≈ 13 eV higher, close to the atomic hydrogen ioniza-
tion and are not expected to contribute significantly.

The cuts of the potential along the normal coordinates
of the ground state are shown in Fig. 2. These normal
modes are in good agreement with previously reported
ones48,54 and correspond to the singly degenerate states,
ν1, the symmetric stretching, and ν2, the umbrella vibra-
tion, and two degenerate vibrations, ν3 and ν4. The elon-
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FIG. 2: Mono dimensional cuts along the normal
modes, Qi, of the CH+

3 (at the planar D3h equilibrium
geometry of the ground electronic state) for the lower
three electronic states calculated at ic-MRCI-F12 level
of theory. In each panel, the boxed inset corresponds to
the transition electric dipole moment for the X̃ − Ã and

X̃ − B̃ transition (in atomic units) for the non-zero
Cartesian components (at equilibrium the molecule is in

the x-y plane). For normal modes 2-6 only the z
component is non-zero and red and blue lines

correspond to the X̃ − Ã and X̃ − B̃ transition dipole
moment. For normal mode 1, the x, y components of
dXA and dXB are represented by red, orange, blue and
green lines, respectively . The other inset is a graphical
representation of each normal mode. The energy of each
normal mode is also indicated, in inverse centimeters.

gation of the normal coordinates for ν2 and ν1 remains in
the C3v and D3h symmetry, respectively, and the two
excited electronic states remain degenerate. This degen-
eracy is broken along the degenerate vibrations, ν3 and
ν4, showing the typical CI behavior of the Jahn-Teller
effect, with the seam at the configuration of highest sym-
metry.

III. NEURAL NETWORK POTENTIAL
ENERGY SUFACES FITTING

New analytical full dimensional potential energy sur-
faces (PESs) have been developed to describe the three
lower adiabatic electronic states of CH+

3 . A fundamental
invariant neural network (FI–NN)55 takes into account
the exact permutation symmetry of the three hydrogen
atoms. Three FI–NN are trained –one for each of the
three adiabatic energies. While a single FI–NN could
handle the calculation of the three electronic states, this
setup provides more flexibility in order to make use of the
most accurate PESs for different tasks: vibrational state
calculation in the ground electronic state and quantum
dynamics in the excited states. Moreover, the data from
the third excited state tends to be noisier due to inter-
actions with higher excited states, what could interfere
with the training process.
In all cases, the multilayer perceptron (MLP) archi-

tecture is used, which involves two hidden layers with
50 neurons each. Hyperbolic tangents are used as acti-
vations between the hidden layers. The input features
are represented by fundamental invariants (FI) of the
pij = exp(−α · dij) functions, with α = 0.5 a−1

0 and dij
the interatomic distance between atoms i and j. There
is a total of nine FI for the A3B case, which expressions
are provided elsewhere56. The mathematical expression
of the MLPs is the standard one, where the values of the
ith neuron in the (l+1) layer are computed through those
from the previous layer and a trainable set of weights (w)
and bias (b). σ represents the activation function —the
hyperbolic tangent or linear function.

H
(l+1)
i = σ

(
w

(l)
ij H

(l)
j + b

(l)
i

)
(1)

The MLPs are trained on a set of nearly 25000 en-
ergies computed at a ic-MRCI-F12/cc-pCVTZ-F12 level
of theory with MOLPRO 2012. An extra set of about
5000 energies is left as test set. A total of ten models
are trained, but only the one which better performs on
the test set is used. Building this energy dataset is per-
formed in an iterative process, which starts with a rather
small set of geometries computed from normal mode dis-
placements of equilibrium geometries and then includes
data from minimum energy paths or quantum and clas-
sical dynamics on intermediate fits of the system. These
fits are done up to 15 eV and 25 eV for the two first and
third electronic states, respectively.
The training process is similar to those previously de-

scribed for H+
4 and OH + H2CO systems57,58 and is per-

formed with an in-house Python code based on PyTorch
library59. An L-BFGS optimizer60 is used and the loss
function is the Mean Square Error (MSE) error of the
predicted energies compared with the ic-MRCI-F12/cc-
pCVTZ-F12 energies:

L =
1

N

N∑
i=1

(Ei − E∗
i )

2
(2)
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E < /eV State X̃ State Ã State B̃
1.0 26.2 (461) – –
5.0 46.5 (5960) 43.8 (391) –
10.0 131.3 (17657) 92.7 (13428) 135.5 (7528)
15.0 355.8 (24998) 91.4 (24803) 150.2 (23230)

TABLE I: RMSE for the PES of the three electronic
states. The errors are presented in meV. In parenthesis

the number of geometries in the energy range.

FIG. 3: Contour plot of the PES for the Ã and B̃
electronic states in terms of the heliocentric Radau
coordinates r1 and r2. All the other coordinates are
relaxed to the minimum energy configuration. The

energies are represented in eV.

where N is the total amount of training data and Ei is
the ith energy. The asterisk indicates ab initio energy.

The Root Mean Square Error (RMSE) of the three
PES is presented in table I for several energy ranges.
The errors are shown in meV units. The PES for the X̃
state remains accurate up to electronic energies of 6–7 eV,
enough to compute highly accurate vibrational states.
The PESs for the Ã and B̃ states remain accurate up to
higher electronic energies, although the latter presents
larger errors, in part due to the difficulty to converge the
ab initio calculations for this state, which interacts with
higher excited electronic states.

In the following we analyse in more detail the Ã and B̃
states. Fig. 3 presents the relaxed PES over two radial co-
ordinates r1 and r2, using heliocentric Radau coordinates
as defined below. For the Ã state there is a minimum,
corresponding to a CH+

3 (21A). The minimum in the B̃
state is in the Franck–Condon region and corresponds to
CH+

3 (1E′′).

The path to the CH+
2 + H product occurs in the Ã

state after surpassing a low energy transition state less
than 1 eV above the minimum. On the other hand, the
path to the CH+ + H2 is highly endothermic, ≈ 4 eV
over the minimum, with no barrier. The path towards
the formation of CH+

2 + H can be merely explain as a
C–H elongation —related to the elongation of the ri co-
ordinate in Fig 3. The path towards CH+ + H2 is not
so direct, and proceeds via elongation of one of the C–
H distances getting close to a CH+

2 configuration. After

C

O

CM

cm3

r1

r2

r3

zbf
H

H

H

FIG. 4: Graphical description of the heliocentric Radau
coordinates used in this work. CM and cm3 are the

center-of-mass of CH+
3 and the H3 subunit, respectively.

The origin O is defined as in Ref.61 to eliminate kinetic
crossing terms in the kinetic energy operator.

this, the second ri distance elongates breaking a C–H
bond while forming the H2 molecule. In both cases the
minimum energy paths get close to an almost linear con-
figuration of the CH+

2 —a 2Πu state, degenerate with

the ground electronic state— what implies that X̃ and Ã
electronic states get close in energy as the photodissoci-
ation process occurs.
Regarding the reactions on the B̃ state we find that

both reactions are highly endothermic. The Franck–
Condon region becomes the absolute minimum with no
other product close in energy as the CH+

2 + H in the A
electronic state. Hence, we do not expect reactivity in
this state to be important up to photon energies ≈ 9 eV
and ≈ 10 eV for CH+ + H2 and CH+

2 + H respectively.

For this reason, we expect the CH+
3 in the B̃ electronic

state to remain mostly bounded for the photon energies
of interest in this work.

IV. BOUND VIBRATIONAL STATES

The bound state calculations are done in two steps:
first, the eigenvalues are calculated using an iterative
non-orthogonal Lanczos method62, and second, a con-
jugate gradient method63,64 is used to obtain the eigen-
vectors. These procedures are implemented in a parallel
MPI form using heliocentric Radau coordinates35,61,65,
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illustrated in Fig. 4. Three vectors ri are defined, cor-
responding to the distance of each hydrogen to a cen-
ter O, situated along the line joining the centers-of-mass
of CH+

3 and H3. This center O is chosen to make zero
the kinetic coupling terms among the vectors ri, and the
Hamiltonian thus built is formally identical to that of Ja-
cobi coordinates61,65. A body-fixed frame is chosen, in
which r3 lies parallel to the z-axis, and r1 is in the x− z
body-fixed plane. Thus the coordinates are separated as
three external Euler angles, α, β, γ, defining the body-
fixed frame, and six internal coordinates ri (i = 1, 2, 3),
θj (j = 1, 2) and ϕ. The wave functions, for a given total
angular momentum J , are described as

ΨJM =

√
2J + 1

8π2
DJ∗

MΩ(α, β, γ)
ΦJM

Ω (r1, r2, r3, θ1, θ2, ϕ)

r1r2r3
,

(3)

where DJ∗
MΩ are Wigner rotation matrices66, with M and

Ω being the projections of the total angular momentum
J on the space-fixed and body-fixed frames respectively.

The internal coordinates are described in grids. Sinc
Discrete Variable Representation (DVR)67 is used to de-
scribe the radial ri coordinates, non-orthogonal Gauss-
Legendre DVR68,69 to describe θi, and equispaced points
in the interval [0, 2π] to describe ϕ. The evaluation of
each kinetic term is done by transforming to finite basis
representation (FBR), where it is analytical. This trans-
formation is done sequentially, one internal coordinate by
one, to save computation time as it is done in other ap-
proaches representing the wave function in the FBR and
then transforming sequentially to the DVR to evaluate
the potential70,71.
Representing the wave functions in grids for internal

coordinates has the advantage of saving many points,
the so called L-shaped grids72, thus reducing consider-
ably the memory and time requirements of the calcula-
tions. However, the numerical sequential method done
to transform from DVR to FBR, usually introduces spu-
rious states when evaluating the rotational kinetic terms
using finite DVR grid points. To avoid this problem, we
have developed a projection method to move the spurious
states up, out of the physical energy interval of interest,
as described in the appendix.

The bound state calculations are done using a grid
of 20 DVR points in the radial coordinates, ri, in the
interval [0.5, 1.6793] Å, 30 Gauss-Legendre points for θi,
and 61 points in ϕ. About 104 Lanczos iterations were
done to converge the eigenvalues.

Fig. 5 shows the cuts of the density probability as-
sociated to some bound states; those corresponding to
the ground and first excitation on each mode (ν1, ν2, ν3,
ν4) for total angular momentum J = 0. Their energies
are tabulated in Table. II. The heliocentric Radau co-
ordinates are well adapted to describe the permutation
symmetry of the hydrogen atoms, but in this first imple-
mentation no symmetry–adapted basis functions or grids
are used. For the degenerate modes (ν3 and ν4) only one
case is shown.
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FIG. 5: Cuts of the density probabilities associated to
different bound states of CH+

3 (X̃), denoted by the the
vibrational modes (ν1, ν2, ν3, ν4). These bound states
correspond to the the energy levels 1, 2, 3, 7 and 8.

TABLE II: Lowest excitation energies (in cm−1) for the
vibrational modes of CH+

3 , obtained as described in the
text for J = 0. The zero-point energy of the ground

rovibrational state is 6776.898 cm−1.

vibrational mode This work Ref.34 Ref.37

ν1 2947.82 2949.8 2943.43
ν2 1424.53 1432.5 1405.72
ν3 3113.50 3091.3 3109.06
ν4 1393.91 1399.3 1394.98

The lowest eigenvalues for each vibrational mode cor-
responding to the bound states in the ground electronic
state are listed in Table II, together with other theoreti-
cal values for comparison. The values of Ref.37 were ob-
tained to simulate the rovibrational spectra observed in
the d203-506 protoplanetary disk and experimental data.
The present results are within 5 cm−1 accurate with re-
spect to those previously reported34,35,37, except for the
ν2 mode, which deviates ≈ 20 cm−1. Previous calcu-
lations are based on local fits for the potential, thus de-
scribing only the bound states. In this work, however, the
potential energy surfaces are global, i.e., they are built
to describe the bound states and the fragmentation re-
gions towards the CH+ + H2 and the CH+

2 + H products.
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For these reasons, we consider this new PES as accurate
enough to describe the photodissociation dynamics, with
nearly spectroscopic accuracy.

V. TRANSITION DIPOLE MOMENTS

The transition dipole moments required for the X̃ − Ã
and X̃−B̃ electronic excitation are calculated with MOL-
PRO programs52, and to avoid the randomness of the
phase of adiabatic eigenvectors, a biorthogonal transfor-
mation is used between consecutive points along lines.
The Cartesian projections of the transition dipole mo-
ments are also shown, in the boxed inset in Fig. 2, for
the X̃ − Ã and X̃ − B̃ excitations, with the molecule
being in the x − z plane for the equilibrium geometry.
In all cases, the transition dipole moments are zero at
Qi = 0, corresponding to the equilibrium geometry. Only
ν2 corresponds to a motion out of the plane of the planar
D3h geometry, and it is the only one to have non zero
components in x, y and z axis. For the rest of the nor-
mal modes, only the component y, perpendicular to the
plane of the molecule, is non-zero. This transition dipole
moment corresponds to a transition between two of the
bonding orbitals of the C+ atom (mostly corresponding
to a sp2 hybridization) to an unoccupied py orbital, out

of the plane54. As a consequence of the CI of the Ã and B̃
excited states in D3h geometries73, there is a sign change
of the real electronic part of the wave function under a
2π rotation in the vibrational coordinates, a special case
of Berry’s geometrical phase.74–76

The three components of both transition dipole mo-
ments have been fitted to an analytical function, based
on mono–dimensional grids for each internal heliocentric
Radau coordinates. The fits are localized in the CH+

3

(X̃) well, switching to zero outside this region. There is
no general method for an accurate representation of the
dipole moment for polyatomic molecules, using an ap-
propriate functional form. Because the dipole moment is
a vector property, its fit is more complicated than that
for the energies73. One alternative is to use a diabatic
representation where the dipole moment is diagonal. In
this work we are interested in fitting the adiabatic transi-
tion dipole moments between the X̃1A′

1 ground electronic

state and the excited Ã and B̃ (1E′′) states.
The phase of the adiabatic transition dipole moment

µij = ⟨ϕi|µ̂|ϕj⟩ is arbitrary, because it depends on the
phase of the electronic wavefunctions ϕi and ϕj . In ad-
dition, the adiabatic representation becomes inadequate
near CIs73, because real-valued adiabatic electronic wave-
function changes sign when transported around a CI
(geometric or Berry phase)75,76. In order to make the
transition dipole moment continuous, we have calculated
the overlap of each electronic state with the same elec-
tronic state at a reference geometry –the equilibrium ge-
ometry of the ground 1A′

1 electronic state– using the
biorthogonalization method as programmed in MOLPRO
program52. The signs of ϕi and ϕj are corrected in or-

der to make the overlap positive, and then corrects the
phase of µij . Therefore, in the adiabatic approximation
we have not taken into account this change of sign of
real electronic wave functions that produces a change of
sign of the transition dipole moment when the conical
intersection is surrounded in nuclear configuration space.
Once corrected the sign, in order to fit the transition

dipole moment, we have expanded each component of the
dipole moment as a function of symmetry coordinates of
the D3h point group, defined in terms of the Heliocentric
Radau coordinates defined above as

S1 = ∆r1 +∆r2 +∆r3

S2 = ∆r1 −∆r2

S3 = 2∆r3 −∆r1 −∆r2

S4 = ∆θ1 +∆θ2

S5 = ∆θ1 −∆θ2

being ∆ri = ri − re (i = 1, 2, 3) and ∆θj = θj − θe (j =
1, 2) the variation with respect to equilibrium values,
re = 1.089 Å and θe = 2π/3 and where S6 is selected
as the out-of-plane variation ∆ϕ = ϕ − ϕe of the Radau
angle with respect to the equilibrium value, ϕe = π.

As shown in Fig. 2, the ν1 stretching mode corresponds
to the variation of the S1 symmetry coordinate, that
belongs to the A′

1 irrep of the D3h point group. As a
consequence, the only non-zero component is the out-
of-plane y component, although in this case it is practi-
cally zero, and can be discarded. The ν2 bending mode
corresponds to the variation of the out-of-plane coordi-
nate. This mode belongs to the A′′

2 irrep of the D3h point
group. In this case the non-zero components are the z
component for the X̃−Ã transition and the x component
for the X̃ − B̃ transition. The other modes are degener-
ated, and corresponds to the E′ irrep. ν3 corresponds to
stretching modes, which can be described by S2 and S3,
while ν4 correspond to bending modes that are described
by S4 and S5. In this cases the non-zero component of
the transition dipole is the y component.

Since the Sα (α = 2, ..., 5 ) coordinates do not take into
account the symmetry properties of the dipole moment
with respect to the exchange of two hydrogens, they are
antisymmetrized as

S̃α = (−1)s 3
√
|Sα · P13Sα · P23Sα|

where Pij is the permutation operator for atoms i and
j and where s is a phase to take into account the sym-
metry of each component with respect to permutation of
two hydrogens. When the dipole is antisymmetric with
respect to the permutation, (−1)s is obtained as the sign
of the maximum value of Sα, P13Sα or P23Sα. Finally,
each Cartesian component of the transition dipole mo-
ment for the transition from X̃1A′

1 to (Ã, B̃)1E′′ states

is expanded as a series in this symmetry coordinates S̃α

µ
(x,y,z)
ij = µe

ij +

6∑
α

aαS̃α

6
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FIG. 6: Transition dipole moment µy as a function of
the S2 = ∆r1 −∆r2 and S4 = ∆θ1 +∆θ2 symmetry
coordinates. The vertical dashed lines defines the

Frank-Condon region

with µe
ij = 0 in this case and where aα are also developed

as a serie

aα =

(
Nα∑
k

aα,kS̃
k
α

)
· e−bαS̃2

α

where Nα is the degree of the polynomial, and where the
expansion has been multiplied by a Gaussian function
in order to avoid extremely large values of the dipole
moment in regions very far from the equilibrium position.

In Fig. 6 we show the variation of the transition dipole
moment when the symmetry coordinates S2 = ∆r1−∆r2
and S4 = ∆θ1+∆θ2 are varied simultaneously, following
a sinusoidal movement.

VI. PHOTODISSOCIATION CROSS
SECTION

The photodissociation cross section is calculated for
each transition with a wave packet method, using the
heliocentric Radau coordinate, as described above for
the bound state calculations. The modified Cheby-
shev propagator77–80 is used to integrate the Schrödinger
equation as

Φ(k = 0) = Ψ(t = 0)

Φ(k = 1) = e−φĤsΦ(k = 0) (4)

Φ(k + 1) = e−φ
{
2ĤsΦ(k)− e−φΦ(k − 1)

}
,

where Ĥs =
(
Ĥ − E0

)
/∆ is the scaled Hamiltonian,

with E0 = (Emax+Emin)/2 and ∆E = (Emax−Emin)/2,
Emax and Emin being the minimum and maximum en-
ergy values of the Hamiltonian of the system represented
in the grid/basis using in the propagation. The wave

packet at time t and eigenfunctions at energy E are ex-
pressed in terms of the Chebyshev iterations, Φ(k), as

Ψ(t) =

∞∑
k=0

fk(Ĥs, t)Φ(k)

Ψ(E) =

∞∑
k=0

ck(Ĥs, E)Φ(k) (5)

with

fk(Ĥs, t) = (2− δk0) e
−iE0t/ℏ (−i)k Jk(t∆E/ℏ) (6)

ck(Ĥs, E) = (2− δk0)
ℏ exp [−ik arccos{(E − E0)/∆E}]√

∆E2 − (E − E0)2

with Jk being a Bessel function of the first kind.
The absorption cross section is then given by

σ(hν) =
Ahν

πℏ
R
∫ ∞

0

dt e−iEt/ℏ ⟨Ψ(t = 0)|Ψ(t)⟩ (7)

=
Ahν

πℏ
R

∞∑
k=0

ck(Ĥs, E) ⟨Φ(k = 0)|Φ(k)⟩

with A = 1/ℏ2ϵ0c andR denoting the real part. For finite
propagations (in this case 1000 Chebyshev iterations),
the right–hand side of Eq. 7 is multiplied by exp(−kγ),
with γ = 10−3 in the present case.
The wave packet is represented in grids for the in-

ternal radial and angular coordinates, using the projec-
tion method to shift up the spurious solutions described
in the appendix. The angular grids are those used for
bound states, while the radial grids are extended to 50
points, keeping the same density of points. The ini-
tial wave packet is built for the Ji=0 → J=1 transition
as described previously81–83, combining the bound state
with the transition dipole moment to the final electronic
states, Ã or B̃, and projecting on a final J . This is done
for several bound states with different ν values. The wave
packet is propagated about 1000 iterations. At each iter-
ation the autocorrelation function is evaluated, and pho-
toabsorption cross section is obtained by a Chebyshev
transformation to the energy domain80.
In Fig. 7, contour plots of the density probability of the

wave packet component, Φ(k), are shown for the X̃ − Ã

(left panels) and X̃ − B̃ (right panels) transitions, for
several values of k
The photoabsorption cross section towards the Ã and

B̃ electronic states are shown in Fig. 8 for different initial
vibrational states. To explain the differences between ab-
sorption to Ã and B̃ states, it is important to remind that
they present a conical intersection at the Franck-Condon
region. Thus, the A state corresponds to a local maxi-
mum which tends rapidly to the dissociation limits. One
of these limits corresponds to the CH+

2 (X
2Πu) + H prod-

ucts, slightly below the vertical excitation. On the other
side, towards the CH+(X1Σ+) + H2 products there is an

avoided crossing between the X̃ and Ã state, from which
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FIG. 7: Cuts of the density probability associated to the wave packet at different iterations k, for the Ã (left panels)

and B̃ (right panels) electronic states, for the transition from the ground electronic and vibrational state.

the potential energy increases monotonically towards the
CH+(A1Π) + H2 asymptote, at 8.68 eV. The X̃ − Ã ab-
sorption spectrum shows a broad band characteristic of
a direct dissociation, mostly below photon energies of 8
eV (corresponding to total energies of 8.84 eV). Clearly,
the dissociation must be towards the lower CH+

2 (X
2Πu)

+ H products, which is also supported by the inspec-
tion of the wave packet dynamics and the PESs. The
X̃ − Ã absorption band shows some weak peaks at the
lower energies associated to resonances originated by the
well around the minimum CH+

3 (Ã
1A′

1) in Fig. 1, which
are above the CH+

2 (X
2Πu) + H dissociation limit.

The upper part of the conical intersection, the B̃ state,
corresponds to a well, showing dissociation limits at 10.6
eV (CH+

2 (B̃
2A2) + H) and 8.68 eV (CH+(A1Π) + H).

Moreover, the PES shows a barrier of ≈ 10 eV when
elongating one ri distance towards the CH+

2 (
2Πu) + H

products. As a consequence the X̃ − B̃ absorption cor-

responds to resonant bound–bound transitions, with the
wave packet oscillating around the Franck-Condon re-
gions showing many recurrences, mostly at photon ener-
gies below 9 eV (i.e. at total energies of ≈ 9.84 eV).
Above this energy, the system can dissociate in the
adiabatic B̃ state, what occurs with a low probability.
Therefore, most of the wave packet should dissociate by
tunnelling at the CI, which tends mainly towards the
CH+

2 (
2Πu) + H products.

The spectra of vibrationally excited CH+
3 (X̃, νi=4,2)

shows very similar patterns. The X̃ − Ã bands for all
vibrational states considered are very close, with a shift
in the photon energy of ≈ 1400 cm−1 (0.174 eV) between
the ground and the two excited vibrational states. The
X̃−B̃ spectrum for ν4 shows a different intensity pattern
as compared to that of the ground vibrational, as a result
of the excitation on the θi angles. However, the X̃ − B̃
for ν2 gets closer to that of the ground, what is explained
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FIG. 8: CH+
3 photoabsorption cross section (in cm2)

from the ground (bottom), ν4=1 (middle) and ν2=1
(top panel) vibrational states towards the excited

electronic states Ã (red) and B̃ (blue), as a function of
the photon energy (in eV). The cross section for the

X̃ − B̃ transitions have been divided by 5 in the figure.

by the shallower dependence of the potential on the out-
of-plane angle ϕ.

VII. ASTROCHEMICAL MODELING

The photodestruction of CH+
3 in strongly FUV-

irradiated objects (such as interstellar PDRs and pro-
toplanetary disks) is determined by the photodissocia-
tion rate, i.e., the integral of the photodissociation cross
section with energy dependent FUV radiation field. Us-
ing Draine’s84 mean interstellar radiation field, the CH+

3

photodissociation rate is 6.83 · 10−12 s−1, 7.24 ·10−12

s−1 and 7.13 ·10−12 s−1 for the ground vibrational state

(ν = 0 in Fig. 8), and for the ν4 = 1 and ν2 = 1 ex-
cited vibrational states, respectively, with a very minor
increase with vibrational excitation of ≈ 5-7 %. These
values are about 300 times lower than the value of 2·10−9

s−1 recommended in KIDA data base. Moreover, KIDA
suggests that two photodestruction products, CH+

2 and
CH+, form at the same rate, while according to this work
the only product is CH+

2 + H.

The photodissociation rate calculated here is rather
low, in agreement with the previous estimation by Blint
and co-workers48. The values reported for CH+, CH+

2

and CH+
4 are 3.3 · 10−10, 1.4 · 10−10 and 2.8 · 10−10 s−1,

respectively47. These rates are higher than those ob-
tained here for CH+

3 by a factor of ≈ 30. The reason for
this is attributed to the “forbidden” nature of the tran-
sition dipole moment of CH+

3 at the equilibrium config-
uration.

In interstellar clouds strongly illuminated by FUV pho-
tons, photoionization of carbon atoms produces a high
abundance of electrons, which rapidly recombine with
cations, producing excited neutral systems that dissoci-
ate. This dissociative recombination (DR) process is very
fast, because of the strong Coulomb interactions, of the
order of 10−7 s−1. Because of the large difference be-
tween the photodissociation and DR rates (of about 4
orders of magnitude), it is expected that the destruction
of CH+

3 is dominated by electrons and not by photons.

To show the effect of the photodissociation cross sec-
tion obtained in this work, and the competition with
other processes, Fig. 9 shows an example obtained
with the Meudon PDR model85,86 of a strongly FUV-
irradiated molecular cloud, with a FUV radiation field
4× 104 times the mean interstellar radiation field in the
solar neighbourhood, and a constant thermal pressure
P/kB = n · T = 108 K cm−3. These parameters are
appropriate to the Orion Bar PDR, an irradiated rim of
the Orion molecular cloud87. The upper panel of Fig. 9
shows the predicted gas density, electron density, and
temperature profile as a function of depth into the molec-
ular cloud (in magnitudes of visual extinction, AV ). The
lower panel shows the resulting abundance profiles, with
respect to H nuclei, for the main species discussed in the
text. The continuous curves refer to a model that inte-
grates the wavelength-dependent CH+

3 photodissociation
cross-sections determined in this work for the A and B
electronic states and leading to CH+

2 as products. The
dashed curve shows a model that uses the CH+

3 photodis-
sociation rate recommended in KIDA. The dominant pro-
cess destroying CH+

3 is dissociative recombination with
electrons, thus the two models predict relatively similar
abundance profiles. The role of CH+

3 photodissociation
is more clearly seen at the very edge of the PDR, at low
AV , where the flux and energy of FUV photons is high.
Here, the model using the recommended rate in KIDA
is not realistic and underestimates the CH+

3 abundance
by a factor of about 6. Such difference explains the need
of realistic evaluations of the rate constants used in the
astrochemical models.

9



FIG. 9: Results obtained with the Meudon PDR model
using physical conditions corresponding to the Orion

bar, as a function of FUV shielding or visual extinction
parameter AV (low AV corresponds to the irradiated
rim of the molecular cloud, while high AV correspond
to distances well inside the molecular cloud with low

FUV photon flux). Lower panel: abundance ratio (with
respect to H) of CH+

n fractional abundances (n=1, 2
and 3), using the present CH+

3 photodissociation rate
(solid line) and that of KIDA data base (dashed lines).

In the present case, the sum of X̃ − Ã and X̃ − B̃
photodissociation absorption yields to CH+

2 products,
as described in the text. Upper panel: Evolution of
temperature and densities of H, H2 and electrons and

gas temperature as a function of AV .

VIII. CONCLUSIONS

A quantum treatment is developed to study the pho-
todissociation of the CH+

3 cation below 13.6 eV. Accurate
full dimension PESs are generated using a FI-NN method
for the three lower electronic states based on ic-MRCI-
F12/cc-pCVTZ-F12 ab initio. The transition dipole mo-
ments are also fit locally in the region around the equilib-
rium configuration covering the vibrational bound states
in the ground electronic state.

The bound states and wave packet dynamics are stud-

ied using heliocentric Radau coordinates, well adapted to
account for the permutation symmetry of the three hy-
drogen atoms. A full grid representation of the internal
(radial and angular) coordinates is implemented, allow-
ing saving of memory and computation time due to the
L-shape method that allow to discard the grid points with
high energy out of the energy range of physical interest.
To do so, it was found necessary to apply a projection
method to push up the spurious states appearing when
evaluating the angular kinetic terms using a sequential
transformation from a non-direct DVR basis set to the
FBR representation. This is implemented in the home
made MadWave4 code, a MPI parallel code written in
Fortran.

The calculated bound eigenvalues in the ground elec-
tronic states are in good agreement with previous the-
oretical and experimental ones. The photodissociation
cross section from several initial vibrational states to-
wards the excited Ã and B̃ electronic states have been
calculated using a quantum wave packet method. The
initial vibrational excitation has little influence in the
photodissociation dynamics and the calculated photodis-
sociation rate is about 300 times lower than the recom-
mended one in the KIDA data base for astrochemistry.

The possible fragmentation products in the adiabatic
representation is mostly towards the CH+

2 + H products

for the Ã state. On the B̃ electronic state, however, most
of the absorption spectrum corresponds to the bound re-
gion, and without including non-adiabatic transitions the
wave packet cannot yield to dissociation. It is consid-
ered that this bound wave packet could be trasferred to
the Ã state, where it can dissociate. A diabatization of
the electronic Hamiltonian is being done to consider the
non-adiabatic transitions needed to a proper description
of the branching ratios. This is left for a future work

The effect of the calculated cross section in interstellar
regions strongly illuminated by FUV photons is analyzed
using the Meudon PDR code applied to the Orion Bar as
a prototype. It is found that the dominant destruction
mechanism of CH+

3 is the dissociative recombination with
electrons, and that the use of the KIDA photodissocia-
tion rate underestimates the CH+

3 abundance, demon-
strating the need of realistic evaluation of rate constants
in astrochemical models.

IX. SUPPLEMENTARY MATERIAL

The three Neural Network PESs, in fortran programs,
and the photodissociation cross section obtained for the
ground vibrational state obtained in this work are sup-
plied in the Supplementary information, giving detailed
information about how to be used.
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Appendix A: Projecting up spurious solutions

We describe here a method to eliminate spurious states
that appear when using fdiscrete variable representation
(DVR) and a sequential transformation to the finite ba-
sis representation (FBR) to evaluate the angular kinetic
terms.

Spherical harmonics, |j,m⟩, form a complete FBR set,
and are non-direct products of functions in θ (normal-
ized associated Legendre polynomials depending on the
m projection) and ϕ. The transformation to a DVR in θ
and ϕ coordinates68, formed by direct products of Gauss-
Legendre points in θ and equispaced points in ϕ, is usu-
ally done in consecutive steps to reduce computational
effort as70,71

⟨j,m|Ψ⟩ ↔ ⟨θi,m|Ψ⟩ ↔ ⟨θi, ϕk|Ψ⟩, (A1)

where ϕk are equispaced points in the [0, 2π] and θi are
Gauss-Legendre points in the [0, π] interval, used for all
projections m. In the intermediate |θi,m⟩ representation
m-independent Gauss-Legendre grid of points is not com-
plete for all θi values because at the extreme values the
associated Legendre polynomials tends to zero as sinm θ.
We can define a m-dependent closure relationship in a
finite FBR and DVR representation as

⟨θi|11m|θi⟩ =
jmax∑
j=m

⟨θi|j,m⟩⟨j,m|θi⟩, (A2)

and a graphical representation is shown in Fig. 10.
Clearly, for θk near 0 and π the closure relation is

far from unity as m increases, and this introduces some
spurious states using finite grids/basis. When using the
DVR-FBR transformation to evaluate rotational kinetic
energy, these spurious states will tend to have zero en-
ergy and look like spikes. To remove these states in the
physical window of the bound state or wave packet prop-
agation, these states are shifted up in energy by using
the projector Pm = 110 − 11m. To do so, once the wave

0
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FIG. 10: Closure represented in a grid as ⟨θi|11m|θi⟩,
for m=0, 10 and 20, for jmax=29 and a Gauss-Legendre

grid of 30 points.

function is expressed in the intermediate representation
as ⟨θi,m|Ψ⟩, the action of the rotational operator j2 takes
the form∑

i′

⟨θi,m|j2|θi′ ,m⟩⟨θi′ ,m|Ψ⟩ = (A3)

=
∑
j=m

⟨θi,m|j,m⟩j(j + 1)
∑
i′

⟨j,m|θi′m⟩⟨θi′ ,m|Ψ⟩

+
∑
j=0

⟨θi, 0|j, 0⟩Cmax

∑
i′

⟨j, 0|θi′ , 0⟩⟨θi′ ,m|Ψ⟩

−
∑
j=m

⟨θi,m|j,m⟩Cmax

∑
i′

⟨j,m|θi′ ,m⟩⟨θi′ ,m|Ψ⟩

where Cmax is a high positive constant, and here is chosen
as the highest value of the potential energy. The three
terms in the previous equation are evaluated as successive
multiplication of a matrix and a vector, to save compu-
tation time.
To illustrate the problem and the solution of this prob-

lem in Fig. 11 the mono-dimensional eigenfunctions for
θ1 are shown, which are obtained with and without the
projection technique to push up the spurious solutions for
different m-values, the projection of j1 in the body-fixed
frame. For m=0, no difference is found. For m = 10, the
first eigen-function is spurious and it disappears when
the projection up technique is applied. For m=20 the
situation is even worse, and at least five spurious states
appears, which are corrected and pushed up. This prob-
lem is very notorious when calculating bound states, be-
cause the lower eigen values are mainly spurious. In wave
packet propagations, this problem is in the angular repre-
sentation of the Hamiltonian, and it becomes less evident,
but this problem is a source of inaccuracies.
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FIG. 11: Monodimensional wave functions in θ1,
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Sciences, Université Libre de Bruxelles, (2015).

55K. Shao, J. Chen, Z. Zhao, and D. H. Zhang, Journal
of Chemical Physics 145, 071101 (2016).

56“Github repository with fi definitions,” https://
github.com/pablomazo/FI, accessed: 2024-01-09.

57P. del Mazo-Sevillano, A. Aguado, and O. Roncero,
The Journal of Chemical Physics 154, 094305 (2021).

58P. del Mazo-Sevillano, D. Félix-González, A. Aguado,
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