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Abstract

Sparse Mixtures of Experts (SMoE) scales model
capacity without significant increases in training
and inference costs. However, it exhibits two is-
sues: (1) Low expert activation, where only a
small subset of experts are activated for optimiza-
tion, leading to suboptimal performance and lim-
iting its effectiveness in learning a larger num-
ber of experts in complex tasks. (2) Lack of
fine-grained analytical capabilities for multiple
semantic concepts within individual tokens. In
this paper, we propose Multi-Head Mixture-of-
Experts (MH-MoE). MH-MoE employs a multi-
head mechanism to split each input token into
multiple sub-tokens. Then these sub-tokens are
assigned to and processed by a diverse set of
experts in parallel, and seamlessly reintegrated
into the original token form. The above op-
erations enables MH-MoE to collectively at-
tend to information from various representation
spaces within different experts to deepen con-
text understanding while significantly enhanc-
ing expert activation. It’s worth noting that
our MH-MOoE is straightforward to implement
and decouples from other SMoE frameworks,
making it easy to integrate with these frame-
works for enhanced performance. Extensive ex-
perimental results across three tasks: English-
focused language modeling, Multi-lingual lan-
guage modeling and Masked multi-modality
modeling tasks, demonstrate the effectiveness of
MH-MoE. Our code are available at https:
//github.com/yushuiwx/MH-MOE .

1. Introduction

Large capacity models, such as Large Language Mod-
els (LLMs) (Zhao et al., 2023; Pham et al., 2023; Chung

et al., 2022; OpenAl, 2023) and Large Multi-modal Mod-
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Figure 1. (a) Expert activation distribution on XNLI (Conneau
et al., 2018), encompassing 6 parallel expert layers with 32 ex-
perts per layer. SMoE has many “dead” experts (dark) which are
not activated, while MH-MoE leading to significantly increased
usage of these experts. Experts activation ratio is determined by
calculating the ratio of each expert’s selection frequency in each
MOoE layer to the total number of tokens, where those exceeding
a threshold (<1) are considered activated. (b) MH-MoE show-
cases finer-grained understanding by distributing sub-tokens
split from semantically-rich patches to more distinct experts to
capture semantic information. Brighter regions indicate that sub-
tokens from this patch are distributed to a greater number of di-
verse experts, while darker regions indicate that sub-tokens are
assigned to more of the same experts.

els (LMMs) (Wang et al., 2022; Peng et al., 2023), have
demonstrated their efficacy across various domains and
tasks. To further enhance performance, a reliable ap-
proach involves scaling up these models by augmenting
the parameter count (Fedus et al., 2022). But for most of
these densely-activated large-capacity models (referred to
as Dense models), which utilize all their parameters to pro-
cess all inputs, the extremely large size of these models
significantly reduces inference speed, further limiting their
practicality.

A promising alternative, facilitating model scalability
while mitigating the burdensome computational costs, re-
sides in Sparse Mixtures of Experts (SMoE) (Shazeer et al.,
2017b; Du et al., 2021; Chi et al., 2022; Clark et al., 2022).
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Figure 2. Workflow for MH-MOoE on both vision and language data. For vision data, different heads routed to different experts try to
capture different aspects of details within patches and relations between patches. For language data, different heads attend to capture the
varying contexts of false cognates across different languages (e.g., Italian and English) or polysemous words within a single language.

In contrast to Dense model, SMoE contains parallel feed-
forward neural networks (referred to as experts) within
each building block, and strategically activates distinct ex-
perts for specific input tokens via a router, thereby yielding
noteworthy efficiency enhancements. GShard (Lepikhin
et al., 2020) scales a Dense model from 2B to 600B param-
eters with lower training costs than a 100B Dense model.
And recently, Mixtral 8x7B (Jiang et al., 2024), a SMoE
model containing 8 experts (7B parameter in total) is shown
to outperform or matches LLaMA-2 70B (Touvron et al.,
2023) and GPT-3. 5.

Despite its success, SMoE has some drawbacks: (1) Low
experts activation, which means that only a small subset
of experts are activated during optimization and inference,
e.g., 8.33% activation ratio shown in Figure 1 (a), while
the majority of them are not used at all (see the dark area).
As a result, SMoE fails to utilize the full expressive power
of these experts, especially when the number of experts is
large, which significantly limits effectiveness and scalabil-
ity of SMoE. (2) Absence of fine-grained analytical capa-
bilities. The current tokenization patterns impose limita-
tions on the model’s capacity to grasp multiple semantic in-
terpretations linked to individual tokens. In the context of
visual data, dividing images into patches for tokenization
may either neglect finer image details when using larger
patches or escalate computational requirements when em-
ploying smaller ones. For language data, the tokenization
of false cognates across different languages or polysemous
words within a single language results in them being repre-
sented by the same tokens, despite carrying distinct mean-
ings. This can subsequently lead to confusion within the
models.

To tackle the above issues, we propose Multi-Head
Mixture-of-Experts (MH-MoE). The workflow of MH-
MoE is illustrated in Figure 2. By employing a multi-
head mechanism to split each input token into multiple
sub-tokens and distribute them to different experts, MH-
MOoE achieves denser expert activation without an increase
in computational and parameter complexity. Specifically,
as shown in Figure 2, when provided with a single input to-

ken, MH-MOE activates four experts by splitting it into four
sub-tokens, whereas SMoE only activates one expert. Fur-
thermore, the allocation of sub-tokens to distinct experts
enables the model to simultaneously focus on information
from various representation spaces within different experts,
ensuring a more granular understanding for subtle differ-
ences in both vision and language patterns. See in Figure 2,
sub-tokens assigned to Experts 3 and 2 capture a detailed
understanding of each character’s actions within an image
patch, while those assigned to Experts 1 and 4 explicitly
model the semantics of the false cognate ‘camera’. After
expert processing, sub-tokens are seamlessly reintegrated
into the original token form, thereby circumventing any ad-
ditional computational burden in subsequent non-parallel
layers, e.g., attention layer, while also integrating semantic
information captured from multiple experts

MH-MoE maintains following strengths: (1) Higher ex-
perts activation & better scalability. MH-MoE can al-
leviate lower expert activation problem and significantly
enhance the usage of larger experts by enabling optimiza-
tion of almost all of experts, e.g., achieving 90.71% activa-
tion in Figure 1 (a), allowing for more efficient scaling of
model capacity. (2) Finer-grained understanding abil-
ity. Multi-head mechanism adopted in MH-MOoE assign
sub-tokens to different experts, enabling to jointly attend to
information from different representation spaces at differ-
ent experts, and finally achieving better finer-grained un-
derstanding ability. For example, refer to the bright area
in Figure 1 (b), where sub-tokens are distributed among
a more diverse set of experts, facilitating the capture of
semantically-rich information. (3) Seamless integration.
The implementation of MH-MOoE is remarkably straightfor-
ward and decoupled from other SMoE optimization meth-
ods (e.g., GShard (Lepikhin et al., 2020)), making it very
easy to integrate them together to achieve better perfor-
mance.

We evaluate the proposed MH-MoE on three model pre-
training and fine-tuning setting: English-focused language
modeling, Multi-lingual language modeling and Masked
multi-modality modeling. Extensive experimental among
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these three tasks demonstrate the effectiveness of MH-
MoE.

2. Background

Sparse Mixture of Experts. Sparse Mixture-of-Experts
(SMoE) (Shazeer et al., 2017b; Du et al., 2021; Chi et al.,
2022; Clark et al., 2022) enhances model capacity while
maintaining a constant computational demand, thus achiev-
ing better performance than densely-activated models on
various tasks (Lepikhin et al., 2021; Kumatani et al., 2021;
Zhao et al., 2023; Pham et al., 2023) and being emerged as
a pivotal advancement in the field of deep learning.

Different from densely-activated models, each MoE layer
consists of N independent Feed-Forward Networks (FFN)
{fFFNYIV | as the experts, along with a gating function g (-)
to model a probability distribution indicating the weights
over these experts’ outputs. For the hidden representation
h € RY of each input token, the gating value of routing h
to expert fIT™ is denoted as:

N

g(fi™) =exp(h-e;) /> exp(h-e;), (1)

=0

where e; denotes the trainable embedding of the i-th ex-
pert and 3 ;g (fF™N) = 1. Then, the corresponding k
experts, according to the top-k gated values, are activated
and the output O of the MoE layer is

O=h+) g(f™) fM™(h). )

i€
where ® denote activated experts set and |®| = k.

Routing Mechanism in SMoE. As described above, the
most commonly used routing mechanism involves se-
lecting the top-k experts from N experts, where £k <
N (Shazeer et al., 2017a), e.g., £k = 2 and N = 2048 in
GShard (Lepikhin et al., 2020). Such a routing mechanism
allows the combination of data parallelism and expert par-
allelism. Yang et al. (2021) and Lepikhin et al. (2020) sug-
gest that larger values of k often contribute to better model
performance. However, with the increase in the value of k,
training models with conventional top-k routing implemen-
tation becomes much less efficient (Lepikhin et al., 2020).

In this paper, we introduce MH-MOoE, a simple but effi-
cient manner to make denser expert activation without an
increase in computational complexity.

3. Method

The full architecture of MH-MOoE can be seen in Figure 3,
MH-MoE addresses low experts activation and confusion
over ambiguity of tokens issues by applying a multi-head

mechanism to split each token into sub-tokens and route
them to various experts to achieve denser expert activation
as well as deeper understanding.

3.1. Multi-Head Mixture-of-Experts

Concretely, we denote a sequence of inputs tokens by X €
R!*4 where [ is the number of tokens and d represents
the length of token dimension. In MH-MOoE, each parallel
layer contains a set of N experts, each presented as { fIT™ :
R# — R }N o, h denotes the number of heads in multi-
head mechanism, which is decoupled from the head in the
multi-head self-attention layer. For clarity, we describe the
operation of a single MH-MOoE layer here only.

First, X is projected by a multi-head layer with parameter
matrices Wheaq € R3X?,

X=X -W,], (3)

where X € R!*4. After that, every token in X is split into
h sub-tokens along the token dimensions, and these sub-
tokens are arranged in parallel according to the original to-
ken sequence, forming a new feature space X € RUxM)x 3
as:

X =F(X)
h
—_—~~
0 0 i i l
= |Xgs-o s X155 Xy X g, X |, (4)
IXh

where function /¢ denotes the token splitting operation:
Rixd —y ROXM*3and each sub-token is presented as
xé— € R%, meaning it is the the j** sub-token split from
the i*"* token.

Then all these sub-tokens are fed into the gating function
g(+). The gating value of routing a certain sub-token X
into the p!” expert is computed as

FRNy _ _ SXP (x; “ey) 5
g (£™) S o (x) -oe) (5)

where e, € R# is the learnable embedding of the pt" ex-
pert. In this paper, we mainly focus on top-k routing, i.e.,
only the experts with the largest top-k routing score is ac-
tivated. ® = Top,, (g (fF™)) denote the set of activated

experts and |®| = k. Then xé. is processed by these acti-
vated experts as following,
i i FFN\ = ¢FFN (_i
0j:xj+zg(fp )'fp (x]-). (6)
ped

After that, all obtained oé are rearranged in the original
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Figure 3. Illustration of a typical SMoE layer and the proposed MH-MoE layer. (a) An SMoE layer consists of a router and
expert networks, where the experts are sparsely activated according to dot-product token-expert routing scores. (b) MH-MOoE introduces
additional two MLP layers, namely the multi-head layer and merge layer, and a Token-Splitting-Merging (TSM, Eq. 4 and Eq. 8)

operation incorporated between these two MLPs.

order of sub-tokens and integrated together as

h

—_——
0 0 !
O=|op,...04_1,--. 0 OJJFI,...,o}h1 , (D

Ixh

where O € RUXPIXH - After that, O is transformed back
the into original token form by a token merging operation
Fon RUxR)x & —y Rixd.

X=rn(0)", (8)

where X € R*“, Finally, X is projected by a merge layer
with parameter matrices Weree € R%*9 to effective inte-
gration of multiple features o capturing detailed informa-
tion from different expert representation spaces. The oper-
ation is presented as following:

X=X W €)
Then we get the final output X of the single MH-MoE
layer.

We name the token splitting (Eq. 4) and token merging
(Eq. 8) operations together as the Token-Splitting-Mergin
(TSM) operation. By implementing the aforementioned
operations, we have effectively increased the average vol-
ume of data routed to a specific expert by a factor of h, as
demonstrated in Eq. 4. Consequently, this achievement has
resulted in denser expert activation. Furthermore, the allo-
cation of sub-tokens to distinct experts within MH-MoE
enables us to collectively capture semantic information
from diverse feature spaces across these experts, thereby
enhancing the model’s ability to achieve a finer-grained un-
derstanding.

The operations mentioned above ensure that the shapes
of the input and output in the MH-MoE layer remain un-
changed. Consequently, no additional computational cost

is introduced in the subsequent block. Specifically, we in-
troduce a hyperparameter 3 to scale the inner dimensions
of each expert, aiming to balance the parameters intro-
duced by the multi-head layer and merge layer, aligning the
model’s parameters and computational complexity with the
original SMoE.

As the Pytorch-like style pseudocode of MH-MoE shown
in Appendix E, MH-MoE is characterized by its overall
simplicity of implementation, necessitating minimal mod-
ifications to the SMoE implementation. Additionally, it is
decoupled from other SMoE optimization strategies (Lep-
ikhin et al., 2020; Chi et al., 2022), thereby facilitating its
convenient integration with other optimized SMoE frame-
works to enhance performance.

3.2. Training Objectives

The training objective of MH-MOoE involves the simultane-
ous minimization of both the loss associated with the target
task and an auxiliary load balancing loss.

Load balancing loss. As described in Section 2, there is
usually an expert load imbalance problem (Xie et al., 2023;
Lepikhin et al., 2020). So, following (Lepikhin et al., 2020;
Fedus et al., 2022), given the sub-token set X (depicted in
Eq. 4) and the frequency ¢,, of how many sub-tokens are
routed to the p expert, we compute the load balancing
1oss Lpalance Via:

»Cbalance = fFFN (10)

NN
PP

where IV denotes the number of experts, \X| is the number
of sub-tokens contained in X. ¢ ( f;FN) is the gating func-
tion depicted in Eq. 5, denoting the gating value of routing
a certain sub-token x; into the p'” expert.
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Figure 4. Perplexity on validation dataset during the training phase reported for Dense, X-MoE and MH-MOoE across three pre-
training tasks. (a) English-focused language modeling. (b) Multi-lingual language modeling. (c) Masked multi-modal modeling

Task specific loss. The term L is dependent on the
particular task that MH-MOoE is designed to learn. For in-
stance, during pre-training, we utilize the language model-
ing loss (Radford et al., 2018), whereas the model predicts
the next word in a sequence.

So, the overall training objective is to minimize:

L = Liask + oLyalance; (11)

where « is a coefficient for load balancing.

4. Experiments
4.1. Experimental Setup

Compared Baselines. We include two baseline models
for comparison purposes: (1) Dense, which represents a
Transformer decoder without the incorporation of sparsely-
activated parallel modules (i.e., SMoE layer). (2) X-MoE,
which is our implementation based on the approach pro-
posed by Chi et al. (2022). We build our MH-MoE upon
X-MOoE and uses identical settings to those employed in X-
MoE. Note that the all these models are pre-trained using
the same training data as MH-MoE, and we ensure that the
parameter count of our model remains consistent with or
lower than that of X-MoE, ensuring a fair and equitable
comparison. A detailed analysis and comparison about pa-
rameter and computational complexity can be found in Sec-
tion 5.3 and Table 11.

Pre-training Data. We detail the pre-training data of MH-
MoE, demonstrating its effectiveness in enabling denser
expert activation and finer-grained understanding through
a series of experiments. These experiments are organized
into three thematic categories: (1) For the English-focused
experiments, we pretrain both the baseline models and
MH-MoE on the RedPajama dataset (Computer, 2023),
which is an open-source pre-training dataset comprising
sources such as Common Crawl, C4 (Raffel et al., 2020),
Wikipedia, and additional curated datasets. The pretrain-
ing is conducted using GPT tasks to predict the next word
in a sequence. (2) In the context of multilingual representa-
tion, we pretrain the baseline models and MH-MoE on the
multilingual Wikipedia, following the approach described

in XLM (Lample & Conneau, 2019), again utilizing GPT
tasks. (3) For the multimodal domain, we pretrain all com-
pared baselines and MH-MoE on masked multi-modality
modeling task on both monomodal and multimodal data
(14M images, 160GB documents and 21M image-text pairs
following Wang et al. (2022)), and we present the details of
these pre-training data in Appendix A.

Model Architecture and Hyperparameters. For all ex-
periments, we use the X-MoE Chi et al. (2022) as our
backbone architecture to build our MH-MoE, which has
shown better performance than prior SMoE models such
as Switch Transformers (Fedus et al., 2022) on cross-
lingual understanding benchmarks. For English-focused
Language Modeling and Multi-lingual Language Model-
ing, we construct Dense, X-MoE and MH-MOoE using the
Transformer (Vaswani et al., 2017) decoder (L = 12, H =
768, A = 12) with the GPT-4! vocabulary as the backbone
architecture. The pre-training procedure takes 14 days on 2
NVIDIA DGX-2 Stations. For Masked Multi-modal Mod-
eling, we build Dense, X-MoE and MH-MokE following the
same Transformer encoder architecture as BEiT v3 (Wang
et al., 2022). The pre-training procedure takes 4 days on 2
NVIDIA DGX-2 Stations. For all three pre-training tasks,
we set the head number i = 4. More details about archi-
tecture and training hyperparameters can be found in Ap-
pendix B and C.

4.2. Perplexity Evaluation

We examined the validation perplexity curves for all pre-
trained models and pre-training tasks under two expert set-
tings (8 experts and 32 experts). The perplexity trends are
depicted in Figure 4, with the final perplexity values listed
in Table 1. We can observe that as training progresses: 1)
the perplexity of our MH-MoE remained lower in com-
parison to the compared baselines, indicating more effec-
tive learning; 2) MH-MoE achieved the lowest perplexity
across three distinct experimental setups; 3) an increase in
the number of experts led to a corresponding decrease in
the perplexity of MH-MoE, suggesting that the model ben-

'nttps://github.com/openai/tiktoken
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Table 1. Results of upstream perplexity evaluation. We report the
validation perplexity cross two setting: 8 experts and 32 experts.

Model Perplexity |

8 Experts 32 Experts

English-focused language modeling

Dense (without Experts) 16.23 16.23

X-MoE 14.82 11.96

MH-MoE (Ours) 12.72 10.28
Multi-lingual language modeling

Dense (without Experts) 8.56 8.56

X-MoE 7.19 6.02

MH-MOoE (Ours) 6.26 5.09
Masked multi-modal modeling

Dense (without Experts) 17.95 17.95

X-MoE 16.34 12.68

MH-MOoE (Ours) 14.73 10.87

efits from enhanced representation learning capabilities as
more experts are incorporated. These results collectively
demonstrate the superiority of MH-MOoE in terms of learn-
ing efficiency and language representation across multiple
pre-training paradigms.

4.3. Downstream Evaluation

For each pre-training task, we conduct corresponding
downstream evaluation to validate the efficacy of MH-
MoE.

English-focused Language Modeling. We evaluate our
models on a total of 9 different zero-shot benchmarks to as-
sess their abilities across various natural language tasks like
common sense reasoning, general language understanding
and knowledge understanding using the LLM Evaluation
Harness (Gao et al., 2023). As shown in Table 2, com-
paring X-MoE with the Dense model, X-MoE show no-
table improvement, indicating that SMoE models (e.g., X-
MoE) benefit from the large model capacity. Overall, for all
benchmarks, our MH-MoE obtains the best performance,
achieving an average performance gain of 1.1 for 8§ experts
setting and 1.5 for 32 experts setting compared to X-MoE,
demonstrating the effectiveness of our proposed multi-head
mechanism on modeling English-focused language.

Multi-lingual Language Modeling. We evaluate our
multi-lingual language models on the cross-lingual natural
language inference (XNLI) corpus (Conneau et al., 2018),
which is the extension of the multi-genre NLI (MultiNLI)
corpus to 14 languages. We follow the LLM Evaluation
Harness pipeline and use the zero-shot setting to evalu-
ate the multi-lingual ability. Table 3 presents the zero-shot
evaluation results on XNLI task. Similarly, X-MoE benefit
from the large model capacity and show notable improve-
ment compared with Dense model. Overall, MH-MoE ob-
tains the best performance, surpassing X-MoE by an aver-
age performance gain of 0.6 for 8 experts setting and 0.8 for

32 experts setting. Comparing MH-MoE with the X-MoE,
it shows that MH-MoE models provide consistent gains on
downstream tasks, demonstrating the effectiveness of our
proposed multi-head mechanism on modeling cross-lingual
natural language.

Masked Multi-modal Modeling. We evaluate on the
widely used vision-language understanding and generation
benchmarks, including visual question answering (Goyal
et al., 2017), visual reasoning (Suhr et al., 2019) and im-
age captioning (Lin et al., 2014). We report vga-score on
VQAV2, accuracy for NLVR2. For COCO image caption-
ing, we report BLEU@4 (B@4), METEOR (M), CIDEr
(C), and SPICE (S). Table 4 presents the evaluation re-
sults. For VQA task, MH-MOoE outperforms both Dense
and X-MoE by a large margin, e.g., 4.24 and 1.69 points
gain on test-dev split, respectively. For visual reasoning
task, MH-MOoE beats all these two baselines on both dev
(1.5 points gain than X-MoE) and test-P split (1.7 points
gain than X-MoE). For image captioning task, MH-MoE
surpasses X-MoE by 4.2%, 10.2%, 9.4% in terms of B @4,
M and S, respectively. Above results show that X-MoE ex-
hibits enhanced visual information comprehension, which
also validates the effectiveness of our proposed multi-head
mechanism in capturing diverse semantic and detailed in-
formation within visual data.

4.4. Ablation Studies

This section presents experimental analysis to demonstrate
the functionality of MH-MoE. In all comparative experi-
ments, we ensure parameter equality across models by ad-
Jjusting the internal dimensions of the experts.

Number of Heads i. We conduct experiments by adjust-
ing the number of heads (h = 2, 4, 6, 8, and 12) in MH-
MoE. As shown in Table 5, we find that across all set-
tings of h, our model consistently outperforms the X-MoE,
demonstrating the effectiveness of MH-MoE. Besides, as
the value of h increases, we observe an initial improvement
followed by a decline in our model’s performance. This
leads us to hypothesize that when A < 6 the enhancement
in performance benefits from the multi-head mechanism by
activating a greater number of experts, thereby enhancing
the model’s effectiveness and capturing a wider range of
fine-grained token information. However, as h continues
to increase beyond 6, the excessive subdivision of tokens
may inadvertently impair their original semantic content,
resulting in a decrease in model performance.

Effect of MH-MoE Components. As shown in Figure 3
(b), the multi-head mechanism utilized in our MH-MoE
primarily incorporates two components: the Multilayer
Perceptron (MLP) layers, including the multi-head layer
(Eq. 3) and merge layer (Eq. 9), and the Token-Splitting-
Merging (TSM) operation (Eq. 4 and Eq. 8). We conduct
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Table 2. Accuracy / accuracy-normalization scores for language understanding tasks using the LLM Evaluation Harness (Gao et al.,

2023).

Model ARC-Challenge ARC-Easy RTE BookQA Winogrande PiQA BoolQ HellaSwag Truthful QA (mc1/mc2) Avg

Dense 18.1/23.3 44.9/39.7 51.5 17.1/29.0 48.2 66.6 55.0 29.7/34.1 24.1/39.3 37.2
Experts Number N = 8

X-MoE 19.0/24.7 48.3/42.0 52.7 17.4/29.8 50.3 67.9 58.4 31.4/35.7 24.3/40.2 38.7

MH-MoE 19.6/25.2 50.2/42.2 53.0 18.2/30.3 51.1 68.7 59.6 33.2/40.3 24.7/40.9 39.8
Experts Number N = 32

X-MoE 19.4/24.8 50.4/42.5 52.7 17.8/30.0 51.3 68.8 52.8 33.4/40.1 24.3/39.1 39.1

MH-MoE 21.4/26.8 50.6/44.8 534 18.8/31.6 53.8 69.3 56.6 35.0/42.1 24.8/39.5 40.6

Table 3. Accuracy / accuracy-normalization scores on multilingual understand-

Table 4. Results of visual question answering, visual

ing tasks using the LLM Evaluation Harness (Gao et al., 2023).

Model bg de e en e fr hi r sw th tr ur

vi

reasoning, and image captioning tasks.

Dense

33.1 33.3 33.0 35.1 32.8 34.4 33.6 34.2 33.3 33.1 33.3 33.9 33.5 329 335

Experts Number N = 8
X-MoE 339 334 334
MH-MoE 34.4 33.2 33.9

37.3 333 359 345 35.0 33.5 33.6 33.4 342 333
40.1 34.0 36.4 34.6 35.2 33.8 34.4 33.3 34.7 34.6

Experts Number N = 32
X-MoE 345 345 334
MH-MoE 35.8 35.6 34.1

39.6 33.1 353 34.1 354 33.6 34.7 33.7 33.6 34.5
40.7 33.9 36.7 34.4 36.3 34.3 36.0 34.1 34.3 35.2

th Ave VQAV2 NLVR2  COCO Captioni
Model QAv. aptioning
test-dev test-std dev test-P B@4 M C S
33.2 34.1 Dense 65.9 66.0 73.8 74.2 359 29.3 120.5 19.6
335 347 Experts Number N = 8
X-MoE 68.4  69.7 755 76.1 38.1 30.2 122.9 21.3
g;z g‘s‘; MH-MoE 70.1 714 77.0 77.8 39.7 33.1 124.1 23.0

Layers

XNLI

Layers

Harness

Expert

X-MoE

MH-MoE h =4

MH-MOoE h = 8

Figure 5. Distribution of expert activation in X-MoE and MH-
MoE on both Harness (Gao et al., 2023) and XNLI (Conneau
et al., 2018) corpus, encompassing 6 SMoE layers with 32 experts
per layer. The top of the heatmap is the first SMoE layer while the
bottom is the last. Experts activation ratio is determined by calcu-
lating the ratio of each expert’s selection frequency in each MoE
layer to the total number of tokens.

a detailed analysis of the effectiveness of each component
within our model, as well as the necessity of their integra-
tion.

The results are presented in Table 6. A comparative anal-
ysis between Dense v.s. Dense,,/, mrp, as well as X-MoE
v.s. X-MoE,,; mrp, reveals that introduction of the MLP
layer does not enhance the model’s performance. Simi-
larly, when comparing MH-MoE with MH-MoE,,, /, mrp, it
becomes evident that the inclusion of only the MLP, in the
absence of the TS, also does not yield any improvement in
the model’s effectiveness. The parameter quantities of the
models being compared pairwise are equal.

An intriguing observation is made when comparing MH-
MoE with MH-MoE,,, /, 1s. Introducing Token-Splitting-
Merging (TSM) alone, without MLP, results in a slight in-

crease in model performance. In contrast, a significant en-
hancement in model performance is only achieved when
both MLP and TS are incorporated simultaneously. We hy-
pothesize that introduction of TS, without the integration
of MLP, activates more experts, but the segmentation and
merging of the model appears overly straightforward and
abrupt in its execution. This limitation hinders the model’s
ability to meaningfully segment tokens into sub-tokens and
effectively merge the diverse information gathered from
different expert spaces.

Number of MLP layers. We explore the impact of vary-
ing the number of layers (n =0, 1, 2, 3) in MLP on MH-
MOoE performance. For configurations exceeding a sin-
gle layer, ReLU activation functions were incorporated be-
tween MLP layers to ensure the non-linearity of transfor-
mations. The parameter quantities of the models being
compared are equal. Upon analyzing the results in Table 7,
we observe that increasing the number of MLP layers be-
yond one had a negligible impact on the model’s perfor-
mance. This indicates that a single-layer MLP is sufficient
for accomplishing token segmentation and fusion.

5. Analysis
5.1. Experts Activation Analysis

Experts Activation. We visualize the activation of each
expert varies across parallel expert layers for X-MoE and
MH-MOoE at Figure 5. It can be observed that: 1) X-MoE
demonstrate a more skewed distribution, wherein a sig-
nificant portion of experts remain inactivated all the time.
2) Our MH-MOoE achieves a denser expert activation com-
pared to X-MoE, effectively mitigating the issue of low ex-
pert utilization. 3) As the number of heads & increases, the
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Table 6. Ablation studies of MH-MoE com-
MLP layers and the Token-
Splitting-Merging (TSM, Eq. 4 and Eq. 8)

Table 5. Comparison results for different
head number h. S-Dim denotes the dimen-
sion length of sub-tokens.

ponents:

Table 7. Comparison results for different
numbers of MLP layers n. The results are
averaged over five runs.

Model Heads i S-Di Perplexi operation.
ode cads/i  S-Dim | Perplexity Model MLP  TSM | Perplexity | UPstream Downstream
X-MoE - - | 1482 Dense X X 1623 | Perplexity RTE PIQA Winogrande
2 384 12.87 Dense,, mLp v X 16.40
1 192 1272 X-MoE X X 14.82 0 13.97 529 68.2 51.7
MH-MoE 6 128 12.41 X-MoE,; mrp v X 14.77 1 1272 534 69.3 538
8 9 12.95 MH-MoE,,/, 1s v X 14.77 2 12.66 54.0 68.8 533
12 64 13.28 MH-MoE,,/, mip X 4 13.97 3 12.87 53.1 68.8 52.7
MH-MoE v/ v 12.72
37 47
@ XMoE 423 i
%+ MH-MoE 36 e e
z, 2 el I
g xl gBA F
& ”\'7“‘*‘ 233
il \\:‘{Tf _________ - 2 —@- XMoE @ hellaswag
B \+*14 -%-- MH-MoE @ hellaswag

81632 64 128 256

Number of Experts

256 81632 64 128

Number of Experts

(a) Upstream (b) Downstream

Figure 6. Upstream and downstream results for scaling up the
number of experts in X-MoE and MH-MoE. (a) Training per-
plexity () when scaling the number of experts. (b) Downstream
performance (accuracy scores 1) on hellaswag when scaling the

number of experts.
600

T Token type
| \A.\ = Non P&F
/J‘/ = P&F

1 2 3 4 5 6 7 8
Assign diversity

Figure 7. Comparison for sub-tokens assign diversity (the
number of different experts they are routed to) for P&F and Non
P&F tokens. P&F tokens refer to the polysemous and false cog-
nate words identified by GPT-4, while Non P&F tokens represent
the remaining words.

400

Count

200

0

expert activation frequency in MH-MOoE also rises.

Scalability. We explore the scalability for both X-MoE and
MH-MoE by scaling up the number of experts from 8 to
256 (about 7B parameters). For upstream performance, as
shown in Figure 6 (a), with the increase of experts, our MH-
MOoE could bring more gains. It is because MH-MoE could
mitigate the low expert activation problem effectively. With
this ability, the superiority of the large-scale SMoE model
will be better exerted, thereby achieving the improvement
of the upper bound of SMoE with more experts. Detailed
validation perplexity curves for these scaling up experi-
ments can be found in Figure 9 at Appendix F. For down-
stream performance shown in Figure 6 (b), for X-MoE, ex-
pert number = 64 is the upper bound, meaning that contin-
uing to increase the number of experts will not bring any
gain. Our MH-MOoE not only has a performance advantage
over the X-MoE with the same number of experts, but also
improves the upper bound from 64 to 256, which demon-
strates the effectiveness of the scalability of our MH-MoE

S
250k
Figure 8. Assign diversity of sub-tokens split from different
patches in vision data with respect to training steps (100k —
200k — 250k steps). Brighter regions indicate sub-tokens split
from this patch are distributed to a greater number of diverse ex-
perts.

100k 200k 250k RGB l()Ol; 200k RGB

on downstream tasks.

5.2. Fine-grained understanding Analysis

In Section 4, our model excels in multiple upstream
and downstream tasks, demonstrating superior fine-grained
modeling capabilities, both for languages and images. In
this section, we delve into a more granular analysis to vali-
date how the multi-head mechanism aids MH-MOoE in cap-
turing diverse and intricate semantic information that is of-
ten challenging to comprehend, e.g., polysemous and false
cognates words (denoted as PF tokens) in languages, and
semantically-rich areas in images. Note that for languages
data, we utilized the GPT-4 API (OpenAl, 2023) to extract
polysemous words and false cognates from the XNLI (Con-
neau et al., 2018) corpus, and the corresponding prompt can
be found in Table 12.

Experts Assign within Token. For languages data, we
compute and compare the divergence levels (i.e., the num-
ber of different experts these sub-tokens are routed to) of
sub-tokens split from PF tokens and Non-PF tokens. We
conduct on MH-MOoE with 8 heads (h=8) and represent the
divergence of each token by calculating the mean diver-
gence across the model’s various layers. The results, pre-
sented in Figure 7, clearly demonstrate that the distribution
of divergence for PF tokens is significantly skewed towards
the right when compared to that of Non-PF tokens. This
indicates that, in the MH-MoE’s inference process, PF to-
kens route their sub-tokens to a greater number of different
experts, thereby capturing diverse semantic information in
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contrast to Non-PF tokens for a better polysemous and false
cognates word modeling.

For image data, we analyzed how the divergence levels
of different patches evolve during the training process, as
illustrated in Figure 8. Interestingly, we observe that as
the training steps increase, the divergence levels gradu-
ally increase in high-frequency texture regions (or regions
with rich semantics), while the divergence levels in low-
frequency texture regions gradually decrease. This indi-
cates that during the training process, MH-MoE tends to
route tokens from areas with complex textures to a greater
variety of experts, thereby enhancing the finer-grained un-
derstanding of the semantics in that region. For more vi-
sualization examples, please refer to the Figure 10 at Ap-
pendix G.

5.3. Complexity & Parameter Analysis.

We present a analysis of Complexity & Parameter for X-
MoE and MH-MoE in Appendix D, to validate that for all
experiments setting, the computational and parameter cost
of our MH-MOoE are both lower than SMoE. Besides, a de-
tailed parameter count for all experiments and comparable
models can be seen in Table 11.

6. Conclusion

In this paper, we study how we can to achieve a denser ex-
perts activation without introducing additional cost, while
improving the fine-grained understanding ability. With the
proposed Multi-Head Mixture-of-Experts, we can easily
implement the aforementioned functionality. Furthermore,
the simplicity of MH-MoE allows it to integrate with other
SMoE frameworks to enhance performance easily. Exten-
sive empirical results across three tasks demonstrate the ef-
fectiveness of MH-MOoE.

7. Broader Impact

In previous NLP pipelines, the dimension of word tokens
has been conventionally maintained constant during both
training and inference stages. We are the first to attempt to-
ken segmentation outside of the multi-head attention mod-
ule, aiming to enhance the model’s capabilities in several
respects, including a more nuanced and multifaceted under-
standing of the token content as well as fostering a sparser
network architecture. We believe this to be a counterintu-
itive yet worthwhile exploration in the field.
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A. Pre-training Data of Masked multi-modal modeling task

Table 8 presents of pre-training data in Masked multi-modal modeling task. For multi-modal data, there are about 15M
images and 21M image-text pairs collected from five public datasets: Conceptual 12M (CC12M) (Changpinyo et al., 2021),
Conceptual Captions (CC3M) (Sharma et al., 2018), SBU Captions (SBU) (Ordonez et al., 2011), COCO (Lin et al., 2014)
and Visual Genome (VG) (Krishna et al., 2017). For monomodal data, we use 14M images from ImageNet-21K and 160GB
text corpora (Bao et al., 2020) from English Wikipedia, BookCorpus (Zhu et al., 2015), OpenWebText?, CC-News (Liu
et al., 2019), and Stories (Trinh & Le, 2018).

S
Table 8. Pretraining data of Masked multi-modal modeling task. All the data are academically accessible.
Data Source Size
Image-Text Pair CC12M, CC3M, SBU, COCO, VG 21M pairs
Image ImageNet-21K 14M images
Text English Wikipedia, BookCorpus, OpenWebText, CC-News, Stories  160GB documents

B. Model Hyperparameters of Language modeling tasks

Table 9 presents the model hyperparameters of X-MoE and MH-MOoE for both English-focused language modeling and
Multi-lingual language modeling tasks. The gating temperature 7y is initialized as 0.3 and 0.07 for the softmax gating
and sigmoid gating, respectively. We use the same vocabulary as XLM-R (Conneau et al., 2020) with 250K subwords
tokenized by SentencePiece (Kudo & Richardson, 2018).

Table 9. Model hyperparameters of Dense, X-MoE and MH-MoE. The SMoE frequency refers to how many experts each token will be
assigned to, i.e., the value of k in the Top- expert selection.

Hyperparameters Dense X-MoE MH-MoE
FFNs within layer 2 2 2
Expert embedding dimension - 16 16/h
Initialized gating temperature 7o - 03/0.07 0.3/70.07
Transformer blocks 12 12 12
Hidden size 768 768 768
FFN inner hidden size 3,072 3,072 3,072 xB8
Attention heads 12 12 12
SMOoE frequency - 2 2

C. Hyperparameters for Pre-training

Table 10 presents the hyperparameters for pre-training across three tasks: Language modeling tasks (English-focused
language modeling and Multi-lingual language modeling tasks) and Masked multi-modal modeling task.

2http: //skylion007.github.io/OpenWebTextCorpus
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Table 10. Pre-training hyperparameters for Language modeling tasks (English-focused language modeling and Multi-lingual language
modeling tasks) and Masked multi-modal modeling task tasks.

Hyperparameters Language modeling tasks  Multi-modality modeling task
Batch size 256 512
Optimizer Adam AdamW
Batch tokens per task IM -
Adam € le-6 le-6
Adam (0.9, 0.98) (0.9, 0.98)
Maximum learning rate Se-4 2.8e-3
Learning rate schedule Linear decay Cosine decay
Warmup steps 10,000 10,000
Weight decay 0.01 0.05
Transformer dropout 0.1 0.1
Dropout 0 0
Load balancing coefficient le-2 le-2

Table 11. Parameter count setting of X-MoE and MH-MOoE in our experiments for English-focused language modeling, Multi-lingual
language modeling and Masked multi-modality modeling tasks. “non-expert param” refers to the parameters that are not part of the
expert networks, such as the attention layer, router, etc., while “expert params” represents the total number of parameters in the parallel
expert networks. For Dense models, since there are no expert network layers, we only list the total number of parameters. All models
under the same task utilize the same architecture and hyperparameters, following identical training settings and steps.

. Dense X-MoE MH-MoE
Expert Setting
Sum  non-expert params  expert params Sum  non-expert params  expert params Sum

English-focused language modeling
0 expert 162M - - - - - -
8 experts - 134M 227M 361M 141M 213M 354M
16 experts - 134M 454M 588M 141M 430M 571M
32 experts - 134M 908M  1,042M 141M 898M  1,039M
64 experts - 134M 1,815SM  1,949M 141M 1,L7997M  1,938M
128 experts - 134M 3,631IM  3,765M 141M 3,624M  3,765M
256 experts - 134M 7,263M  7,397M 141M 7,230M  7,371IM
Multi-lingual language modeling

0 expert 162M - - - - - -
8 experts - 134M 227TM 361M 141M 213M 354M
32 experts - 134M 908M  1,042M 141M 898M  1,039M
Masked multi-modality modeling

0 expert 27TM - - - - - -
8 experts - 191M 323M 514M 195M 310M 505M
32 experts - 191M 1,037M  1,228M 195M 1,014M  1,209M
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D. Complexity & Parameter Analysis
D.1. Complexity

We analysis the computational cost of MH-MoE. Without loss of generality, we consider one transformer block with a
single-layer SMoE containing N experts, but this can be easily generalized.

The computational cost of SMoE layer comes from two parts: 1) the projection of router. 2) linear projections by parallel
experts (FFNs which contains two connected linear layers with inner hidden size 4d). For a input sequence X € R'*?, the
computational cost for each part is

Orouter = [ X d X N =1dN, (12)
Oexperts = | % (d x 4d + 4d x d) = 81d*. (13)

respectively. Thus, the total computational cost of SMoE is Ogsmer = ld(N + 8d).

For MH-MOoE layer, in addition to the two computations mentioned above, it also encompasses two additional distinct
computational aspects: 3) projection of multi-head layer. 4) projection of merge layer. The computational cost for each
part is

Omultihead = | X d x d = 1d?, (14)
Orouter = h X 1 X % x N = [ldN, (15)
Oexperts = h X | X (Z X 4Bd + 46d x Z) = 8pld?, (16)
Omerge = | X d x d = 1d?, (17)

where (3 is a hyperparameter employed to scale the inner hidden dimension of FENs. In our empirical experiments, we
meticulously adjust /3 to ensure a parametric equilibrium between our MH-MoE and SMoE. So, the overall computational
cost of MH-MOoE is Oyy.mog = (d(N + 88d + %)

Thus we compare the computational cost between SMoE and MH-MOoE as §:

N
§ = Osmor — OmuMoE = 1d |8d(1 — ) — e (18)

——————
In all of our experimental setups, the smallest (3 is %. Thus € exists an lower bound when N = 256 (set to the largest
number of experts), h = 4 (set to the fewest head number) and 3 = g—i (set to the minimum f). In considering this
situation, we have € = 8 x 768 x g — 228 = 96 — 64 > 0. So we validate that for all experiments setting, we have

OsmoE — OmHu-MoE > 0, i.e., the computational cost of our MH-MOE is fewer than SMoE.

D.2. Parameter

For SMoE, the parameter contains two parts: 1) the parameter of router. 2) the parameter of parallel experts:

FCrouter = d X N» (19)
I‘lexperts =N x (d X 4d + 4d x d) =8d:N (20)

Thus, the total parameter of SMOE is I'smor = dN (1 + 84d).

For MH-MOoE, in addition to the two parts of parameter mentioned above, it also encompasses two additional aspects: 3)

14



Multi-Head Mixture-of-Experts

the parameter of multi-head layer. 4) the parameter of merge layer, while the parameter for each part is
[heag = d x d,

d
Frouler ==X Na

h
2
Fexperts =N X (Z X 4ﬁd+45d % d) _ 8562 N

h
Fmerge =d x d7

21

(22)

(23)

(24)
(25)

So, the overall parameter of MH-MOoE is I'yiy-moe = 2d%+ dT],V + @. Detailed parameter comparison can be found in
Tabl 11, we ensure that the parameter count of our MH-MoE remains consistent with or lower than that of X-MoE,

ensuring a fair and equitable comparison all experiments.
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E. PyTorch-style Code

We also provide the PyTorch-style code in Algorithm 1 to explain our MH-MoE, which including two main aspects: 1)
Stage 1. The creation and initialization of multi-head layer and merge layer. 2) Stage 2. The segmentation of
tokens, followed by processing through an expert network, and ultimately merging.

Algorithm 1 The Overall Procedures of MH-MoE in a PyTorch-like style.
Input: A MH-MoE model with L parallel SMoE layers M, the number of the experts k.

# Stage 1: Initial parameter of multi-head layer & merge layer

for i in range (1, L):
M[i] .multi_head_layer = nn.Linear (hidden_dim, hidden_dim)
M[i] .merge_layer = nn.Linear (hidden_dim, hidden_dim)

# Initialization

nn.init.xavier_uniform_(M[i].multi_head_layer.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_ (M[i] .merge_layer.weight)
nn.init.constant_(M[i].merge_layer.bias, 0.0)

# Stage 2: The segmentation and merge of tokens for the i-th MH-MoE layer

def MHMoE_Layer (x) :

rrr

Input:
x : Tensor shape: (batch_size, Length, hidden_dim)
mask : Tensor shape: (batch_size, Length)

Output:
o : Tensor shape: (batch_size, Length, hidden_dim)

heads: head number of multi_head layer

rrr

# Processed by multi-head layer
x = M[1].multi_head_layer (x)

# Split token & rearrange sub-tokens in parallel
x = x.reshape (batch_size * Length * heads, hidden_dim // heads) .contiguous ()

mask = mask.reshape (-1, 1) .repeat (l, heads) .reshape (batch_size * Length % heads)

# Standrad SMoE routing block
x, mask = router (x, mask)

# Merge back to the original token form

x = x.reshape (batch_size x Length, heads, dim // heads) .reshape (batch_size % Length,
dim) .contiguous ()
o = M[i] .merge_layer (x)

return o
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Table 12. Prompt template for identifying polysemous and false cognates in different languages.

Your role is to identify polysemous and false cognates in different languages from the given textual input (### Input). Note that
"Polysemous" refers to a word having two or more completely different meanings (for example, "grouse" has meanings related to
complaining and also refers to a type of bird), while "false cognates in different languages" refers to words in different languages
that have similar forms but carry different meanings (for example, in English and Italian, "camera" looks similar but represents
different semantic concepts).

### Input
Text: {Prompt}

Note: Please provide your identify results in the following format:

### Output for Word 1
Word: [Make sure that there is only a word here.]
Rationale: [Rationale for why this word is polysemous or false cognates, think step by step]

### Output for Word 2
Word: [Make sure that there is only a word here.]
Rationale: [Rationale for why this word is polysemous or false cognates, think step by step]

1 XMoE with 8 experts —— MH-MoE with 64 experts
MH-MoE with 8 experts ——— XMoE with 128 experts
XMoE with 32 experts MH-MoE with 128 experts
—— XMOoE with 64 experts —— MH-MoE with 256 experts

‘ MH-MoE with 32 experts XMoE with 256 experts

Perplexity

0 50k 100k 150k 200k 250k

Training Step
Figure 9. Validation perplexity reported for both X-MoE and MH-MoE.

F. Visualization of training perplexity

We provide the training perplexity curve for model training in the experimental setting of increasing the number of experts
(from 8 to 256) in Figure 9.

G. Visualization

We provide more visualization of variation in assign diversity for sub-tokens split from different patches in vision data at
Figure 10.
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