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PROBABILISTIC ZERO FORCING WITH VERTEX REVERSION

ZACHARY BRENNAN∗

Abstract. Probabilistic zero forcing is a graph coloring process in which blue vertices “infect” (color blue) white vertices

with a probability proportional to the number of neighboring blue vertices. We introduce reversion probabilistic zero forcing

(RPZF), which shares the same infection dynamics but also allows for blue vertices to revert to being white in each round.

We establish a tool which, given a graph’s RPZF Markov transition matrix, calculates the probability that the graph turns

all white or all blue as well as the time at which this is expected to occur. For specific graph families we produce a threshold

number of blue vertices for the graph to become entirely blue in the next round with high probability.
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1. Introduction. Zero forcing is a graph coloring process which was introduced independently as a

condition for the control of quantum systems [4] and as a bound for the maximum nullity of a matrix in

the study of the minimum rank problem [13]. Zero forcing has since been used extensively in the study

of the minimum rank problem (see [14] and the references therein), and has been found to have further

connections with graph search algorithms [21], power domination [2], and the Cops and Robbers game [3].

These connections have led to the study of zero forcing in its own right, and variants of zero forcing have

since emerged (see the workshop summary [9] for examples). This paper focuses on probabilistic variations

of zero forcing, the first of which was introduced by Kang and Yi in [17]. Specifically, in this paper we

introduce reversion probabilistic zero forcing (RPZF), a process in which blue vertices can now revert back

to being white. This process can be formulated as a Markov chain and is thus studied using the theory of

Markov chains. Probabilistic zero forcing cannot move across graph components and is typically studied on

connected graphs. Thus, throughout this paper we assume G is a simple connected graph on n vertices.

RPZF can also be viewed as a discrete-time analog of the susceptible-infected-susceptible (SIS) contact

process, a basic continuous-time model for the spread of infection. In particular, RPZF is an example of a

semi-heterogeneous model, where the infection rate is different for different vertices but the recovery rate is

uniform. Contact processes are traditionally considered on infinite lattices with the goal of understanding

long-term behavior, though more recent work has also been done on other large graph structures such as

scale-free and power-law graphs [11, 16]. In contrast, we initiate the study of RPZF by considering its long-

term behavior on the complete and complete bipartite graphs, which model denser and more interconnected

populations. Additionally, most discretized SIS models only consider distance-1 interactions, where the

probability of a vertex being infected depends only on its neighborhood [19]. By contrast, RPZF is a

distance-2 model where an infected vertex is more infectious when it has more infected neighbors.

Section 2 defines RPZF then formulates it as a Markov chain, and detailed discussion of how RPZF

relates to the SIS contact process is provided in subsection 2.4. Probability theory, in particular the theory

of Markov chains, is used in section 3 to calculate RPZF parameters, characterize each state of the RPZF

Markov chain as transient or absorbing, and make assertions about the exit probabilities of RPZF. These
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results enable the quantification of RPZF behavior on any finite graph, given its RPZF-matrix representation.

Section 4 goes into detailed analysis of RPZF on the complete graph, complete balanced bipartite graph,

and star graph. In particular, threshold-like results are developed to prove the required number of blue

vertices to force the entire graph blue in one step with high probability. Finally, simulations and numerical

approximations of RPZF and its parameters are provided for a number of graph families in section 5.

1.1. Basic Notation. A graph is a pair G = (V,E) where the set E = E(G) of edges consists of 2-

element subsets of V = V (G), the finite set of vertices. Thus all graphs discussed (except in subsection 2.4)

are simple, undirected, and finite. Two vertices v, w ∈ V are adjacent if {v, w} ∈ E. The open neighborhood

of v is the set of all vertices adjacent to v, denoted by N(v) = {w ∈ V : {v, w} ∈ E}. The degree of v is

deg v = |N(v)|, the number of vertices adjacent to v, and the closed neighborhood of v is N [v] = N(v)∪{v}.
We say G is connected if for every v, w ∈ V there exists a path of vertices v = v0, v1, . . . , vk = w such that

{vi−1, vi} ∈ E for all i ∈ {1, . . . , k}. In this paper we consider only connected graphs.

If A = [aij ] is a matrix, then a
(k)
ij and (Ak)ij both denote the (i, j)th entry of Ak. The identity matrix

is denoted by I, and the matrix containing all zero entries is denoted by O. We will use 1 = [1 1 · · · 1]T

to denote the column vector containing all ones and N = {0, 1, 2, . . .} to refer to the set of non-negative

integers.

1.2. Zero Forcing. Suppose G is colored so that every vertex is blue or white. The (deterministic)

zero forcing color change rule describes how the vertices of G can change color: a blue vertex u will force

(change) a white vertex w to be blue if w is the only white neighbor of u. This is denoted by u → w.

Probabilistic zero forcing (PZF) is an extension of the deterministic model. Let B ⊆ V (G) be a set of

blue vertices. In one round of PZF, each blue vertex u ∈ B attempts to force each of its white neighbors

w ∈ N(u) \B independently with probability

P(u → w) =
|N [u] ∩B|

deg u
.

In deterministic zero forcing, a parameter of interest is the minimum number of vertices required to

eventually force the entire graph blue. In probabilistic zero forcing, this parameter is trivial because only

one vertex is required in a connected graph. Thus, the study of probabilistic zero forcing is instead primarily

concerned with how long it takes the entire graph to be forced blue starting from one blue vertex [10].

The probabilistic propagation time of B, denoted ptpzf (G,B), is the first round in which all vertices are

blue, starting from the initial set of blue vertices B [10]. Note that ptpzf (G,B) is a random variable and

a round constitutes a single application of the probabilistic color change rule and that the first application

occurs in round 1. The expected propagation time of B is then defined as [10]

ept(G,B) = E[ptpzf (G,B)].

The expected propagation time of a connected graph G is the minimum expected propagation time of B over

all one-vertex sets B of G [10], i.e.,

ept(G) = min{ept(G, {v}) : v ∈ V (G)}.
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1.3. The Markov approach to probabilistic zero forcing. Probabilistic zero forcing can also be

formulated as a time-homogeneous Markov chain. The study of PZF with Markov chains was introduced in

[17] and studied further in [6, 10]. Let X0, X1, . . . be random variables that take on values from the finite

state space S = {S0, S1, . . . , Ss}. We say (Xt) is a time-homogeneous (discrete-time) Markov chain on the

state space S if for any time t ∈ N and any states Sj , Si, Sit−1
, Sit−2

, . . . , Si0 ∈ S,

(1.1) P[Xt+1 = Sj | Xt = Si, Xt−1 = Sit−1
, . . . , X0 = Si0 ] = P[Xt+1 = Sj | Xt = Si]

and

(1.2) P[Xt+1 = Sj | Xt = Si] = P[X1 = Sj | X0 = Si]

Equation (1.1) is the Markov property and it says that given the current state Xt, any other information

about the history of the chain is irrelevant for predicting Xt+1. Equation (1.2) is the definition of time-

homogeneity, and it says that the transition probability does not depend on the current time t. We will

consider only time-homogeneous Markov chains.

The Markov transition matrix M = [mij ] is the (s+ 1)× (s+ 1) matrix defined by

mij = P[X1 = Sj | X0 = Si],

the probability of the chain going from state Si to state Sj in one time-step. Markov transition matrices are

right stochastic, i.e.,
∑s

k=0 mik = 1 for all i = 0, 1, . . . , s. It follows immediately from the Markov property

and time-homogeneity that (M t)ij gives the probability of going from Si to Sj in t ≥ 1 steps, and this is

denoted by m
(t)
ij = P[Xt = Sj | X0 = Si].

Turning to probabilistic zero forcing, fix a connected graph G and state space1 S = {S1, . . . , Ss}. Let

the first state S1 correspond to some fixed set of vertices B being blue, the last state Ss correspond to all

vertices being blue, and the states Si, 2 ≤ i ≤ s − 1, correspond to some intermediate colorings. Starting

from state S1, the probability that all vertices are blue at the end of round r is m
(r)
1s . It follows that

P[ptpzf (G,B) = r] = m
(r)
1s −m

(r−1)
1s

and thus, as noted in [10, Remark 2.12], the expected propagation time of B is

ept(G,B) =

∞
∑

r=1

r
(

m
(r)
1s −m

(r−1)
1s

)

.

Letting es = [0, . . . , 0, 1]T , this was later calculated explicitly in [6, Theorem 2.2] to be

ept(G,B) = ((M − 1eTs − I)−1)1s + 1,

recalling 1 = [1, . . . , 1]T .

2. Reversion Probabilistic Zero Forcing. This section introduces reversion probabilistic zero forc-

ing, a modification of the probabilistic zero forcing process where blue vertices have the chance to revert

back to being white at the end of each round. Two variations of this process are defined. The first of which

has a single stopping state when all vertices are white, and the second of which has two stopping states

when the graph is either entirely white or entirely blue. The processes are then formulated as Markov chains

before being contrasted with other similar growth/decay dynamics existing in the probability literature.

1In probabilistic zero forcing it is typical to omit the states which cannot be reached from some fixed initial blue vertex

{v}, as well as collapsing states which behave analogously into a single state.
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2.1. Single Absorption Reversion Probabilistic Zero Forcing. Single absorption reversion prob-

abilistic zero forcing (SARPZF) adds a second phase to each round of probabilistic zero forcing. We describe

one round of SARPZF.

Definition 2.1. Given a graph G and set B of currently blue vertices, in phase 1 each blue vertex

u ∈ B attempts to force each of its white neighbors w ∈ N(u) \B independently with probability

P(u → w) =
|N [u] ∩B|

deg u
,

as in probabilistic zero forcing. We now have an updated set B′ of blue vertices. In phase 2, each blue

vertex u ∈ B′ reverts (changes to being white) independently with probability p ∈ (0, 1). Phases 1 and

2, taken consecutively, define the single absorption reversion probabilistic zero forcing color change rule

(SARPZF color change rule). A round of single absorption reversion probabilistic zero forcing (SARPZF) is

one application of the SARPZF color change rule.

Unlike probabilistic zero forcing, G is not guaranteed to be forced blue under SARPZF. In fact, we will

see in Theorem 3.3 that, given enough time, SARPZF will always result in all vertices being white. We say

SARPZF dies out when this occurs.

2.2. Dual Absorption Reversion Probabilistic Zero Forcing. Notice that SARPZF may lead to

G being entirely blue any number of times before dying out. A natural question to ask is will V (G) ever be

entirely blue? If so, when is the first time we expect this to happen? To answer these questions, we define

dual absorption reversion probabilistic zero forcing by introducing a stopping condition to SARPZF.

Definition 2.2. The dual absorption reversion probabilistic zero forcing color change rule (DARPZF

color change rule) is defined by modifying the SARPZF color change rule as follows: after phase 1, if the

set of currently blue vertices B′ is the entire vertex set, then no vertices revert in phase 2. A round of dual

absorption reversion probabilistic zero forcing (DARPZF) is one application of the DARPZF color change

rule.

Collectively, SARPZF and DARPZF are referred to as reversion probabilistic zero forcing, or RPZF. We say

that DARPZF fully forces G when every vertex is blue and dies out when every vertex is white. We say

DARPZF is absorbed whenever it dies out or fully forces G. In SARPZF, absorbed refers only to SARPZF

dying out, hence the terminology single and dual absorption.

Remark 2.3. We adopt the convention that 0 < p < 1 in RPZF. When p = 1, SARPZF trivially dies

out in one step. When p = 0, many of the results presented can be adapted to recover PZF results. However,

most of these results are already known and so we refer the reader to the PZF literature. Moreover, some

results, such as those involving the matrix QS introduced in (2.3), are not suitable for adaptation to PZF.

2.3. Markov chains for SARPZF and DARPZF. As previously defined in the literature [6], the

simple state space of G is the set of all white-blue colorings of V (G), and we call each of these colorings a

simple state. We combine simple states that behave analogously under RPZF into one state of G and omit

states that cannot occur. For example, on the complete graph Kn we use n + 1 states S0, . . . , Sn, where

state Si is the condition of there being exactly i blue vertices. It is often helpful to think of a state as a

set of blue vertices, with the remaining vertices being white. We will use these two notions as convenient.

An ordered state space for G, denoted S = (S0, . . . , Ss), is an ordered list of all states of G where S0 is the

die-out state (all vertices are white), Ss is the fully forced state (all vertices are blue), and the remaining
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states are chosen in some order. Let |Si| denote the number of blue vertices in the coloring of state Si. We

say S is properly ordered if |Si| ≤ |Si+1| for all i ∈ {0, . . . , s− 1}.

A graph G, a properly ordered state space S = {S0, . . . , Ss}, and probability p ∈ (0, 1) then determine

the SARPZF and DARPZF Markov transition matrices MS(G) and MD(G), respectively. We suppress

the dependence on G when G is clear from context. For all 0 ≤ i, j ≤ s, (MS)ij and (MD)ij give the

probability of going from state Si to state Sj in one application of the SARPZF and DARPZF color change

rule, respectively. We index these matrices starting from 0 to align with S and can partition them by

(2.3) MS =

[

1 0 · · · 0
r QS

]

and MD =







1 0 · · · 0 0

a1 QD a2

0 0 · · · 0 1







where the the ith row and column correspond to the state Si. A state Si is absorbing if the Markov chain

cannot leave that state once entered. Observe that r and a1 correspond to the absorbing state S0 where all

vertices are white and hence no vertex can be forced blue. Symmetrically, a2 corresponds to the absorbing

state Ss in DARPZF where every vertex is blue and so by definition of DARPZF no reversions can occur.

Additionally, for any t ∈ N,

(2.4) (MS)
t =

[

1 0 · · · 0
∗ (QS)

t

]

and (MD)t =







1 0 · · · 0 0

∗ (QD)t ∗
0 0 · · · 0 1






.

Remark 2.4. The SARPZF Markov chain has only one absorbing state, S0, as seen by the first row of

MS . The DARPZF chain, on the other hand, has two absorbing states S0 and Ss as seen by the first and

last rows of MD.

Note that (MS)
t and (MD)t are right stochastic for all t ∈ N since they are Markov transition matrices.

Moreover, the RPZF color change rules define Markov chains whose dynamics occur in two phases and thus

can also be described as the product of two right stochastic matrices

(2.5) MS = FRS and MD = FRD

where F describes phase 1 (forcing, using the probabilistic zero forcing color change rule) and R ∈ {RS , RD}
describes phase 2 (reversion of blue vertices). We utilize this formulation in subsection 4.1.

Remark 2.5. The RPZF transition matrices are indexed from 0, and submatrices preserve the indexing

of their parent matrix. So, for example, QS and QD are indexed from 1.

To formulate the Markov chains themselves, fix a graph G, an initial set of blue vertices B, and a

properly ordered state space S = (S0, . . . , Ss) on G. The SARPZF Markov chain (XS
t ) is a sequence of

random variables XS
0 , X

S
1 , . . . on S with one-step transition matrix MS. Similarly, the DARPZF Markov

chain (XD
t ) is a sequence of random variables XD

0 , XD
1 , . . . on S with one-step transition matrix MD. That

is, for any t ∈ N and any i, j ∈ {0, . . . , s},

P[XS
t+1 = Sj | XS

t = Si] = (MS)ij and P[XD
t+1 = Sj | XD

t = Si] = (MD)ij .

Just as probabilistic propagation time and expected propagation time were introduced for probabilistic

zero forcing in [10], we introduce new parameters of interest for reversion probabilistic zero forcing. For the
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following definitions, G is a graph with properly ordered state space (S0, . . . , Ss), B is a set of blue vertices in

G, and (XS
t ) and (XD

t ) are SARPZF and DARPZF Markov chains on G with reversion probability p ∈ (0, 1).

Definition 2.6. The probabilistic time of absorption for B under SARPZF (respectively DARPZF),

denoted ptaS(G;B, p) (ptaD(G;B, p)), is the first time at which every vertex turns white in SARPZF (all

blue or all white in DARPZF). In probabilistic notation,

ptaS(G;B, p) = min{t ≥ 0 : XS
t = S0} and ptaD(G;B, p) = min{t ≥ 0 : XD

t ∈ {S0, Ss}}

where we define min∅ = ∞.

Definition 2.7. The expected time of absorption for B under SARPZF (DARPZF) is the expected

value of the probabilistic time of absorption for B under SARPZF (DARPZF), and is denoted by

etaS(G;B, p) = E[ptaS(G;B, p)] and etaD(G;B, p) = E[ptaD(G;B, p)].

Definition 2.8. The expected time of absorption under SARPZF (DARPZF) of a connected graph G

is the minimum of the expected time of absorption for B under SARPZF (DARPZF) over all one-vertex sets

B of V (G) and is denoted by

etaS(G; p) = min{etaS(G; {v}, p) : v ∈ V (G)} and etaD(G; p) = min{etaD(G; {v}, p) : v ∈ V (G)}.

When considering a general RPZF Markov chain, we may omit the S and D subscripts and superscripts.

In light of the dual nature of DARPZF it is natural to ask, given a starting state (coloring) Si, for what

probability p does G have an equal chance of dying out or being fully forced?

Definition 2.9. The critical reversion probability, denoted pD(G,Si), is the reversion probability such

that the DARPZF Markov chain has equal probability of dying out or fully forcing when starting from state

Si.

We show in section 3 that pD(G,Si) exists for all connected graphs G and all non-absorbing states Si.

2.4. Contact Processes. Reversion probabilistic zero forcing can be viewed as a discrete-time analog

of what is known in the probability literature as the contact process, a basic model for population growth

and the spread of infection. Analogous to discrete time Markov chains, we say that (ηt), t ≥ 0, is a

continuous-time Markov process on the state space S if for any 0 ≤ u0 < u1 < · · · < uk and any states

Sj , Si, Sik−1
, . . . , Si0 ∈ S,

P[ηuk+t = Sj | ηuk
= Si, ηuk−1

= Sik−1
, . . . , ηu0

= Si0 ] = P[ηt = Sj | η0 = Si].

That is, given the present state, the past does not influence the future behavior of the process. The

susceptible-infected-susceptible contact process (SIS contact process) on a (possibly infinite) graph G = (V,E)

with infection parameter λ ≥ 0 is a continuous-time Markov process (ηt) with state space {0, 1}V , where
a state η ∈ {0, 1}V is a configuration of zeros and ones on the graph. At any time t ≥ 0, each vertex has

status either 0 (“healthy”) or 1 (“infected”). The state of the entire system at time t is then described

by ηt : V → {0, 1} where ηt(v) is the status of vertex v at time t. Finally, letting v be a vertex and η a

configuration, we say that the contact process (ηt) evolves according to the following local transition rates:

at vertex v,

0 → 1 at rate λ
∑

w∈N(v)

η(w)

1 → 0 at rate 1.
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Specifically, these are the rates for exponential random variables whose value corresponds to the waiting time

until vertex v changes status. Thus, infected vertices recover after some (exponential distribution) time with

mean 1 independent of its neighbors, and healthy vertices become infected at a rate linearly proportional to

its number of infected neighbors.

A common topic in study of contact processes is the infection parameter λ and its relation to the process

surviving or dying out. The contact process is said to die out if

P[ηt 6≡ 0 ∀t ≥ 0] = 0,

where ηt 6≡ 0 means there exists a v ∈ V such that ηt(v) 6= 0. Otherwise the process is said to survive. It

is well known that on finite graphs, no matter the initial configuration or infection parameter, the process

dies out [18]. We prove the analogous result for SARPZF in Theorem 3.3.

The discretized SIS contact process can be formally described as follows. Let G be a (possibly infinite)

graph. At each time t ∈ N, every infected vertex v ∈ V (G) infects each of its neighbors independently

with probability β. Simultaneously, every infected vertex v at time t recovers with probability p. The

exact meaning of “simultaneously” differs depending on the particular discretization being considered. For

instance, some models allow a vertex which recovers to be reinfected during the same time-step, whereas

others assert that a recovered vertex must remain recovered. SARPZF, on the other hand, is defined such

that a vertex has a chance of being infected and then immediately recovering before having the chance to

infect its neighbors.

Over time, various formulations have been proposed to model the discrete-time SIS contact process. We

describe a few of them and then contrast them to SARPZF. We consider only SARPZF because contact

processes do not have the additional stopping condition that DARPZF has. For any vertex v ∈ V (G) and

time t ∈ N, define pv(t) to be the probability that v is infected (blue) at time t, and define

qv(t+ 1) =
∏

x∈N(v)

(1− βpx(t))

to be the probability that v does not receive infection (is not forced) at time t. Finally, let p be the probability

that a vertex recovers (reverts to white). Then Wang et al. proposed the model [20]

(2.6) 1− pv(t+ 1) = (1 − pv(t))qv(t+ 1) + ppv(t)qv(t+ 1) +
1

2
ppv(t)(1 − qv(t+ 1).

The first term is the probability of vertex v entering time t + 1 healthy and then not being infected, the

second term is the probability of v entering time t+1 infected, recovering, then not being reinfected, and the

final term assumes that half of the time a vertex will undergo a “curing event” after being reinfected. Notice

that this interpretation of “simultaneous” has recovery occurring before infection. This model is explored

in more detail in [5]. Later models do away with the 1/2 probability “curing event” assumption, as well as

stating the dynamics in terms of the probability of being infected, pv, instead of the probability of being

healthy, 1− pv. For instance, Gómez et al. introduced the model [11]

(2.7) pv(t+ 1) = (1− p)pv(t) + (1− qv(t+ 1))(1− pv(t)) + p(1− qv(t+ 1))pv(t),

accounting for the cases of an infected vertex failing to recover, a susceptible vertex being infected, and

an infected vertex recovering then becoming reinfected. This formulation also makes the assumption that

7



a vertex which recovers at time t can immediately be reinfected at time t. Contrast (2.7) with the model

presented by Ahn and Hassibi in [1] where

(2.8) pv(t+ 1) = (1− p)pv(t) + (1− pv(t))(1 − qv(t+ 1)),

doing away with the p(1 − qv(t + 1))pv(t) term and so asserting that a vertex that recovers cannot be

reinfected in the same time step. This formulation seems most true to the notion of “simultaneous” vertex

infection and recovery since vertices can only undergo one status change each time-step. Equation (2.8) can

be further simplified by truncating the terms of qv(t + 1) =
∏

x∈N(v)(1 − βpx(t)) with powers of β greater

than 1, giving

(2.9) pv(t+ 1) = (1− p)pv(t) + (1− pv(t))β
∑

x∈N(v)

px(t).

Note that this approximation is better for smaller values of β. Paré et al. demonstrate in [19] how (2.9)

directly matches the model derived from applying Euler’s method to the continuous-time mean field approx-

imation for the SIS contact process, as well as providing analysis on the accuracy of (2.8) and (2.9). For a

graph G on n vertices, these models can all be used to solve for pv numerically, from which tests of accuracy

are typically derived. A commonly considered parameter is the graph’s expected infection density ρt at time

t. Given an infection rate β and recovery rate p, this is computed as

ρt =
1

n

∑

v∈V (G)

pv(t).

So far, the models described have all been homogeneous, meaning that the infection rate β and recovery

rate p are constant for all vertices. SARPZF, on the other hand, is more akin to a heterogenous model,

wherein the infection rate and recovery rate depend on the vertex. In fact, SARPZF is somewhere in the

middle, with a constant recovery rate but variable infection rate. Looking to model SARPZF in the same

way as the above models, we find

(2.10) pv(t+ 1) = (1− p)pv(t) + (1 − p)(1− pv(t))(1 − qv(t+ 1)).

The first term is the case of v being infected after time t and not reverting during time t+1, and the second

term is vertex v be healthy after time t, infected at time t + 1, and not reverting at time t + 1. Notice

that (2.10) is most similar to (2.8) but differs in two ways. First, the function qv is different. Second, the

(1 − pv(t))(1 − qv(t + 1)) is multiplied by 1 − p due to the fact that in SARPZF, a vertex has the chance

to revert in the same time step it is infected. This interpretation of “simultaneous” has recovery occurring

after infection. One of the key differences between the models in the literature and SARPZF is the infection

rate β and, subsequently, the probability that vertex v is not infected by a neighbor qv. Let G be a graph on

n vertices and let (Xt) be the SARPZF Markov chain on the properly ordered state space S = (S0, . . . , Ss)

with reversion probability p. Notice that in SARPZF, if B is our set of infected vertices, then vertex v is

“infected” (forced) with probability

P[B → v] = 1−P[B 6→ v] = 1−
∏

x∈B∩N(v)

P[x 6→ v] = 1−
∏

x∈B∩N(v)

(

1− |B ∩N [x]|
deg x

)

.

Thus if Xt is the set of blue vertices at time t and X0 = Si,

qv(t+ 1) = P[Xt 6→ v].

8



Applying the law of total probability over the state space S,

qv(t+ 1) =

s
∑

j=0

P[Xt 6→ v | Xt = Sj ]P[Xt = Sj ]

=

s
∑

j=0

∏

x∈Sj∩N(v)

(

1− |Sj ∩N [x]|
deg x

)

∏

x∈Sj

px(t)
∏

x∈V (G)\Sj

(1− px(t)).

Notice in this case that the rate of infection is exponentially proportional to the number of infected

neighbors, and moreover is also dependent on the number of infected vertices at distance 2 from v. Intuitively,

this means that an infected vertex is more infectious when it has more infected neighbors.

3. RPZF on general graphs. In order to utilize Markov chain theory in the analysis of RPZF,

some more standard probability notation and results are established in subsection 3.1. This is followed by

methods of calculating RPZF parameters using Markov matrices in subsection 3.2 before a couple results on

the expected number of blue vertices.

3.1. Probabilistic Background. Let (Xt) be an RPZF Markov chain on a graph G with reversion

probability p ∈ (0, 1), properly ordered state space (S0, . . . , Ss), and Markov transition matrix M . As

shorthand notation, Pi[A] = P[A | X0 = Si] denotes the probability of event A given the chain starts from

state Si, and Ei[Y ] = Ei[Y | X0 = Si] denotes the expected value of random variable Y given the chain

starts from state Si. In this notation, the transition probability mij = Pi[X1 = Sj ] gives the probability of

going from Si to Sj in one step and is by definition the (i, j)th entry of the transition matrix M .

Let T (j) = min{t ≥ 1 : Xt = Sj} be the time of first arrival to Sj (sometimes called the first return

time). Notice that the starting state X0 is not considered. Define

ρij = Pi[T (j) < ∞] = P[Xt = Sj for some t ≥ 1 | X0 = Si]

to be the probability that the RPZF chain enters state Sj after starting from state Si. In this language, we

can formally define the critical reversion probability pD(G,Si) as the DARPZF reversion probability such

that ρi0 = ρis = 1/2. In words, pD(G,Si) is the reversion probability such that, starting from state Si, we

have equal probability to enter S0 (all white) or Ss (all blue) in DARPZF. We can also classify states of the

Markov chain:

• If ρii = 1 then state Si is said to be recurrent.

• If ρii < 1 then state Si is said to be transient.

• If Pi[X1 = Si] = 1 then state Si is said to be absorbing.

As we will show in Lemma 3.1, state S0 is absorbing and states Si, i ∈ {1, . . . , s − 1}, are transient for

SARPZF and DARPZF.

Lemma 3.1. Let G be a connected graph and (S0, . . . , Ss) be a properly ordered state space of G for an

RPZF chain with reversion probability p ∈ (0, 1). Then the state S0 is absorbing, the state Si is transient

for all i ∈ {1, . . . , s− 1}, and the state Ss is absorbing in DARPZF and transient in SARPZF.

Proof. Let (Xt) be an RPZF chain on G. It is immediate from the Markov matrices (see (2.3)) that S0

is an absorbing state for SARPZF and DARPZF. Now let i ∈ {1, . . . , s− 1} and consider

ρii = Pi[T (i) < ∞] = 1−Pi[T (i) = ∞].
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To show Si is transient it suffices to show Pi[T (i) = ∞] > 0. That is, it suffices to show there is a nonzero

probability that the chain never returns to state Si after starting in state Si. Suppose X0 = Si and that

after phase 1 of the RPZF color change rule there are b vertices colored blue. Since p > 0, the chain moves to

state S0 in phase 2 with probability pb > 0, whereafter it can never reach state Si again. The only exception

is if, in DARPZF, all vertices are forced blue in phase 1. In this case, the chain remains in state Ss and so

never returns to Si.

Finally, consider the state Ss where all vertices are blue. In the DARPZF chain it is immediate from

(2.3) that Ss is absorbing. On the other hand, in the SARPZF chain, if G has n vertices then

Ps[T (s) = ∞] ≥ Ps[X1 = S0] = pn > 0

and so Ss is transient in SARPZF.

Notice that, as a consequence of Lemma 3.1, every state is either transient or absorbing and the only

recurrent states are the absorbing states. Additionally, the submatrices QS and QD from (2.3) correspond

exactly to transient states.

Remark 3.2. If p = 0 then Ss is actually an absorbing state for SARPZF, but we forbid this so that

QS always corresponds to transient states.

3.2. RPZF Parameters and Expected Behavior. For a real n × m matrix A = [aij ], define the

matrix norm

‖A‖ = ‖A‖∞ = max
1≤i≤n

m
∑

j=1

|aij |

to be the maximum absolute row sum of the matrix. It is well known that ‖·‖ is a matrix norm. In particular,

for A,B ∈ R
n×m we have ‖AB‖ ≤ ‖A‖ ‖B‖. If A is square and ρ(A) denotes the spectral radius of A, then

ρ(A) ≤ ‖A‖. We refer the reader to [15, Chapter 5.6] for details on the matrix norm facts used in this

section.

Theorem 3.3. Let G be a connected graph, and let (Xt) be an RPZF Markov chain with transition

matrix M ∈ {MS,MD}. Then with probability 1, (Xt) enters an absorbing state in finite time. That is, for

any B ⊆ V (G), P[pta(G,B) < ∞] = 1. Furthermore, Qt → O as t → ∞ for Q ∈ {QS, QD}.
Proof. Let G be a connected graph, let B ⊆ V (G), and let (Xt) an RPZF chain on G with properly

ordered state space {S0, . . . , Ss}, transition matrix M , and reversion probability p ∈ (0, 1). It is known (see

e.g. [8, Ch 1.3]) that if Si is a transient state, then after some finite amount of time (Xt) will never (re)visit

Si. It follows that after some finite amount of time (Xt) moves into a non-transient state. By Lemma 3.1

we know any non-transient state is an absorbing state, and hence P[pta(G,B) < ∞] = 1.

To show Qt → O as t → ∞, we first claim ‖Q‖ < 1. To see this, let r, a1, and a2 be as in (2.3). Then r

and a1 + a2 are entrywise strictly positive. Indeed, for all i = 1, . . . , s the entry ri denotes the probability

of the SARPZF chain moving from transient state Si to absorbing state S0 in one time-step. Since p > 0,

this is always achievable by the event of every blue vertex reverting in Phase 2, giving ri > 0. Now let

i = 1, . . . , s − 1. Then (a1)i denotes the probability of the DARPZF chain moving from transient state Si

to absorbing state S0 in one time-step. Since p > 0, this is almost always achievable by every blue vertex

reverting, giving (a1)i > 0. The exception is when the DARPZF chain forces every vertex blue after Phase

1. But in this case (a2)i > 0 and so (a1 + a2)i > 0. Recall that M is right stochastic and notice that

the row sum for every row corresponding to a transient state contains a contribution from r or a1 + a2.
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This implies every row sum of Q must be strictly less than 1 and thus ‖Q‖ < 1. Using sub-multiplicativity,

‖Qt‖ ≤ ‖Q‖t → 0 as t → ∞ which implies Qt → O as t → ∞.

The next results in this section are adapted from [12]. In particular, Lemma 3.4 comes from [12, Theorem

11.4], Theorem 3.5 follows [12, Theorem 11.5], and Theorem 3.6 is a reworking of [12, Theorem 11.6]. We

are interested in how long an RPZF chain is expected to stay in transient states. For a connected graph G

with properly ordered state space (S0, . . . , Ss), let NS and ND be matrices such that (NS)ij and (ND)ij are

the expected number of visits to transient state Sj when starting from transient state Si in the SARPZF

and DARPZF chains, respectively. In other words,

(3.11) (NS)ij = Ei[|{t ≥ 0 : XS
t = Sj}|] and (ND)ij = Ei[|{t ≥ 0 : XD

t = Sj}|].

These matrices exist and can be calculated from the Markov transition matrix. Recall that for an event A,

1[A] = 1 if A occurs and 1[A] = 0 if A does not occur.

Lemma 3.4. Let (Xt) be an RPZF Markov chain on a connected graph G with properly ordered state

space (S0, . . . , Ss), transition matrix M ∈ {MS,MD} with corresponding transient state matrix Q, and

reversion probability p ∈ (0, 1). Let N be defined as in (3.11) and correspond to the choice of M . Then N

exists and N =
∑∞

k=0 Q
k = (I −Q)−1.

Proof. It is well known that
∑∞

k=0 Q
k = (I−Q)−1 provided

∑∞
k=0 Q

k converges. This occurs if ρ(Q) < 1,

where ρ(Q) denotes the spectral radius of Q. We showed ‖Q‖ < 1 in Theorem 3.3 since p > 0 and so

ρ(Q) ≤ ‖Q‖ < 1.

Now let N = [nij ] be defined by (3.11). To show N =
∑∞

k=0 Q
k, let Si and Sj be two arbitrary

transient states. Then Pi

[

1[Xk = Sj ] = 1
]

= (Qk)ij and since 1[Xk = Sj ] is an indicator random variable,

Ei

[

1[Xk = Sj ]
]

= (Qk)ij . Therefore, the expected number of times the chain has been in state Sj after t

rounds, starting from state Si, is

Ei

[

t
∑

k=0

1[Xk = Sj ]

]

=

t
∑

k=0

Ei

[

1[Xk = Sj]
]

=

t
∑

k=0

(Qk)ij .

It follows that the total number of times the chain is expected to be in state Sj , when starting from Si, is

nij = Ei

[ ∞
∑

k=0

1[Xk = Sj ]

]

=

∞
∑

k=0

Ei

[

1[Xk = Sj ]
]

=

∞
∑

k=0

(Qk)ij

where the expected value can be passed under the limit by Fubini’s theorem (see Appendix A) since

∞
∑

k=0

Ei

[

|1[Xk = Sj ]|
]

=

∞
∑

k=0

(Qk)ij = (I −Q)−1
ij < ∞.

Thus N =
∑∞

k=0 Q
k.

Observe that summing across the ith row of N gives the expected number of rounds the chain spends

in transient states, having started from state Si. Given that the chain starts at time t = 0, this leads to the

following theorem.

Theorem 3.5. Consider an RPZF Markov chain with matrix N as in (3.11). Let ti denote the expected

time of absorption, given that the chain starts from transient state Si, and let t be the column vector whose

ith entry is ti. Then t = N1 where 1 is the vector containing all ones.
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Given a graph G and properly ordered state space (S0, . . . , Ss), one can use Theorem 3.5 to calculate

eta(G;Si, p) = ti. This tells us how long we expect to wait until the RPZF chain enters an absorbing state.

But in the case of DARPZF, is that absorbing state more likely to be all white or all blue? This is answered

by the next result.

Theorem 3.6. Consider the DARPZF Markov chain on a connected graph G with properly ordered state

space (S0, . . . , Ss) and transition matrix MD. Let C = [cij ] be the (s− 1)× 2 matrix such that, starting the

chain from transient state Si, ci1 is the probability that the graph dies out and ci2 is the probability that the

graph is fully forced. Then

C = (I −QD)−1[a1 a2]

where the matrix QD and vectors a1, a2 come from (2.3).

Proof. Let A = [a1 a2] where A inherits the row indices of MD and let mij = (MD)ij denote the

probability of going from state Si to state Sj in one step of the DARPZF Markov chain. Then by definition

of C,

(3.12) ci1 = mi0 +

s−1
∑

k=1

mikck1.

Indeed, starting from state Si, the chain can either die out in one step with probability mi0 or move into to

some transient Sk and eventually die out with probability mikck1. Similarly,

(3.13) ci2 = mis +

s−1
∑

k=1

mikck2.

Observe that mik = (QD)ik for 1 ≤ i, k ≤ s−1. Moreover, writing A = [aij ], notice from (2.3) that mi0 = ai1
and mis = ai2. Substituting all this into (3.12) and (3.13),

ci1 = ai1 +

s−1
∑

k=1

(QD)ikck1 = ai1 + (QDC)i1

and

ci2 = ai2 +

s−1
∑

k=1

(QD)ikck2 = ai2 + (QDC)i2.

It follows that C = A + QDC from which we conclude C = (I − QD)−1A as claimed, where (I − QD)−1

exists by Lemma 3.4.

Corollary 3.7. For any connected graph G with properly ordered state space (S0, . . . , Ss) and for any

transient state Si, the critical reversion probability pD(G,Si) exists. That is, there exists a reversion proba-

bility such that Pi[T (0) < ∞] = Pi[T (s) < ∞] = 1/2, where T (j) = inf{t ≥ 1 : XD
t = Sj}.

Proof. Let C = [cij ] be as in Theorem 3.6. The entries of QD are continuous functions in p and I −Q is

invertible on p ∈ (0, 1). Hence the entries of C = (I −Q)−1 are continuous functions in p ∈ (0, 1). By taking

p sufficiently small, ci1 = ci1(p) < 1/2. Similarly, by taking p sufficiently large, ci1 = ci1(p) > 1/2. By the

intermediate value theorem, pD(G,Si) exists so that ci1 = ci1(pD(G,Si)) = 1/2. Since ci1 = Pi[T (0) < ∞],

ci2 = Pi[T (s) < ∞], and ci2 = 1− ci1, the result follows.
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We now follow the methods of Theorem 3.1 in [6] to calculate the expected number of blue vertices after

one step of the SARPZF Markov chain. Recall that a state Si, and thus a random variable Xt of an RPZF

chain, can be viewed as a set of blue vertices.

Proposition 3.8. Let (Xt) be a SARPZF Markov chain on a connected graph G with reversion prob-

ability p ∈ (0, 1) and properly ordered state space (S0, S1, . . . , Ss). Let Ft be the number of vertices forced

during phase 1 of time t (before reversion). Then for all i ∈ {0, . . . , s}, Ei[|X1|] = (1− p)(|Si|+Ei[F1]).

Proof. Suppose X0 = Si. Let v1, . . . , v|Si|+F1
be the vertices that are blue after phase 1 of the SARPZF

color change rule at time t = 1. Notice that 1[vj 6∈ X1] are i.i.d. indicator random variables for the event of

vj reverting, j = 1, . . . , |Si|+ F1. Thus

Ei[|X1|] = |Si|+EiF1 −Ei





|Si|+F1
∑

j=1

1[vj 6∈ X1]





= |Si|+EiF1 −Ei

[

(|Si|+ F1)1[v1 6∈ X1]
]

= |Si|+EiF1 −Ei[|Si|+ F1]p

= (1 − p)(|Si|+EiF1)

since v1 reverts with probability p.

Proposition 3.9. Let G be a connected graph on n vertices. Let B = {v1, v2, . . . , vb} be the set of blue

vertices with b ≥ 1 and let p ∈ (0, 1) be the reversion probability. The expected number of blue vertices in G

after one step of the SARPZF color change rule is bounded above by (1 − p)(b+ b2).

Proof. Let (Xt) be the SARPZF chain on G with starting state X0 = Si corresponding to the vertices

B = {v1, . . . , vb} colored blue. Let Ft be the number of vertices forced during phase 1 of time t (before

reversion). We start by bounding EiF1. For each j = 1, . . . , b, let Bj be the set of vertices forced by vj in

phase 1. Note that multiple blue vertices may force the same white vertex and so the Bj ’s may intersect.

Then

EiF1 = Ei[|B1 ∪ · · · ∪Bb|] ≤ Ei





b
∑

j=1

|Bj |



 =

b
∑

j=1

Ei[|Bj |].

Calculating this expected value for each j,

Ei[|Bj |] =
|N(vj)\B|
∑

k=0

kP[|Bj | = k]

=

|N(vj)\B|
∑

k=0

k

(|N(vj) \B|
k

)(

N [vi] ∩B|
deg(vj)

)k (

1− N [vj ] ∩B|
deg(vj)

)|N(vj)\B|−k

which is the expected value of a binomially distributed random variable. Thus

Ei[|Bj |] = |N(vj) \B|
(

N [vj ] ∩B|
deg(vj)

)

≤ |N [vj ] ∩B|

and we conclude EiF1 ≤∑b
j=1 |N [vj ] ∩B| ≤ b|B| = b2. It now follows from Proposition 3.8 that

Ei[|X1|] = (1− p)(b+ b2)

since |Si| = b.
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Remark 3.10. For any connected graph with SARPZF and DARPZFMarkov processes (XS
t ) and (XD

t ),

Ei[|XD
1 |] ≥ Ei[|XS

1 |] for all states Si. This can be seen by recalling from (2.5) that SARPZF and DARPZF

share the same distribution during phase 1. In phase 2 of SARPZF, each vertex reverts with probability

p. In phase 2 of DARPZF each vertex reverts with probability p unless the chain steps into the absorbing

state Ss, in which case each vertex reverts with probability 0. Hence SARPZF is expected to have at least

as many reversions as DARPZF.

4. Asymptotic thresholds for RPZF. In this section we consider the behavior of RPZF as the

number of vertices grows towards infinity. In particular, we deduce thresholds for the number of blue vertices

required to fully force the complete, complete bipartite, and star graphs in one step with high probability.

When utilizing the RPZF Markov chain (Xt) on these graphs, it will be convenient to consider the random

variables Xt as taking integer values representing the number of blue vertices in the graph at the end of time

t.

4.1. The complete graph. In any RPZF chain, the outcomes of phase 1 (forcing) and phase 2 (re-

version) depend only on what vertices are blue at the start of the phase. It follows that we can decompose

M ∈ {MS,MD} as the product of two stochastic matrices M = FR where R ∈ {RS, RD} corresponds to

the choice of M . The explicit formulas of F = [fij ] and R = [rij ] for the complete graph on n vertices,

denoted Kn, are given in Theorem 4.3. Before that, we first provide the known Markov transition matrix

for (traditional) probabilistic zero forcing on Kn.

Theorem 4.1. [6, Theorem 2.4] Let (S1, . . . , Sn) be the properly ordered state space where Sk is the state

of having k blue vertices in Kn, n ≥ 2. The n × n Markov transition matrix K(n) = [kij ] for probabilistic

zero forcing on Kn is given by

kij =











(

n−i
j−i

)

(

1−
(

1− i
n−1

)i
)j−i (

(

1− i
n−1

)i
)n−j

, 1 ≤ i ≤ j ≤ n

0, otherwise

where 00 = 0! = 1.

The idea behind Theorem 4.1 is as follows. Let B be the set of currently blue vertices on Kn with

|B| = b. Then for any v ∈ B and w 6∈ B, P[v → w] = b
n−1 and P[v 6→ w] = 1 − b

n−1 . Now for any given

w 6∈ B, each v ∈ B will independently attempt to force w. Hence

(4.14) P[∀v ∈ B, v 6→ w] =

(

1− b

n− 1

)b

and P[B → w] = 1−
(

1− b

n− 1

)b

,

where B → w denotes the event that w is forced by some v ∈ B. For notational convenience, we denote the

probability that b blue vertices force a vertex in Kn by

(4.15) q(n, b) = 1−
(

1− b

n− 1

)b

Observation 4.2. With this notation, the matrix K(n) = [kij ] is given by

kij =

(

n− i

j − i

)

(q(n, i))
j−i

(1− q(n, i))
n−j

when 1 ≤ i ≤ j and 0 otherwise.
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We now define the transition matrices for SARPZF and DARPZF using Theorem 4.1. For two matrices A

and B, the direct sum A⊕B is defined by

A⊕B =

[

A O

O B

]

.

Theorem 4.3. Let (S0, . . . , Sn) be the properly ordered state space where Sk is the state of having k

blue vertices in Kn, n ≥ 2, and let p ∈ (0, 1). Then we can write the (n + 1) × (n + 1) SARPZF and

DARPZF Markov transition matrices for Kn as MS = ([1]⊕K(n))RS and MD = ([1]⊕K(n))RD where

([1]⊕K(n)), RS, and RD are (n+1)× (n+1) right stochastic matrices. The matrices RS and RD describe

reversion in SARPZF and DARPZF respectively and are given by

(RS)ij =

{

(

i
j

)

pi−j(1− p)j , 0 ≤ j ≤ i ≤ n

0, otherwise

and

(RD)ij =















(

i
j

)

pi−j(1 − p)j , 0 ≤ i < n and 0 ≤ j ≤ i

1, i = j = n

0, otherwise.

Proof. The matrix K(n) comes from [6, Theorem 2.4] and describes probabilistic zero forcing for the

complete graph on n vertices, where the first row and column correspond to the graph having one blue

vertex. Hence F = [1]⊕K(n) so that the first row and column of F correspond to the absorbing state where

the graph has zero blue vertices.

For 0 ≤ j ≤ i ≤ n, we define (RS)ij and (RD)ij to be the probability of reverting from i blue vertices

to j blue vertices in phase 2 of SARPZF and DARPZF, respectively; that is, the probability that i− j blue

vertices turn white. Given a set of i blue vertices, the probability that a particular collection of i− j vertices

revert and the remaining j do not is pi−j(1− p)j , and there are
(

i
j

)

ways to pick the j vertices which do not

revert. When i = j = n in DARPZF, the probability of no vertices reverting is 1.

Note that K(n) is indexed from 1, whereas MS, MD, F , RS , and RD are indexed from 0. We say that

the ith row/column corresponds to the state Si, which in turn corresponds to Kn having exactly i blue

vertices. We next provide an explicit description of the one-step Markov transition probability Pb[X1 = k].

To state the result, recall the Kronecker delta where δij = 1 if i = j and 0 if i 6= j.

Proposition 4.4. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on Kn, n ≥ 2,

with reversion probability p ∈ (0, 1), and let q(n, b) be defined as in (4.15). Then for any 1 ≤ b ≤ n and

0 ≤ k ≤ n, Pb[X
S
1 = k] is equal to both of the following:

(1)

n
∑

i=max{b,k}

(

n− b

i− b

)(

i

k

)

(1− p)kpi−kq(n, b)i−b(1− q(n, b))n−i

(2)

min{b,k}
∑

i=0

(

n− b

k − i

)(

b

i

)

(1− p)ipb−i[(1− p)q(n, b)]k−i[1− (1− p)q(n, b)]n−b−(k−i).

Additionally,

Pb[X
D
1 = k] = Pb[X

S
1 = k]−

(

n

k

)

pn−k(1 − p)kq(n, b)n−b + δnk (q(n, b))
n−b

.
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Proof. Let MS = FRS and MD = FRD denote the Markov transition matrices for the SARPZF and

DARPZF chains (XS
t ) and (XD

t ). Then

Pb[X
S
1 = k] = (MS)bk =

n
∑

i=0

Fbi(RS)ik =

n
∑

i=max{b,k}
Fbi(RS)ik

since Fbi = 0 when i < b, and (RS)ik = 0 when i < k. Observing b ≥ 1, substitute

Fbi =

(

n− b

i− b

)

(q(n, b))
i−b

(1− q(n, b))
n−i

and

(RS)ik =

(

i

k

)

pi−k(1− p)k

to get formula (1).

Considering Pb[X
D
1 = k], again Fbi = 0 when i < b and (RD)ik = 0 when i < k. Hence

Pb[X
D
1 = k] =

n
∑

i=max{b,k}
Fbi(RD)ik

and observing that (RS)ik = (RD)ik for k ≤ i ≤ n− 1 gives

Pb[X
D
1 = k] = Pb[X

S
1 = k]− Fbn(RS)nk + Fbn(RD)nk.

Using the fact that (RD)nk = 0 when k < n and (RD)nn = 1, this simplifies to

Pb[X
D
1 = k] = Pb[X

S
1 = k]−

(

n

k

)

pn−k(1 − p)kq(n, b)n−b + δnk (q(n, b))
n−b

.

To derive formula (2) for Pb[X
S
1 = k], consider B, the set of currently blue vertices with |B| = b, and

V \B, the set of currently white vertices. Each vertex w ∈ V \B is blue after one application of the SARPZF

color change rule with probability (1− p)q(n, b) since it must be forced blue with probability q(n, b) and not

revert with probability 1− p. Each vertex v ∈ B is blue after one application of the SARPZF color change

rule with probability 1− p. Suppose XS
0 = b and XS

1 = k. Let i denote the number of vertices in B that did

not revert at time t = 1. There are
(

b
i

)

choices of vertices to not revert, each case occurring with probability

(1 − p)ipb−i. Then k − i vertices in V \ B were forced blue and did not revert. This can happen in one of
(

n−b
k−i

)

ways, each with probability [(1 − p)q(n, b)]k−i[1 − (1 − p)q(n, b)]n−b−(k−i). Summing over all choices

for i, Pb[X
S
1 = k] is equal to

min{b,k}
∑

i=0

(

n− b

k − i

)(

b

i

)

(1− p)ipb−i[(1− p)q(n, b)]k−i[1− (1 − p)q(n, b)]n−b−(k−i).

Note that SARPZF can also be described in terms of known probability distributions. To see how, let

B be the set of currently blue vertices with |B| = b, let X be a random variable equal to the number of

vertices from B which do not revert, and let Y be a random variable equal to the number of vertices from

V \B which are forced blue and do not revert. Then X and Y are independent with X ∼ Binomial(b, 1− p)

and Y ∼ Binomial(n− b, (1− p)q(n, b)). Moreover, if XS
0 = b then XS

1 = X + Y follows a Poisson binomial

distribution with p1 = · · · = pb = 1− p and pb+1 = · · · = pn = (1− p)q(n, b). The probability mass function

for this distribution simplifies to formula (2) in Proposition 4.4.
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Theorem 4.5. Suppose Kn has 1 ≤ b ≤ n− 2 vertices colored blue and RPZF chain (Xt) with reversion

probability p ∈ (0, 1). Then the probability Kn dies out in one step of the RPZF chain converges to pbeb
2(p−1)

as n → ∞.

Proof. By formula (2) of Proposition 4.4,

Pb[X
S
1 = 0] = pb[1− (1 − p)q(n, b)]n−b = pb

[

p+ (1 − p)

(

1− b

n− 1

)b
]n−b

.

Similarly,

Pb[X
D
1 = 0] = pb

[

p+ (1− p)

(

1− b

n− 1

)b
]n−b

− pn

(

1−
(

1− b

n− 1

)b
)n−b

.

To calculate the limits of these values, notice first that 0 ≤
(

1−
(

1− b
n−1

)b
)n−b

≤ 1 for all 0 ≤ b ≤ n− 2

and hence

0 ≤ pn

(

1−
(

1− b

n− 1

)b
)n−b

≤ pn → 0

as n → ∞ since p ∈ (0, 1). We are left to consider pb
(

p+ (1− p)
(

1− b
n−1

)b
)n−b

. Taking the limit as

n → ∞, this is equal to

pb exp

{

lim
n→∞

1

(n− b)−1
log

[

p+ (1− p)
(

1− b

n− 1

)b
]}

and applying L’Hôpital’s rule this simplifies to pbeb
2(p−1).

Remark 4.6. Let (XD
t ) be the DARPZF Markov chain on Kn. The probability of Kn being fully forced

in DARPZF when starting from b blue vertices is bounded above by 1−Pb[X
D
1 = 0]. Indeed,

Pb[min{t : XD
t = n} < ∞] = 1−Pb[min{t : XD

t = 0} < ∞] ≤ 1−Pb[X
D
1 = 0].

The remainder of this section is dedicated to threshold-like results for RPZF. These results concern the

necessary number of blue vertices bn for a particular event to occur in one step of the RPZF chain with high

probability, where bn is a function of n, the total number of vertices in the graph, and n → ∞. We first

consider the expected number of blue vertices after one step of an RPZF process on Kn, starting from b blue

vertices.

Theorem 4.7. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on Kn with reversion

probability p ∈ (0, 1), and let q(n, b) be defined as in (4.15). Then

Eb[X
S
1 ] = (1 − p) (b+ (n− b)q(n, b))

and

Eb[X
D
1 ] = Eb[X

S
1 ] + np q(n, b)n−b.

Proof. We consider first the SARPZF Markov chain. Suppose that at time 0 we have b blue vertices

and w = n− b white vertices. For each white vertex v1, . . . , vw, let 1[vi] = 1 if vi is colored blue in phase 1
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of the current round and 0 otherwise, and define F1 =
∑w

i=1 1[vi]. Then F1 is the number of vertices forced

blue at time t = 1, and since the 1[vi]’s are i.i.d we have

Eb[F1] = wEb[1[vi]] = (n− b)

(

1−
(

1− b

n− 1

)b
)

= (n− b)q(n, b)

where E[1[vi]] comes from (4.14). The result now follows by substituting into Eb[X
S
1 ] = (1− p)(b+Eb[F1])

from Proposition 3.8.

To calculate Eb[X
D
1 ], first observe that by Proposition 3.8 and linearity,

Eb[X
S
1 ] = (1− p)Eb[F1 + b] = (1− p)

n
∑

k=b

kPb[F1 + b = k].

By definition of DARPZF there is no reversion when F1 + b = n. Hence

Eb[X
D
1 ] = (1 − p)

n−1
∑

k=b

kPb[F1 + b = k] + nPb[F1 + b = n]

= Eb[X
S
1 ]− (1 − p)nPb[F1 + b = n] + nPb[F1 + b = n]

= Eb[X
S
1 ] + npPb[F1 + b = n]

and substituting Pb[F1 = n− b] = q(n, b)n−b finishes the proof.

The next result gives a threshold number of blue vertices for the complete graph to completely forced

in one step of RPZF with high probability. In particular, if Kn has bn = Ω(
√
n logn) blue vertices with

constant C >
√
2 then Kn is expected to have n blue vertices after one application of the DARPZF color

change rule. We refer the reader to Appendix A for a review of asymptotic notation and their common

properties.

Lemma 4.8. Let (XD
t ) be the DARPZF Markov chain on Kn, n ≥ 2, with reversion probability p ∈ (0, 1).

If bn ≥
√

n logn2+γ with γ > 0, then

lim
n→∞

|n−Eb[X
D
1 ]| = 0.

Proof. Observe En−1[X
D
1 ] = En[X

D
1 ] = n, so we may assume bn ≤ n − 2. Let bn ≥

√

n logn2+γ with

γ > 0. Throughout this proof, let

g(n, bn) = 1− q(n, bn) =

(

1− bn
n− 1

)bn

.

Using Theorem 4.7, observe that

Ebn [X
D
1 ] = (1 − p)

(

bn + (n− bn) (1− g(n, bn))
)

+ np
(

1− g(n, bn)
)n−bn

which, after distributing (n− bn) and canceling the bn terms, is equal to

(1 − p)
(

n− (n− bn)g(n, bn)
)

+ np
(

1− g(n, bn)
)n−bn

.

Now distribute the (1− p) and simplify to get

Ebn [X
D
1 ] = (1− p)n− (1 − p)(n− bn)g(n, bn) + np

(

1− g(n, bn)
)n−bn

= n− (1− p)(n− bn)g(n, bn)− np
(

1−
(

1− g(n, bn)
)n−bn

)

18



Additionally, Ebn [X
D
1 ] ≤ n because XD

1 ≤ n and so |n−Ebn [X
D
1 ]| = n−Ebn [X

D
1 ], which in turn simplifies

to

(1 − p)(n− bn)g(n, bn) + np
[

1−
(

1− g(n, bn)
)n−bn

]

.

We show that each of these two terms converge to 0 as n → ∞.

For the first term it suffices to show that ng(n, bn) → 0 as n → ∞ since n − bn and g(n, bn) are

non-negative. Recalling the Taylor expansion log(1− x) = −∑∞
k=1 x

k/k for |x| < 1 we have

g(n, bn) = exp

{

bn log

(

1− bn
n− 1

)}

= exp

{

bn

(

− bn
n− 1

−
∞
∑

k=2

bkn
k(n− 1)k

)}

= exp

{

− b2n
n− 1

}

exp

{

−
∞
∑

k=2

bk+1
n

k(n− 1)k

}

(4.16)

for all bn < n− 1. Then g(n, bn) ≤ e−b2n/(n−1) because bn > 0. Using the inequality bn ≥
√

n logn2+γ ,

(4.17) g(n, bn) ≤ exp

{

− b2n
n− 1

}

≤ exp

{

−n logn2+γ

n− 1

}

< exp

{

−n logn2+γ

n

}

= n−(2+γ).

Hence

0 ≤ (1 − p) (n− bn) g(n, bn) ≤ exp

{

− b2n
n− 1

}

n < n−(1+γ) → 0

as n → ∞.

It is left to show

lim
n→∞

np
(

1−
(

1− g(n, bn)
)n−bn

)

= 0.

Define H(n) = (n− bn) log (1− g(n, bn)) so that 1−
(

1− g(n, bn)
)n−bn

= 1− eH(n). It thus suffices to show

that n(1− eH(n)) → 0 as n → ∞. Observe

H(n) = (n− bn) log(1− g(n, bn)) ≤ 0

since 0 ≤ g(n, bn) < 1. Hence, to prove n(1 − eH(n)) → 0 it is enough to show

H(n) ≥ log
(

1− n−(1+γ)
)

for sufficiently large n, since then

0 ≤ n(1− eH(n)) ≤ n(1− (1− n−(1+γ))) = n−γ .

To this end, notice that because H(n) = (n− bn) log(1− g(n, bn)) ≤ 0 and bn ≤ n,

H(n) ≥ n log(1− g(n, bn)) = −n
∞
∑

k=1

g(n, bn)
k

k
.

We already showed in (4.17) that g(n, bn) ≤ n−(2+γ). Hence

H(n) ≥ −
∞
∑

k=1

n−k(2+γ)+1

k
≥ −

∞
∑

k=1

n−k(1+γ)

k
= log(1− n−(1+γ))
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and so n(1− eH(n)) ≤ n−γ . It follows that

np

[

1−
(

1−
(

1− bn
n− 1

)bn
)n−bn

]

= np(1− eH(n)) → 0

as n → ∞. We have shown that each term of |n−Ebn [X
D
1 ]| converges to 0 and so |n−Ebn [X

D
1 ]| → 0.

Considering the SARPZF chain (XS
t ), notice that

(1− p)n−Eb[X
S
1 ] = (1− p)(n− b)

(

1− b

n− 1

)b

.

Notice also that Eb[X
S
1 ] ≤ En[X

S
1 ] = (1 − p)n by Theorem 4.7. Following the proof of Lemma 4.8 through

(4.17), one gets the following corollary which gives a threshold for the expected number of blue vertices in

SARPZF to be close to (1 − p)n.

Corollary 4.9. Let (XS
t ) be the SARPZF Markov chain on Kn with n ≥ 2 and reversion probability

p ∈ (0, 1). If bn ≥
√

n logn1+γ with γ > 0, then

lim
n→∞

|(1 − p)n−Ebn [X
S
1 ]| = 0.

In other words, if Kn has bn = Ω(
√
n logn) blue vertices, then with constant C1 >

√
2 we expect n blue

vertices after one application of the DARPZF color change rule, and with constant C2 > 1 we expect (1−p)n

blue vertices after one application of the SARPZF color change rule. It turns out
√
n logn is the threshold

for this behavior in RPZF. Indeed, if bn = O(
√
n logn) with constant C < 1, then the expected number of

blue vertices after one step does not converge as in Lemma 4.8 or its corollary. Instead, the SARPZF and

DARPZF Markov chains on Kn converge to each other while getting arbitrarily far from n. This is made

precise in the next result.

Proposition 4.10. If bn ≤
√

n logn1−γ then for any ε > 0 there exists an N such that for any n > N ,

|Ebn [X
S
1 ]−Ebn [X

D
1 ]| < ε. Moreover, |(1− p)n−Ebn [X

S
1 ]| → ∞ and |n−Ebn [X

D
1 ]| → ∞ as n → ∞.

Proof. Let bn ≤
√

n logn1−γ with γ > 0 and let g(n, bn) =
(

1− bn
n−1

)bn
. By Theorem 4.7, to prove

|Ebn [X
S
1 ] − Ebn [X

D
1 ]| < ε for sufficiently large n, it suffices to show that np(1 − g(n, bn))

n−bn converges to

0 as n → ∞. Observe

g(n, bn) = ebn log(1− bn
n−1 ) = e

bn

(

− bn
n−1

+O

(

b2n

n2

))

= e
bn

(

− bn
n

− bn

n2
−n

+O

(

b2n

n2

))

= e−
b2n
n e

O

(

b3n

n2

)

since − bn
n2−n = O(b2n/n

2). Using the expansion ex =
∑∞

i=0 x
i/i! this is equal to

e−
b2n
n

[

1 +O
(

b3n
n2

)

+O
(

b6n
n4

)

+ · · ·
]

= e−
b2n
n

[

1 +O
(

b3n
n2

)]

.

Now apply the assumption bn ≤
√

n logn1−γ to get g(n, b) ≥ 1
n1−γ

[

1 +O
(

b3n
n2

)]

.

Turning to (1− g(n, bn))
n−bn , this can be written as

exp







−(n− bn)
∑

k≥1

g(n, bn)
k

k







≤ e−(n−bn)g(n,bn),
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and substituting −g(n, b) ≤ − 1
n1−γ

[

1 +O
(

b3n
n2

)]

gives

(1− g(n, bn))
n−bn ≤ exp

{

−(n− bn)n
−(1−γ)

[

1 +O
(

b3n
n2

)]}

.

Finally, apply bn ≤
√

n logn1−γ and simplify to find

0 ≤ (1 − g(n, bn))
n−bn ≤ exp

{

−nγ

(

1−
√

logn1−γ

√
n

)

[

1 +O
(

b3n
n2

)]

}

.

Since
√

logn1−γ/n → 0 and O(b3n/n
2) → 0 as n → ∞, we conclude that (1− g(n, bn))

n−bn = O(e−nγ

) from

which it follows that np(1− g(n, bn))
n−bn → 0 as n → ∞.

Additionally,

|n−Ebn [X
D
1 ]| ≥ (1− p)(n− bn)g(n, bn) = |(1 − p)n−Ebn [X

S
1 ]|

and from g(n, b) ≥ 1
n1−γ

[

1 +O
(

b3n
n2

)]

it follows that

(n− bn)g(n, bn) ≥
(

nγ − bn
n1−γ

)

[

1 +O
(

b3n
n2

)]

≥
(

nγ −
√

n logn1−γ

n1−γ

)

[

1 +O
(

b3n
n2

)]

= nγ

(

1−
√

n logn1−γ

n

)

[

1 +O
(

b3n
n2

)]

which tends to infinity as n → ∞.

This result, combined with Lemma 4.8, shows that
√
n logn is the threshold number of blue vertices for

DARPZF on the complete graph to fully force in one step.

Theorem 4.11. Let (XD
t ) be the DARPZF Markov chain on Kn with n ≥ 2 and reversion probability

p ∈ (0, 1).

• If bn ≤
√

n logn1−γ then |n− Ebn [X
D
1 ]| → ∞ as n → ∞, and

• if bn ≥
√

n logn2+γ then |n−Ebn [X
D
1 ]| → 0 as n → ∞.

That is,
√
n logn is a threshold function for expecting DARPZF to fully force in one step.

In fact, if bn ≥
√

n logn2+γ , then since n ≥ XD
1 ≥ 0 we have |n−Ebn [X

D
1 ]| = Ebn [|n−XD

1 |] → 0 as n → ∞.

Formally, one says that if bn ≥
√

n logn2+γ then XD
1 converges in mean to n.

The next threshold result, as a consequence of previous, states that if Kn has asymptotically greater

than
√
n logn blue vertices, then with high probabilityKn will be entirely blue after one step of the DARPZF

Markov chain. If the number of blue vertices is asymptotically below
√
n logn, then with high probability

the DARPZF chain will not have n blue vertices.

Theorem 4.12. Let (XD
t ) be the DARPZF Markov chain on Kn with reversion probability p ∈ (0, 1),

and let γ > 0.

• If bn ≤
√

n logn1−γ then Pbn [X
D
1 = n] → 0 as n → ∞, and

• if bn ≥
√

n logn1+γ, then Pbn [X
D
1 = n] → 1 as n → ∞.
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Proof. Let bn be such that 0 ≤ bn ≤ n for all n. We may assume bn ≤ n − 2 since Pn−1[X
D
1 = n] = 1.

Notice Pbn [X
D
1 = n] = q(n, bn)

n−bn = (1 − g(n, bn))
n−bn . If bn ≤

√

n logn1−γ , then in Proposition 4.10 we

showed (1 − g(n, bn))
n−bn = O(e−nγ

). Thus Pbn [X
D
1 = n] → 0 as n → ∞.

Suppose now bn ≥
√

n logn1+γ . Define H(n) = (n− bn) log (1− g(n, bn)) so that

1−
(

1− g(n, bn)
)n−bn

= 1− eH(n).

It suffices to show that 1 − eH(n) → 0 as n → ∞. Equivalently, we show H(n) ≥ log(1 − n−γ) for

sufficiently large n. The proof of this is almost identical to that in Lemma 4.8. Indeed, notice that because

H(n) = (n− bn) log(1− g(n, bn)) < 0,

H(n) > n log(1− g(n, bn)) = −n
∞
∑

k=1

g(n, bn)
k

k
.

We showed in (4.17) that if bn ≥
√

n logn1+γ then g(n, bn) ≤ n−(1+γ). Hence

H(n) > −
∞
∑

k=1

n−k(1+γ)+1

k
≥ −

∞
∑

k=1

n−kγ

k
= log(1− n−γ)

and so 1− (1 − g(n, bn))
n−bn → 0, which implies Pbn [X

D
1 = n] = (1− g(n, bn))

n−bn → 1 as n → ∞.

Since n ≥ XD
1 , this is equivalent to saying that XD

1 converges in probability to n when bn ≥
√

n logn1+γ .

Formally, Pbn [|n − XD
1 | > ε] → 0 for all ε > 0 which is equivalent to Pbn [|n − XD

1 | = 0] → 1, and so

XD
1 = n with high probability. Finally, we establish when the upper bound presented in Proposition 3.9 is

asymptotically tight.

Proposition 4.13. Let (Xt) be an RPZF Markov chain on Kn with reversion probability p. If bn ≤
√
n

logn ,

then for any ε > 0,

(1 − p)(bn + (1− ε)bn
2) ≤ Ebn [X1] ≤ (1− p)(bn + bn

2)

for n sufficiently large. In particular, if b ∈ N is fixed then Eb[X1] → (1− p)(b + b2) as n → ∞.

Proof. Since bn ≤
√
n

logn ≤ √
n logn, by Proposition 4.10 we need consider only the SARPZF chain. By

Proposition 3.9, Ebn [X1] ≤ (1 − p)(bn + b2n). Let F1 denote the number of vertices forced at time t = 1

during phase 1. Then by Proposition 3.8, Ebn [X1] = (1 − p)(bn + Ebn [F1]). The authors of [6] showed in

the proof of Theorem 3.1 that Ebn [F1] = b2n − o(b2n) when bn ≤
√
n

logn . Consequently, since b2n = o(n), for any

ε > 0, Ebn [F1] > (1 − ε)b2n for sufficiently large n. Thus Ebn [X1] > (1 − p)(bn + (1 − ε)b2n) and for fixed

b ∈ N, taking ε → 0 gives that Eb[X1] → (1 − p)(b+ b2) as n → ∞.

4.2. The balanced complete bipartite graph. The complete bipartite graph Km,n is the graph of

order m+ n whose vertices can be partitioned into two parts U = {u1, . . . , um} and V = {v1, . . . , vn} such

that the edges of the graph are uivj for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. If m = n then Kn,n is the balanced

complete bipartite graph. We will see in section 5 that Kn,n behaves very similarly to K2n in DARPZF.

This section develops some partial characterizations of the behavior of Kn,n which support this observation.

Lemma 4.14. Let Km,n have vertex partitions U and V . Suppose bU vertices in U are blue and bV
vertices in V are blue. The the probability that U forces V entirely blue in one step is

P[U → V ] =

(

1−
(

1− bV + 1

|V |

)bU
)|V |−bV

.
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Proof. Let B be the set of blue vertices in Km,n. Let u ∈ U ∩B be blue and v ∈ V \ (B ∩ V ) be white.

Then

P[u → v] =
|N [u] ∩B|

deg u
=

bV + 1

|V |

and so the probability that v is forced by some vertex in U is

P[U → v] = 1−P[U 6→ v] = 1−
∏

u∈U∩B

P[u 6→ v] = 1−
(

1− bV + 1

|V |

)bU

.

Thus

P[U → V ] =
∏

v∈V \(B∩V )

P[U → v] =

(

1−
(

1− bV + 1

|V |

)bU
)|V |−bV

.

We now give an upper bound for the threshold number of blue vertices to fully force the balanced

complete bipartite in one step with high probability, starting from one of two cases. The first case is when

the vertex parts U and V of Kn,n have the same number of blue vertices, and the second is when, without

loss of generality, U is entirely blue and V is minimally blue.

Proposition 4.15. Let Kn,n have vertex parts U and V with at least bUn and bVn blue vertices in U and

V , respectively.

• If bUn ≥
√

n logn1+γ1 and bVn ≥
√

n logn1+γ2 for any γ1, γ2 > 0, then with high probability Kn,n is

blue after one application of the DARPZF color change rule.

• If bUn = n and bVn ≥ log(n1+γ) for any γ > 0, then with high probability Kn,n is blue after one

application of the DARPZF color change rule.

Proof. Suppose first bUn ≥
√

n logn1+γ1 and bVn ≥
√

n logn1+γ2 for some γ1, γ2 > 0. Let γ = min{γ1, γ2}.
We may assume U and V each have bn ≥

√

n logn1+γ blue vertices because the probability of fully forcing

in one step monotonically increases in both bVn and bUn . Since the events {U → V } and {V → U} are

independent (when both occuring at time t), the probability that Kn,n is blue after one step of DARPZF is

P[U → V ]P[V → U ] =





(

1−
(

1− bn + 1

n

)bn
)n−bn





2

=

(

1−
(

1− bn + 1

n

)bn
)2n−2bn

by Lemma 4.14. Call this probability P (bn). We wish to show P (bn) → 1 as n → ∞. Note that P (bn) = 1

if bn = n so assume bn ≤ n− 1. Define f(n, bn) =
(

1− bn+1
n

)bn
and let H(n) = (2n− 2bn) log(1− f(n, bn)).

Then P (bn) = eH(n) and so P (bn) → 1 if H(n) → 0. Observe that H(n) < 0 and hence

H(n) > 2n log(1− f(n, bn)) = −2n

∞
∑

k=1

f(n, bn)
k

k
.

Now in the style of Theorem 4.12, if f(n, bn) ≤ n−(1+γ) then

H(n) > −2
∞
∑

k=1

n−k(1+γ)+1

k
≥ −2

∞
∑

k=1

n−kγ

k
= 2 log(1 − n−γ) → 0
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as n → ∞. To see that f(n, bn) ≤ n−(1+γ), observe

f(n, bn) = exp

{

bn log

(

1− bn + 1

n

)}

= exp

{

−bn

∞
∑

k=1

(bn + 1)k

knk

}

= exp

{

−bn
bn + 1

n

}

exp

{

−bn

∞
∑

k=2

(bn + 1)k

knk

}

which is bounded above by e−b2n/n since bn > 0. Then because bn ≥
√

n logn1+γ ,

f(n, bn) ≤ e−b2n/n ≤ n−(1+γ).

Hence H(n) < 0 implies H(n) → 0 and thus P (bn) = eH(n) → 1 as n → ∞.

Now assume bUn = n and bVn ≥ log(n1+γ) for some γ > 0. Then the probability that Kn,n is entirely blue

after one step of DARPZF is

P[U → V ] =

(

1−
(

1− bVn + 1

n

)n)n−bVn

.

Let f(n, bVn ) =
(

1− bVn +1
n

)n

and H(n) = (n− bVn ) log(1− f(n, bVn )). Notice that f differs from before in the

exponential. Like before, it suffices to show that f(n, bVn ) ≤ n−(1+γ) because then

H(n) > n log(1 − f(n, bVn )) = −n

∞
∑

k=1

f(n, bVn )

k
≥ −

∞
∑

k=1

n−kγ

k
= log(1− n−γ).

Now,

f(n, bVn ) = exp

{

n log

(

1− bVn + 1

n

)}

= exp

{

−n

∞
∑

k=1

(bVn + 1)k

knk

}

= exp

{

−n
bVn + 1

n

}

exp

{

−n

∞
∑

k=2

(bVn + 1)k

knk

}

which is bounded above by e−bVn since bVn > 0. Then because bVn ≥ logn1+γ it follows that f(n, bVn ) ≤ n−(1+γ).

Thus, 0 > H(n) > log(1− n−γ) → 0 and so P[U → V ] = eH(n) → 1 as n → ∞.

This result supports the claim that when n is large and the number of blue vertices is balanced, Kn,n behaves

similarly to K2n.

4.3. The star graph. The star graph on n vertices is K1,n−1 and the singleton vertex is called the

universal vertex because it is adjacent to all other vertices. In this section we show that the star graph

exhibits a large threshold value for one-step forcing. Let K1,n−1 be the star graph on n vertices with

universal vertex v and set of currently blue vertices B. Notice that if |B| = b ≤ n − 2, the only way for

K1,n−1 to be forced in one step is if v ∈ B because v is the only neighbor of white degree 1 vertices. Hence,

when calculating the one-step threshold for K1,n−1 we need consider only when v ∈ B. In that case, K1,n−1

is fully forced in one step with probability

P[v → V (K1,n−1) \B] =

(

b

n− 1

)n−b

.

This lets us calculate the one-step expected values for the star.
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Lemma 4.16. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on K1,n−1 with uni-

versal vertex v. If v blue at time t = 0, then

Eb[X
S
1 ] = (1− p)

(

b+ (n− b)

(

b

n− 1

))

and

Eb[X
D
1 ] = Eb[X

S
1 ] + np

(

b

n− 1

)n−b

.

Proof. Let w1, . . . , wn−b denote the white vertices. Then by Proposition 3.8,

Eb[X
S
1 ] = (1− p)

(

b+ (n− b)Pb[v → wi]
)

= (1− p)

(

b+ (n− b)

(

b

n− 1

))

.

Using the same approach as that in Theorem 4.7, one also calculates

Eb[X
D
1 ] = Eb[X

S
1 ] + np

(

b

n− 1

)n−b

.

Observe that if K1,n−1 has bn = n− 1− C vertices blue, then

P[v → V (K1,n−1) \B] =

(

1− C

n− 1

)1+C

→ 1

as n grows to infinity. This turns out to be the threshold for fully forcing in DARPZF: if the distance

between n and bn is unbounded, then with high probability K1,n−1 is not fully forced in the next step.

Theorem 4.17. Let (XD
t ) be the DARPZF Markov chain on K1,n−1 with universal vertex v and rever-

sion probability p ∈ (0, 1). When v is blue, we have the following:

• if bn = n− 1− C for some constant C ∈ N, then |n−Ebn [X
D
1 ]| → pC(C + 1) as n → ∞, and

• if bn = n− 1− ω(1), then |n−Ebn [X
D
1 ]| → ∞ as n → ∞.

Proof. Let (XD
t ) be the DARPZF Markov chain on K1,n−1 with reversion probability p ∈ (0, 1), let

0 ≤ bn ≤ n−1, and let v denote the universal vertex. Assume v is blue. If we replace g(n, bn) =
(

1− bn
n−1

)bn

with 1− bn
n−1 in the proof of Lemma 4.8, then we may simplify n−Ebn [X

D
1 ] as

n−Ebn [X
D
1 ] = (1 − p)(n− bn)

(

1− bn
n− 1

)

+ np

[

1−
(

bn
n− 1

)n−bn
]

.(4.18)

Suppose bn = n− 1− C for some constant C ≥ 0. Then

n−Ebn [X
D
1 ] = (1 − p)(n− (n− 1− C))

(

1− n− 1− C

n− 1

)

+ np

(

1−
(

n− 1− C

n− 1

)n−(n−1−c)
)

= (1 − p)(1 + C)
C

n− 1
+ p

(

n− n

(

1− C

n− 1

)C+1
)

.
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It is immediate that (1− p)(1 +C) C
n−1 → 0 as n → ∞. To see that p

(

n− n
(

1− C
n−1

)C+1
)

→ pC(C +1),

observe

n− n

(

1− C

n− 1

)C+1

= n− n

C+1
∑

k=0

(−1)k
(

C + 1

k

)(

C

n− 1

)k

= n− n+ n(C + 1)
C

n− 1
− n

C+1
∑

k=2

(−1)k
(

C + 1

k

)(

C

n− 1

)k

= C(C + 1)
n

n− 1
+O(n−1).

Taking n → ∞ gives n−Ebn [X
D
1 ] → pC(C + 1).

On the other hand, suppose bn = n− 1− fn with fn = ω(1). We want to show

n−Ebn [X
D
1 ] = (1− p)(n− bn)

(

1− bn
n− 1

)

+ np

[

1−
(

bn
n− 1

)n−bn
]

→ ∞

If fn = ω(
√
n) then

(1− p)(n− bn)

(

1− bn
n− 1

)

= (1− p)(1 + fn)
fn

n− 1
= (1− p)

fn + f2
n

n− 1
→ ∞,

so assume fn = O(
√
n). Notice

np

[

1−
(

bn
n− 1

)n−bn
]

= np

[

1−
(

1− fn
n− 1

)1+fn
]

and so define hn(x) = x1+fn . Now h′
n(x) = (1+fn)x

fn and then applying Taylor’s theorem to hn(x) around

x0 = 1,

hn(x) = hn(1) + h′
n(ξ)(x − 1)

for some ξ ∈ (x, 1). Thus

hn

(

1− fn
n− 1

)

= 1− (1 + fn)ξ
fn
n

fn
n− 1

for some ξn ∈
(

1− fn
n−1 , 1

)

and it follows that

np

[

1−
(

bn
n− 1

)n−bn
]

= np

[

1− hn

(

1− fn
n− 1

)]

= np

[

(1 + fn)ξ
fn
n

fn
n− 1

]

.

which simplifies to np
n−1ξ

fn
n (fn + f2

n). By definition, fn + f2
n → ∞ when fn = ω(1). However, ξfnn must be

accounted for; if we can show ξfnn ≥ M for some constantM > 0 not dependent on n, then np
n−1ξ

fn
n (fn+f2

n) ≥
np
n−1M(fn + f2

n) → ∞ as desired. Recall ξn ∈
(

1− fn
n−1 , 1

)

and so ξfnn >
(

1− fn
n−1

)fn
. Observe

(

1− fn
n− 1

)fn

= exp

{

fn log

(

1− fn
n− 1

)}
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and using the Taylor expansion log(1 − x) = −∑∞
k=1 x

k/x for |x| < 1,

fn log

(

1− fn
n− 1

)

= −fn
∑

k≥1

1

k

(

fn
n− 1

)k

= −
∑

k≥1

fk+1
n

k(n− 1)k
.

It follows from fn = O(
√
n) that

fn log

(

1− fn
n− 1

)

= O(1)

and so there exists an M > 0 independent of n such that for sufficiently large n,
∣

∣

∣fn log
(

1− fn
n−1

)∣

∣

∣ < M.

Equivalently,
(

1− fn
n−1

)fn
> e−M . Thus ξn ∈

(

1− fn
n−1 , 1

)

implies ξfnn >
(

1− fn
n−1

)fn
> e−M > 0 and so

np

[

1−
(

bn
n− 1

)n−bn
]

=
2np

n− 1
ξfnn (fn + f2

n) → ∞

since fn = ω(1).

It is left to consider when fn 6= O(
√
n) and fn 6= ω(

√
n). In this case, define gn = supm≥n fm. Then

gn ≥ fn and thus n− 1 − fn ≥ n − 1 − gn. Since Ebn [X
D
1 ] monotonically increases in bn (keeping v blue),

it suffices to show that n−En−1−gn [X
D
1 ] → ∞. We claim that gn = ω(

√
n). Indeed, let M > 0 and N ∈ N

be arbitrary. Because fn 6= O(
√
n), there exists an n0 > N such that fn0

> M
√
n0. Then

gN = sup
m≥N

fm ≥ fn0
> M

√
n0 > M

√
N

and so gn = ω(
√
n). It follows from before that n−En−1−gn [X

D
1 ] → ∞ and so n−En−1−fn [X

D
1 ] → ∞.

Observe that |n−Ebn [X
D
1 ]| = Ebn [|n−XD

1 |] since n ≥ Ebn [X
D
1 ] and so Theorem 4.17 says XD

1 converges

in mean to n exactly when bn = n − 1 for sufficiently large n. As a consequence, XD
1 converges to n in

probability and hence XD
1 = n with high probability.

5. DARPZF Simulations and Approximations. Consider the DARPZF chain onKn with reversion

probability p ∈ (0, 1). Using Theorem 3.6 we calculate pD(Kn, S1), the reversion probability such that Kn

has equal probability to either die out or fully force when starting from a single blue vertex, for small n.

n pD(Kn, S1) n pD(Kn, S1) n pD(Kn, S1) n pD(Kn, S1)

3 .6 8 0.427761 13 0.433535 18 0.435628

4 0.466548 9 0.429115 14 0.434157 19 0.43585

5 0.437779 10 0.43052 15 0.434648 20 0.43604

6 0.428853 11 0.431747 16 0.435042 21 0.436203

7 0.427101 12 0.432745 17 0.435363 22 0.436346

Table 1

Exact calculations of the critical reversion probability for the complete graph

These values are calculated from Mathematica’s symbolic matrix operations. We can further estimate

pD(Kn, S1) for larger n to arbitrary levels of precision, as provided in Table 2. Going beyond the critical

reversion probability for the complete graph, Figures 1 and 2 approximate the expected time of absorption

for various graphs using Monte Carlo simulations, starting from a single blue vertex. Let V = {v1, . . . , vn}
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n pD(Kn, S1) n pD(Kn, S1)

12 0.43274± 0.00001 96 0.43805± 0.00005

16 0.43505± 0.00005 128 0.43815± 0.00005

32 0.43715± 0.00005 156 0.43818± 0.00005

64 0.4379± 0.00005 192 0.4382± 0.00005
Table 2

Numerically approximated critical reversion probability for the complete graph.

be a set of vertices. The path graph Pn is the graph with edges vivi+1 for 1 ≤ i ≤ n − 1. The endpoints

are v1 and vn, and the midpoint is v⌈n/2⌉. The cycle graph is a path with the additional edge vnv1. When

simulating DARPZF on the path, starting from an endpoint and starting from a midpoint has a noticeable

affect on the expected time to absorption.
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Figure 1. Monte Carlo simulations of DARPZF on the cycle, path, and star on 32 vertices, starting from a single vertex.

Finally, Figure 3 presents Monte Carlo simulations of DARPZF on different 32 vertex graphs starting

from one blue vertex. Notice that when the reversion probability p > 0.4, the cycle, path, and star die out

with probability nearly one. On the other hand, the highly connected complete graph and balanced complete

bipartite graph don’t reach the same level die out until p > 0.75 and p > 0.7, respectively.

The critical reversion probability when starting at a single vertex can also be estimated from Figure 3.

Observe that for the cycle, path, and star graphs, the p which maximizes etaD(G; p) in Figure 1 closely

aligns with the approximate pD(G, {v}) from Figure 3. On the other hand, the maximums of etaD(K32; p)

and etaD(K16,16; p) occur at a p noticeably smaller than their respective critical reversion probabilities. In

the case of the complete graph, we know from Theorem 4.11 that only a small percentage of vertices are

needed to have a high chance of forcing the entire graph blue. Compare this with the cycle or path graph,

where the threshold for one-step fully forcing is of order n. Indeed, at least one third of the vertices must

be blue to even have a non-zero probability to fully force the cycle or path in one step.
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Figure 2. Monte Carlo simulations of DARPZF on K32 and K16,16 compared to exact calculations for K32, starting

from a single vertex.

When trying to explain the difference in RPZF graph behavior, one can also also consider their expected

propagation times in traditional PZF. The cycle and path are expected to take Θ(n) steps to force in PZF

[10]. Contrast this with the complete graph which has an expected propagation time of Θ(log logn) steps

[6]. The cycle and path thus have more time to be stymied by the reversion of blue vertices in RPZF, which

may result in longer-lasting oscillations of white and blue vertices. The complete graph, on the other hand,

forces significantly more quickly and so does not as easily fall into an oscillation of white and blue vertices.
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Figure 3. Monte Carlo simulations of DARPZF on the cycle, path, star, and balanced complete bipartite graphs on 32

vertices, starting from a single blue vertex.
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In RPZF, both the one step threshold and expected propagation time are a means of quantifying how

“hard” a graph is to fully force. This is in contrast to traditional PZF where propagation time does not

correlate to difficulty. Indeed, consider the path or cycle on n vertices when starting from a single blue

vertex. These graphs require only a single force to become deterministic in nature, but will always take at

least n/2 rounds to fully force.

When starting from a single vertex, Figures 2 and 3 indicate that the balanced complete bipartite

graph behaves much more like the complete graph than the star graph (a severely “unbalanced” complete

bipartite graph). This observation is supported by Proposition 4.15 which gives the one-step forcing thresh-

old for Kn/2,n/2 as order O
(

√

n log(n/2)
)

, which is comparable to the Kn threshold of Θ
(√

n logn
)

and

significantly smaller than the K1,n−1 threshold of n− 1− o(1) from Theorem 4.17.

Appendix A. Background Analysis and Probability. Let f(n) and g(n) be functions from the

nonnegative integers to the real numbers, where g is strictly positive for sufficiently large input. Write

f = O(g) if there exists constants C,N > 0 such that for all n > N , |f(n)| ≤ Cg(n) and write f = o(g) if

for all C > 0 there exists an N > 0 such that for all n > N , |f(n)| < Cg(n). Symmetrically, f = Ω(g) if

there exists constants C,N such that for all n > N , f(n) ≥ Cg(n) and f = ω(g) if for all C > 0 there exists

an N > 0 such that for all n > N , f(n) > Cg(n). That is, f = O(g) if and only if g = Ω(f) and f = o(g)

if and only if g = ω(f). One can also define this notions in terms of limit behavior. Namely, f = o(g) when

limn→∞
f(n)
g(n) = 0 and f = ω(g) if limn→∞

f(n)
g(n) = ∞. We refer the reader to e.g. [7] for a more thorough

introduction to asymptotic notation.

We shall make use of the following standard facts about asymptotic notation. Let f and g be real-valued

functions.

Fact A.1. If f = o(g) then f = O(g), and if f = ω(g) then f = Ω(g). Moreover, f = O(f) and

f = Ω(f).

Fact A.2. O(f)O(g) = O(fg) and Ω(f)Ω(g) = Ω(fg). Moreover, o(f)O(g) = o(fg) and ω(f)Ω(g) =

ω(fg).

Fact A.3. If f = O(g), then O(f) +O(g) = O(g).

Fubini’s theorem gives a condition for switching the order of integration in a double integral. As a

consequence, is it gives a condition for interchanging the order of infinite sums.

Theorem A.4 (Fubini’s theorem). Let f : R2 → R be measurable. If
∫

R2

|f | < ∞

then
∫

R

(∫

R

f(x, y) dx

)

dy =

∫

R

(∫

R

f(x, y) dy

)

dx =

∫

R2

f.

In particular, if f : N2 → R is such that
∑

(n,m)∈N2

|f(n,m)| < ∞,

then ∞
∑

n=0

∞
∑

m=0

f(n,m) =

∞
∑

m=0

∞
∑

n=0

f(n,m) =
∑

(n,m)∈N2

f(n,m).
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