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NEW EXOTIC EXAMPLES OF RICCI LIMIT SPACES

XILUN LI, YANAN YE, AND SHENGXUAN ZHOU

Abstract. For any integersm > n > 3, we construct a Ricci limit spaceXm,n such that
for a fixed point, some tangent cones are Rm and some are Rn. This is an improvement
of Menguy’s example [Men01].
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1. Introduction

Consider the measured Gromov-Hausdorff limit spaces as following:

(Mn
i , gi, νi, pi)

GH
−→ (Xk, d, ν, p), Ricgi > −λ, νi =

1

Vol(B1(pi))
dVolgi,

where k ∈ N is the rectifiable dimension of (X, d, ν), which is the unique integer k such
that the limit is k-rectifiable. The existence of such a k is proved by Colding-Naber[CN12].
Moreover, the strong regular set Rk(X) is a ν-full measure set. Actually, there are two
versions of regular sets on X [CC97]. For l = 1, · · · , k, the weak regular set of (X, d) can
be defined by

WRl(X) =
{

x ∈ X : there exists a tangent cone at x isometric to R
l
}

,

and the strong regular set of (X, d) can be defined by

Rl(X) =
{

x ∈ X : every tangent cone at x isometric to R
l
}

.

Cheeger-Colding[CC97] shows that in the noncollapsing case, i.e. Vol(B1(pi)) > v > 0
uniformly, two versions coincide. Moreover, the rectifiable dimension and the Haus-
dorff dimension of the limit space are both equal to n. However, in collapsing case,
i.e. Vol(B1(pi)) → 0, many things are quite different. Pan-Wei[PW22] shows that the
Hausdorff dimension may be larger than the rectifiable dimension, and the Hausdorff
dimension can be non-integers. Menguy[Men01] shows that the weak regular set may
be not equal to the strong regular set. However, it is still not known whether the inter-
section of weakly regular sets of different dimensions can be non-empty. In this paper,
we construct the first example that shows that the intersection of weakly regular sets of
different dimensions can be non-empty. This is an improvement of Menguy’s example
[Men01].
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Theorem 1.1. Let m > n > 2 be integers. Then there exists a sequence of (m+ n+ 3)-
dimensional complete Riemannian manifolds (Mi, gi, pi) with Ricgi > 0 converging to

(Xm+1,n+1, d, x), such that

WRm+1(X) ∩WRn+1(X) 6= ∅.

Remark 1.2. For this example, the rectifiable dimension is m+ n+ 1.

Acknowledgements We want to express our sincere gratitude to our advisor, Pro-
fessor Gang Tian, for his helpful suggestions, patient guidance and revision of the earlier
verison. We are also grateful to Wenshuai Jiang for suggesting this problem. Authors
are supported by National Key R&D Program of China 2020YFA0712800.

2. Triple warped products

In this section, we recall the Ricci curvature of triple warped products.
Let ϕ, φ, ρ be smooth nonnegative functions on [0,∞) such that ϕ, φ, ρ are positive on

(0,∞),

φ(0) > 0, φ(odd)(0) = 0, ρ(0) > 0, ρ(odd)(0) = 0,(2.1)

and

ϕ(0) = 0, ϕ′(0) = 1, ϕ(even)(0) = 0.(2.2)

Then we can define a Riemannian metric on Rm+1 × Sn × S2 by

gϕ,φ,ρ(r) = dr2 + ϕ(r)2gSm + φ(r)2gSn + ρ(r)2gS2 .

See also [Pet16, Proposition 1.4.7] for more details.
Write X0 =

∂
∂r
, X1 ∈ TSm , X2 ∈ TSn, and X3 ∈ TS2. Then the Ricci curvature of gϕ,φ,ρ

can be expressed as following.

Lemma 2.1. Let ϕ, φ, ρ and gϕ,φ,ρ be as above. Then the Ricci curvature tensors of gϕ,φ,ρ
can be determined by

Ricgϕ,φ,ρ
(X0) = −

(

m
ϕ′′

ϕ
+ n

φ′′

φ
+ 2

ρ′′

ρ

)

X0,(2.3)

Ricgϕ,φ,ρ
(X1) =

[

−
ϕ′′

ϕ
+ (m− 1)

1− (ϕ′)2

ϕ2
− n

ϕ′φ′

ϕφ
− 2

ϕ′ρ′

ϕρ

]

X1,(2.4)

Ricgϕ,φ,ρ
(X2) =

[

−
φ′′

φ
+ (n− 1)

1− (φ′)2

φ2
−m

ϕ′φ′

ϕφ
− 2

φ′ρ′

φρ

]

X2,(2.5)

Ricgϕ,φ,ρ
(X3) =

[

−
ρ′′

ρ
+

1− (ρ′)2

ρ2
−m

ϕ′ρ′

ϕρ
− n

φ′ρ′

φρ

]

X3.(2.6)

Proof. One can conclude it by a straightforward calculation. See also [Pet16, Subsection
4.2.4]. �

Lemma 2.2. Define a Riemannian metric on (0,∞)× Sm × Sn × Sk by

gϕ,φ,ρ(r) = dr2 + ϕ(r)2gSm + φ(r)2gSn + ρ2(r)gSk .
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If ϕ(r) = a1r + b1 and φ(r) = ρ(r) = a2r + b2, then the Ricci curvature is

Ric(g1)00 = 0,

Ric(g1)11 =
[(m− 1)− (m+ n+ k − 1)a21]a2r + (m− 1)b2 − [(m− 1)a1b2 + (n+ k)a2b1]a1

(a1r + b1)2(a2r + b2)
,

Ric(g1)22 =
[(n− 1)− (m+ n + k − 1)a22]a1r + (n− 1)b1 − [(n+ k − 1)a2b1 +ma1b2]a2

(a1r + b1)(a2r + b2)2
,

Ric(g1)33 =
[(k − 1)− (m+ n + k − 1)a22]a1r + (k − 1)b1 − [(n+ k − 1)a2b1 +ma1b2]a2

(a1r + b1)(a2r + b2)2

3. Construction of the local model spaces

In this section, we construct some local model spaces by triple warped products.

3.1. Model I. At first, we construct a metric gϕ,φ,ρ on (0,∞)× Sm × Sn × S2 such that
the asymptotic cone is C(Sm

k × S
n
k), and the topology near r = 0 is homeomorphic to

Rm+1 × Sn × S2.

Lemma 3.1. Let m,n > 2. For any 0 < ǫ ≤ 1
100

, 0 < δ ≤ δ0(m,n, ǫ) and 0 <
k < k0(m,n), there exist constants R(m,n, ǫ, δ, k) > 0 and positive functions ϕ, φ, ρ on

(0,∞), such that

ϕ|(0,1) = (1− ǫ)r, φ|(0,1) = δ, ρ′|(0,1) = 0,
ϕ|[R,+∞) = kr, φ|[R,+∞) = kr, ρ′|[R,+∞) = 0,

and Ricgϕ,φ,ρ
> 0.

Proof. We denote M = Rm+1 × Sn × S2. Let us begin with the initial metric

g0(r) = dr2 + (1− ǫ)2r2gSm + δ2gSn + δ2gS2,

Step1: Constructing g1. Set U1 = {r ≤ 2} and R1 = 100. We will define a metric
g1 by modifying g0 on M\U1 through the ansatz

g1(r) = dr2 + ϕ(r)2gSm + φ(r)2gSn + ρ(r)2gS2 .

Let 0 < δ1(m,n, δ) < 1 be a constant to be determined later. By smoothing out the
function min{δ, δ + k(r −R1)} near r = R1, we can build a smooth function φ(r)

φ(r) =











δ if r ≤ 10−1R1

0 < R1φ
′′ < δ1 if 10−1R1 ≤ r ≤ 10R1

δ + δ1(r − R1) if 10R1 ≤ r.

By smoothing out the function min{δ, δ+δ1(r−R1)} near r = R1, we can build a smooth
function ρ(r) satisfying

ρ(r) =











δ if r ≤ 10−1R1

0 < R1ρ
′′ < δ1 if 10−1R1 ≤ r ≤ 10R1

δ + δ1(r − R1) if 10R1 ≤ r,

respectively. Similarly, by smoothing out the function min{(1−ǫ)r,min{(1−ǫ)R1+k(r−
R1)} near r = R1, we can build a smooth function ϕ(r) satisfying

ϕ(r) =



















(1− ǫ)r if r ≤ 20−1R1

ϕ′′ < 0 if 20−1R1 ≤ r ≤ 10−1R1

R1ϕ
′′ < −1−ǫ−k

100
if 10−1R1 ≤ r ≤ 10R1

(1− ǫ)R1 + k(r − R1) if 10R1 ≤ r
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For r ≤ 10−1R1, we have k ≤ ϕ′ ≤ 1− ǫ since ϕ′′ ≤ 0. And then

Ric(g1)00 = −m
ϕ′′

ϕ
> 0,

Ric(g1)11 > −
ϕ′′

ϕ
+ (m− 1)

ǫ(2− ǫ)

ϕ2
> 0,

Ric(g1)22 =
n− 1

δ2
> 0,

Ric(g1)33 =
1

δ2
> 0,

where Ric(g1)ii = Ricg1(Xi, Xi) defined in Lemma 2.1.
To estimate the Ricci curvature in the interval [R1/10, 10R1], we will use the following

facts

0 < ρ′′ <
δ1
R1

, 0 ≤ ρ′ ≤ δ1, δ ≤ ρ ≤ δ + 9δ1R1,

0 < φ′′ <
δ1
R1

, 0 ≤ φ′ ≤ δ1, δ ≤ φ ≤ δ + 9δ1R1,

1− ǫ− k

100R1

< −ϕ′′, k ≤ ϕ′ ≤ 1− ǫ,
(1− ǫ)R1

20
≤ ϕ ≤ (1− ǫ+ 9k)R1.

Then we have

Ric(g1)00 >
1

R1

[

m(1 − ǫ− k)

100R1(1− ǫ+ 9k)
−

(n+ 2)δ1
δ

]

,

Ric(g1)11 >
1

R1

[

1− ǫ− k

100R1(1− ǫ+ 9k)
+

(m− 1)ǫ(2− ǫ)

R1(1− ǫ+ 9k)2
−

20(n+ 2)δ1
(1− ǫ)δ

]

,

Ric(g1)22 >
(n− 1)(1− δ21)

(δ + 9δ1R1)2
−

δ1
R1δ

(10m+ 1 + 2
R1δ1
δ

),

Ric(g1)33 >
1− δ21

(δ + 9δ1R1)2
−

δ1
R1δ

(10m+ 1 + 2
R1δ1
δ

).

If 0 < k < 10−2, δ1 6 δ1(m,n, δ), then we have Ric > 0 in [10−1R1, 10R1].
Apply Lemma 2.2, where a1 = k, a2 = δ1, b1 = R1(1− ǫ− k), b2 = δ − R1δ1, then we

know that the Ricci curvature is non-negative for all r > 0 if k 6 k(m,n), δ1 6 δ1(m,n, δ).
Now we build a metric g1 satisfying the initial condition we stated and have the property

that

g1(r) = dr2 + [kr +R1(1− ǫ− k)]2 gSm + (δ1r + δ − R1δ1)
2 gSn + (δ1r + δ − R1δ1)

2 gS2,

for r > 10R1.
Step2: Constructing g2. Set R2 = 103R1, and U2 = {r 6 10R1}. We will define a

metric g2 by modifying g1 on M\U2 through the ansatz

g2(r) = dr2 + [kr +R1(1− ǫ− k)]2 gSm + (δ1r + δ − R1δ1)
2 gSn + ρ(r)2gS2,

For 0 < s << 1 to be determined later, we consider ρ(r) by smoothing the function
min{δ1r + δ − R1δ1, (δ1R2 + δ − R1δ1)(

r
R2

)s)} at R2 with the following properties

ρ(r) =











δ1r + δ − R1δ1 if r 6 10−1R2,

ρ′′ 6 0 if 10−1R2 6 r 6 10R2,

ars if r > 10R2,
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where a = (δ1R2 + δ −R1δ1)R
−s
2 .

For r ∈ [10−1R2, 10R2], we have

ρ′′ 6 0, sa(10R2)
s−1 6 ρ′ 6 δ1, δ 6 ρ 6 20δ.

Then we have

Ric(g2)00 = −2
ρ′′

ρ
> 0,

Ric(g2)11 > (m− 1)
1− k2

ϕ2
− (n+ 2)

kδ1
δϕ

> ϕ−2

[

m− 1

2
− k(n+ 2)(10kR2 +R1)

δ1
δ

]

,

Ric(g2)22 > (n− 1)
1− δ21
φ2

−
mkδ1
φ

−
2δ21
δφ

> φ−2

[

n− 1

2
− (mk + 2

δ1
δ
)δ1(10δ1R2 + δ)

]

,

Ric(g2)33 >
1− δ21
ρ2

−
mkδ1
ρ

−
nδ21
δρ

> ρ−2

[

1

2
− 20(mkδ1δ + nδ21)

]

.

So Ric > 0 for r ∈ [10−1R2, 10R2] if δ1/δ 6 c(m,n).
For r > 10R2,

Ric(g2)00 = −2
ρ′′

ρ
> 0,

Ric(g2)11 > (m− 1)
1− k2

ϕ2
−

nk

rϕ
−

2sk

rϕ
> (rϕ2)−1

[

m− 1

2
r − k(n+ 2s)(kr +R1)

]

,

Ric(g2)22 > (n− 1)
1− δ21
φ2

−
mδ1
rφ

−
2sδ1
rφ

> (rφ2)−1

[

n− 1

2
r − δ1(m+ 2s)(δ1r + δ)

]

,

Ric(g2)33 >
s(1− s)

r2
+

1− δ21
a2r2s

−
ms

r2
−

ns

r2
>

R2−2s
2

2a2r2
−

(m+ n)s

r2
.

If 0 < s < s(m,n), Ric(g2) > 0 for all r > 0.
Now we build a metric g2 satisfying the initial condition we stated and have the property

that

g2(r) = dr2 + [kr +R1(1− ǫ− k)]2 gSm + (δ1r + δ − R1δ1)
2 gSn + (ars)2 gS2 ,

for r > 10R2.
Step3: Constructing g3. Set U3 = {r 6 10R2}. We will define a metric g3 by

modifying g2 on M\U3 through the ansatz

g3(r) = dr2 + ϕ(r)2gSm + φ(r)2gSn + (ars)2 gS2.

For R3 = R3(m,n, δ, δ1, k, s), we can choose smooth functions ϕ(r) and φ(r) satisfying

ϕ(r) =











kr + b1 if r ≤ 10−1R3

|ϕ′| < 2k, |rϕ′′| < R−1
3 if 10−1R3 ≤ r ≤ 10R3

kr if 10R3 ≤ r.

φ(r) =











δ1r + b2 if r ≤ 10−1R3

|φ′| < 2k, |rφ′′| < R−1
3 , |φ′/φ| < 10r−1 if 10−1R3 ≤ r ≤ 10R3

kr if 10R3 ≤ r,

respectively, where b1 = R1(1− ǫ− k), b2 = δ −R1δ1.
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For r ∈ [10−1R3, 10R3],

Ric(g3)00 >
2s(1− s)

r2
−

mR−1
3

kr2
−

nR−1
3

δ1r2
,

Ric(g3)11 > (m− 1)
1− 4k2

ϕ2
−

R−1
3

rϕ
−

20nk

rϕ
−

4ks

rϕ
> (rϕ2)−1

[

m− 1

2
r − 100nk(kr + b1)

]

,

Ric(g3)22 > (n− 1)
1− 4k2

φ2
−

R−1
3

rφ
−

20mk

rφ
−

4ks

rφ
> (rφ2)−1

[

n− 1

2
r − 100mk2r

]

,

Ric(g3)33 >
1− δ21
a2r2s

−
20(m+ n)s

r2
.

Then Ric > 0 for r ∈ [10−1R3, 10R3] after choosing R−1
3 < δ1/(100δ).

For r > 10R3,

Ric(g3)00 =
2s(1− s)

r2
> 0,

Ric(g3)11 =
(m− 1)(1− k2)

k2r2
−

n+ 2s

r2
> 0,

Ric(g3)22 =
(n− 1)(1− k2)

k2r2
−

m+ 2s

r2
> 0,

Ric(g3)33 =
s(1− s)

r2
+

1− s2a2r2s−2

a2r2s
−

s(m+ n)

r2
> 0.

Now we build a metric g3 with Ric(g3) > 0 satisfying the initial condition we stated
and have the property that

g3(r) = dr2 + (kr)2gSm + (kr)2gSn + (ars)2 gS2,

for r > 10R3.
Step4: Constructing g4. Set U4 = {r 6 10R3}. We will define a metric g4 by

modifying g3 on M\U4 through the ansatz

g4(r) = dr2 + (kr)2gSm + (kr)2gSn + ρ(r)2gS2.

Then the Ricci curvature of this ansatz is

Ric(g4)00 = −
2ρ′′

ρ
,

Ric(g4)11 =
(m− 1)(1− k2)

k2r2
−

n

r2
−

2ρ′

rρ
,

Ric(g4)22 =
(n− 1)(1− k2)

k2r2
−

m

r2
−

2ρ′

rρ
,

Ric(g4)33 = −
2ρ′′

ρ
+

1− ρ′2

ρ2
−

(m+ n)ρ′

rρ
.

We can choose ρ(r) of the form

ρ(r) =











ars if r ≤ 10R3

ρ′′ 6 0 if 10R3 ≤ r ≤ 103R3

λ if 103R3 ≤ r,

for some λ = λ(a, R3). Then it’s easy to see that Ric > 0 for any r > 0. Moreover, for
R = 104R3, the last metric g4 satisfies all the properties we stated.

�



NEW EXOTIC EXAMPLES OF RICCI LIMIT SPACES 7

3.2. Model II. Next we construct a metric gϕ,φ,ρ on (0,∞)×Sm×Sn×S2 such that the
metric around ∞ is isometric to C(Sm

1−ǫ)× Sn
δ × S2

ρ

Lemma 3.2. Let m,n > 2. Then for any 0 < ǫ ≤ 1
100

, λ > 0, 0 < k < k0(m,n), there
are constants R(m,n, k, ǫ) > 0, δ(m,n, k, ǫ) > 0 and positive functions ϕ, φ, ρ on (0,∞),
such that

ϕ|(0,1) = kr, φ|(0,1) = kr, ρ|(0,1) = λ,
ϕ|[R,+∞) = (1− ǫ)r, φ|[R,+∞) = δ, ρ|[R,+∞) = λ,

and Ricgϕ,φ,ρ
> 0.

Proof. Let us begin with the initial metric

g0(r) = dr2 + (kr)2gSm + (kr)2gSn + λ2gS2,

Step1: Constructing g1. Set U1 = {r ≤ 2} and R1 = 100. We will define a metric
g1 by modifying g0 on M\U1 through the ansatz

g1(r) = dr2 + (kr)2gSm + φ(r)2gSn + λ2gS2.

Set s = ǫ/(106mn). By smoothing out the function min{kr, kR1−s
1 rs} near r = R1, we

can build a smooth function φ(r) of the form

φ(r) =











kr if r ≤ 10−1R1

φ′′ 6 0 if 10−1R1 ≤ r ≤ 10R1

kR1(
r
R1

)s if 10R1 ≤ r.

The Ricci curvature of the ansatz is

Ric(g1)00 = −
nφ′′

φ
,

Ric(g1)11 =
(m− 1)(1− k2)

k2r2
−

nφ′

rφ
,

Ric(g1)22 = −
φ′′

φ
+

(n− 1)(1− φ′2)

φ2
−

mφ′

rφ
,

Ric(g1)33 =
1

λ2
> 0.

By direct computation, we have Ric(g1) > 0 for any r > 0 if 0 < k < k0(m,n).
Now we build a metric g1 satisfying the initial condition we stated and have the property

that

g1(r) = dr2 + (kr)2gSm + (ars)2gSn + λ2gS2,

for r > 10R1, where a = kR1−s
1 .

Step2: Constructing g2. Set U2 = {r 6 10R1}. We will define a metric g2 by
modifying g1 on M\U2 through the ansatz

g2(r) = dr2 + ϕ(r)2gSm + (ars)2 gSn + λ2gS2,

For R2 = R2(ǫ), we can choose a smooth function ϕ(r) with the following properties

ϕ(r) =











kr if r 6 10−1R2,

|ϕ′| 6 (1− 10−1ǫ), |rϕ′′| < 10−20ǫ if 10−1R2 6 r 6 10R2,

(1− ǫ)r if r > 10R2.
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The Ricci curvature of the ansatz is

Ric(g2)00 = −
mϕ′′

ϕ
+ n

s(1− s)

r2
,

Ric(g2)11 = −
ϕ′′

ϕ
+ (m− 1)

(1− ϕ′2)

ϕ2
−

nsϕ′

rϕ
,

Ric(g2)22 =
s(1− s)

r2
+

n− 1

a2r2s
−

(n− 1)s2

r2
−

msϕ′

rϕ
,

Ric(g2)33 =
1

λ2
> 0.

By direct computation, we have Ric(g2) > 0 for any r > 0.
Now we build a metric g2 satisfying the initial condition we stated and have the property

that

g2(r) = dr2 + [(1− ǫ)r]2 gSm + (ars)2gSn + λ2gS2,

for r > 10R2,
Step3: Constructing g3. Set U3 = {r 6 10R2}. We will define a metric g3 by

modifying g2 on M\U3 through the ansatz

g3(r) = dr2 + [(1− ǫ)r]2 gSm + φ(r)2gSn + λ2gS2,

Then the Ricci curvature of this ansatz is

Ric(g3)00 = −
nφ′′

φ
,

Ric(g3)11 =
(m− 1)ǫ(2− ǫ)

(1− ǫ)2r2
−

nφ′

rφ
,

Ric(g3)22 = −
φ′′

φ
+

(n− 1)(1− φ′2)

φ2
−

mφ′

rφ
,

Ric(g3)33 =
1

λ2
> 0.

We can choose φ(r) of the form

φ(r) =











ars if r ≤ 10R2

φ′′ 6 0 if 10R2 ≤ r ≤ 103R2

δ if 103R2 ≤ r,

for some δ = δ(a, R2). Then by direct computation we have Ric(g3) > 0 for any r > 0.
Moreover, for R = 104R2, the last metric g3 satisfies all the properties we stated.

�

4. Connecting Rm and Rn

Lemma 4.1. For any m,n > 2, ǫ > 0 and L > 1, then there exists k = k(m,n),
R = R(m,n, ǫ, L) > 1, 0 < δ < c(m,n, ǫ)L−1, and positive smooth functions ϕ, φ, ρ on

r ∈ (0,∞) such that

ϕ|(0,(LR)−1) = kr, φ|(0,(LR)−1) = kr, ρ|(0,(LR)−1) = λ1,
ϕ|[L−1,1] = (1− ǫ)r, φ|[L−1,1] = δ, ρ|[L−1,1] = λ1,
ϕ|[R,∞) = kr, φ|[R,∞) = kr, ρ|[R,∞) = λ2,

and Ricϕ,φ,ρ > 0.
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Proof. For m,n > 2, take k = k0(m,n) to be the smaller one in lemma 3.1 and lemma
3.2. By lemma 3.1, we have δ0 = δ0(m,n, ǫ). By lemma 3.2, we have δ2(m,n, k0, ǫ) and
R2(m,n, k0, ǫ). After possibly increasing R2, we can assume δ2/R2 < δ0. Then we take
δ = δ2

LR2

< δ0. Applying lemma 3.1, we get R = R1(m,n, ǫ, δ, k0) > R2 and functions ϕ1,
φ1, ρ1 satisfying

ϕ1|(0,1) = (1− ǫ)r, φ1|(0,1) = δ, ρ1|(0,1) = λ1,
ϕ1|[R,∞) = kr, φ1|[R,∞) = kr, ρ1|[R,∞) = λ2.

Applying lemma 3.2, we get functions ϕ2, φ2, ρ2. We rescale the functions by ϕ̃(r) :=

(LR2)
−1ϕ(LR2r). Similarly we get φ̃ and ρ̃, then they satisfy the following

ϕ̃2|(0,(LR)−1) = kr, φ̃2|(0,(LR)−1) = kr, ρ̃2|(0,(LR)−1) = λ1,

ϕ̃2|[L−1,∞) = (1− ǫ)r, φ̃2|[L−1,∞) = (LR2)
−1δ2, ρ̃2|[L−1,∞) = λ1.

Note that since (LR2)
−1δ2 = δ, two groups of functions agree in r ∈ [L−1, 1] respectively.

Then we can glue them to get the new functions ϕ, φ, ρ. These functions satisfy all the
properties we stated.

�

Proposition 4.2. For any m,n > 2, ǫ > 0 and L > 1, then there exists k = k(m,n),
R = R(m,n, ǫ, L) > 1 and positive smooth functions ϕ, φ, ρ on r ∈ (0,∞) such that

ϕ|(0,(2L2R3)−1) = kr, φ|(0,(2L2R3)−1) = kr, ρ|(0,(2L2R3)−1) = λ1,
ϕ|[(2L2R2)−1,(2LR2)−1] = δ1, φ|[(2L2R2)−1,(2LR2)−1] = (1− ǫ)r, ρ|[(2L2R2)−1,(2LR2)−1] = λ1,
ϕ|[(2LR)−1,(LR)−1] = kr, φ|[(2LR)−1,(LR)−1] = kr, ρ|[(2LR)−1,(LR)−1] = λ2,
ϕ|[L−1,1] = (1− ǫ)r, φ|[L−1,1] = δ2, ρ|[L−1,1] = λ2

ϕ|[R,∞) = kr, φ|[R,∞) = kr, ρ|[R,∞) = λ3,

where 0 < δ1 < c(m,n, ǫ)(L2R2)−1, 0 < δ2 < c(m,n, ǫ)L−1 and Ricϕ,φ,ρ > 0.

Proof. First apply Lemma 4.1 to get ϕ1, φ1, ρ1. Next we exchangem and n and then apply
Lemma 4.1 again to get ϕ2, φ2, ρ2. Rescale the second metric ϕ̃(r) = (2LR2)−1ϕ(2LR2r),

φ̃ and ρ̃ likewise. Then two metrics agree on r ∈ [(2LR)−1, (LR)−1]. We can glue them
to get the desired functions. �

5. Proof of the Main Theorem

Lemma 5.1 (smoothing). For any m,n > 2, ǫ > 0 and L > 2, ϕ|[L−1,1] = (1 − ǫ)r,

φ|[L−1,1] = δ, ρ|[L−1,1] = λ, Ricϕ,φ,ρ > 0, then we can take smooth modified functions ϕ̂, φ̂,
ρ̂ such that

ϕ̂|(0,L−1) = r, φ̂|(0,L−1) = δ, ρ̂|(0,L−1) = λ,

ϕ̂|[2L−1,∞) = ϕ, φ̂|[2L−1,∞) = φ, ρ̂|[2L−1,∞) = ρ,

and Ricϕ̂,φ̂,ρ̂ > 0.

Proof. We construct ĝ by modifying g on r ∈ (0, 2L−1) through the ansatz

ĝ = dr2 + ϕ(r)2gSm + δ2gSn + λ2gS2.
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The Ricci curvature of this ansatz is

Ric(ĝ)00 = −
mϕ′′

ϕ
,

Ric(ĝ)11 = −
ϕ′′

ϕ
+

(m− 1)(1− ϕ′2)

ϕ2
,

Ric(ĝ)22 =
n− 1

δ2
> 0,

Ric(ĝ)33 =
1

λ2
> 0.

So we can choose smooth ϕ(r) such that Ric(ĝ) > 0 of the form

ϕ(r) =











r if r 6 L−1,

ϕ′′ 6 0 if L−1 6 r 6 2L−1,

(1− ǫ)r if 2L−1 6 r 6 1.

�

Now we are ready to prove the main theorem.

Proof of the Main Theorem. Let m > n > 2 be integers. For any i > 1, we will

construct smooth metrics gi = (ϕi, φi, ρi) with Ric(gi) > 0 on M = (0,∞)× Sm × Sn ×
S2. Moreover, we will find a sequence of numbers Ni > 10Ni−1 such that (ϕi, φi) and

(ϕi+1, φi+1) coincide on r ∈ [N−1
i ,∞) and ρi 6 N−10

i .

Set ǫi = 100−i. Apply Proposition 4.2 with ǫ = ǫ1 and L1 = 10, then we get g1 =
(ϕ1, φ1, ρ1) and R1. Set N1 = 2L2

1R
3
1. We also have ρ1 6 N−4

1 after possibly scaling

N−4
1 ρ1(r). Note that the Ricci curvature will increase if we change ρ(r) into N−1ρ(r).
We construct gi+1 by induction. Assume we have already constructed gi and Ni, and

ϕi(r) = φi(r) = kr, ρ(r) = λi on r ∈ (0, N−1
i ). Again apply Proposition 4.2 with

ǫi+1 and Li+1 = 10i+1, then we get (ϕ̃i+1, φ̃i+1, ρ̃i+1) and Ri+1. After scaling ϕ(r) =

(2NiRi+1)
−1ϕ̃i+1(2NiRi+1r), (ϕ̃i+1, φ̃i+1) agree with (ϕi, φi) on r ∈ [(2Ni)

−1, N−1
i ]. Al-

though ρ̃i+1 may not agree with ρi, we can make them equal by scaling both. So we can

glue them to get gi+1. Set Ni+1 = 4NiL
2
i+1R

4
i+1, then ρi+1 6 N−4

i+1 after possible scaling.

Next we modify gi on r ∈ (0, 2RiN
−1
i ) by Lemma 5.1, then we get ĝi, which is also

smooth at r = 0. Set M̂ = Rn+1×Sm×S2. Now (M̂m+n+3, ĝi, 0) are a sequence of pointed

complete smooth metric with Ric(ĝi) > 0, then by Gromov’s precompactness theorem, up

to subsequence, there exists a metric space (X, d) such that

(M̂, ĝi, 0)
GH
−→ (X, d, p).

On one hand, first note that for Ai := NiR
−1
i L

−1/2
i → ∞, the rescaled metrics (M̂, Aiĝj, 0)

for j > i become

ϕj|(L−1/2
i ,L

1/2
i )

6 cL
−1/2
i , φj |(L−1/2

i ,L
1/2
i )

= (1− ǫi)r, ρj |(L−1/2
i ,L

1/2
i )

6 N−5
i .

Let j → ∞ and denote Aa,b(X, d, p) := {x ∈ X : a < d(x, p) < b}, then

dGH

(

A
L
−1/2
i ,L

1/2
i

(X,Aid, p), AL
−1/2
i ,L

1/2
i

(Rn+1, g0, 0
n+1)

)

6 Ψ(i−1).

Then let i → ∞, we have

(X,Aid, p)
GH
−→ (Rn+1, g0, 0

n+1).
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On the other hand, note that for Bi := 1
2
NiR

−3
i L

−3/2
i → ∞, the rescaled metrics

(M̂, Biĝj, 0) for j > i become

ϕj|(L−1/2
i ,L

1/2
i )

= (1− ǫi)r, φj|(L−1/2
i ,L

1/2
i )

6 cL
−1/2
i , ρj |(L−1/2

i ,L
1/2
i )

6 N−5
i .

Then

dGH

(

A
L
−1/2
i ,L

1/2
i

(X,Bid, p), AL
−1/2
i ,L

1/2
i

(Rm+1, g0, 0
m+1)

)

6 Ψ(i−1).

Then let i → ∞, we have

(X,Bid, p)
GH
−→ (Rm+1, g0, 0

m+1).
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