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In this paper, building upon the discovery of asymmetric rectified electric fields (AREF) in recent experiments
[S.H. Hashemi et al., Physical Review Letters 121, 185504 (2018)], we explore the generation of AREF by
applying a sawtooth-like voltage to 1:1 electrolytes with equal diffusion coefficients confined between two
planar blocking electrodes. This differs from an earlier approach based on a sinusoidal AC voltage applied
to 1:1 electrolytes with unequal diffusion coefficients. By numerically solving the full Poisson-Nernst-Planck
equations, we demonstrate that AREF can be generated by a slow rise and a fast drop of the potential (or
vice versa), even for electrolytes with equal diffusion coefficients of the cations and anions. We employ an
analytically constructed equivalent electric circuit to explain the underlying physical mechanism. Importantly,
we find that the strength of AREF can be effectively tuned from zero to its maximal value by only manipulating
the time-dependence of the driving voltage, eliminating the necessity to modify the electrolyte composition
between experiments. This provides valuable insights to control the manipulation of AREF, which facilitates
enhanced applications in diverse electrochemical systems.

I. INTRODUCTION

Studying the behavior of an aqueous electrolyte subjected
to an externally applied oscillating electric field often involves
the use of alternating current (AC) voltages. For instance, an
AC voltage is commonly used in areas such as induced charge
electrokinetics [1–5], particle assembly in electrolytes [6–13],
AC electroosmosis [14–20], cyclic voltammetry [21–26], bat-
teries [27–34], sensing [15, 17, 35], and impedance spec-
troscopy [28–34, 36, 37]. One of the main reasons for choos-
ing AC electric fields over DC fields in various applications is
to avoid any net current or net charge in the system, since the
field has a zero mean over one cycle.

A basic geometry that can capture many of the essential
physical effects of an AC field is a globally neutral 1:1 elec-
trolyte of point-like ions confined between two blocking elec-
trodes and subjected to a harmonic AC voltage. If the fre-
quency of the AC voltage is relatively low or zero (as in equi-
librium), then a so-called Electric Double Layer (EDL), con-
sisting of the surface charges of the solid and a diffuse ionic
cloud with opposite charge, will form at the interface between
a charged solid (electrode, colloid, etc.) and an electrolyte.
The EDL harbors a surplus of counter-ions and a reduced con-
centration of co-ions compared to the bulk, thereby screening
the electric field of the electrode. The typical thickness of a
fully formed EDL is equal to the Debye length λD, which is
about 10 nm for water with 1 mM salt concentration at room
temperature. One of the interesting recent findings in such
a (vertical) system with horizontal electrodes concerned col-
loids floating in the gravitational field. Here, charged colloids
suspended in an aqueous electrolyte were confined between
two horizontal blocking electrodes that were driven by a har-
monic AC potential. Contrary to intuition, rather than sedi-
menting in the gravitational field the colloidal particles were
observed to float against the gravitational pull [38, 39]. This
led to a theoretical investigation to elucidate the source of the
force that allows the colloids to withstand the gravitational
field. In Ref. [40] it was shown that period-averaged electrode

charge is not necessarily zero in the case of cations (+) and an-
ions (-) with unequal diffusion coefficients, D+ ̸= D−. The re-
sulting period-averaged induced electric field is therefore also
non-zero and stretches from the electrodes well into the bulk
of the electrolyte. It was termed Asymmetric Rectified Elec-
tric Field (AREF). The electric force generated by AREF was
proposed as a mechanism that would enable the colloids to
counteract the gravitational pull. It is noteworthy that a recent
study has proposed alternative mechanisms for colloidal float-
ing, including dielectrophoresis (DEP) or electrohydrodynam-
ical (EHD) mechanisms [41]. Interestingly, the predominant
contribution of each mechanism to the floating height of col-
loids remains a subject of investigation.

This paper focuses on AREF. The authors of the original
study extensively explored AREF from sinusoidal voltages by
examining its space dependence on various system parame-
ters in Ref. [42], numerically solving the governing system
of non-linear differential equations in Ref. [43], and investi-
gating the application of AREF in reversing the flow of elec-
troosmosis in Ref. [44]. Nevertheless, several aspects of the
underlying physical mechanism of AREF remained unclear.
In our recent publication [45] we employ equivalent electric
circuits to devise a simplified toy model that qualitatively re-
produces the parameter dependencies of AREF, shedding light
on the underlying physical mechanism. It was explained how
the asymmetry of ion diffusion coefficients in the electrolyte
can create AREF. However, the scope of manipulating AREF
is constrained by the rather limited range of ion diffusion coef-
ficients and their disparities. Furthermore, experimental stud-
ies on AREFs necessitate altering electrolytes for each new
experiment, demanding a significant investment of time and
effort. To address these challenges, we opted to study one
and the same electrolyte, for simplicity a symmetric 1:1 elec-
trolyte with equal ion diffusion coefficients D ≡ D+ = D−,
and instead study the possibility of introducing the necessary
asymmetry for AREF generation through the functional form
of the driving potential. A convenient form that is both asym-
metric and periodic, yet averages to zero over time, is the so-
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called “sawtooth” potential

Ψ(t) =
2Ψ0

π

∞

∑
n=1

(−1)n+1 sin(nωt)
n

, (1)

where Ψ0 > 0 is the amplitude and T = 2π/ω the period the of
the driving voltage Ψ(t). In Fig. 1(a), where we plot two peri-
ods of Ψ(t) given by Eq. (1) as a function of the dimensionless
time t/T , we see that the sawtooth function rises steadily to-
wards its maximum Ψ0 and then drops “instantaneously” to
its minimum −Ψ0. This slow rise and fast drop breaks the
symmetry of the charging and discharging processes at the
electrodes, as we will see. At the same time, the (absolute)
areas S1 and S2 under the curve are equal, S1 = S2, resulting
in a period-averaged applied potential equal to zero, i.e. there
is no direct bias of the voltage.

While the full sawtooth function is indeed a very convenient
candidate for the time-dependence of the driving voltage, it is
less attractive for the numerical study that we undertake in
this work, not only because of the large number of required
harmonic “modes” in Eq. (1) but also because of the disconti-
nuity of the full potential. It turns out that the essence of the
creation mechanism of AREF can be studied in full detail by
avoiding the sharpest feature of the full potential and keeping
only the first two terms in the sawtooth series of Eq. (1). Thus,
henceforth the driving voltage of interest is given by

Ψ(t) =
2Ψ0

π

2

∑
n=1

(−1)n+1 sin(nωt)
n

, (2)

which is plotted in Fig. 1(b). One checks that the role of the
second harmonic term is to break the symmetry between rising
and lowering voltages. All numerical results in this paper will
be based on this “two-term” sawtooth function, that captures
the key physics even though its actual amplitude is only ∼
0.9Ψ0. However, for convenience and clarity we will refer to
the full sawtooth function when explaining and discussing the
AREF mechanism.

This paper is structured as follows: In Section II, we present
the system of interest along with the Poisson-Nernst-Planck
(PNP) equations that control the processes in the electrolytic
cell. In Section III we explain how AREF effects are gener-
ated under the influence of the sawtooth driving potential for
a specific set of system parameters. In Section IV, we use nu-
merical methods to investigate how the AREF varies with the
main system parameters. Finally, in Section V we sum up and
discuss our results.

II. POISSON-NERNST-PLANCK EQUATIONS

The system of interest, schematically illustrated in Fig. 2, is
essentially the same electrolytic cell as the one considered in
our previous paper [45], therefore its description and the nota-
tion we use will follow Ref. [45] very closely. The cell com-
prises a three-dimensional aqueous electrolyte with a relative
dielectric constant ε at room temperature, confined between

(a)

(b)

FIG. 1. Two periods of (a) the full sawtooth voltage Ψ(t) based on
Eq. (1) and (b) the two-term sawtooth voltage based on Eq. (2). Both
voltages have a period T , feature an asymmetry between (slow) ris-
ing and (fast) lowering voltages, and average out to zero during a
period. The two-term sawtooth avoids sharp transitions, rendering
itself more convenient for numerical calculations.

two parallel macroscopic planar electrodes separated by a dis-
tance L. We assume translational symmetry in the lateral di-
rections. Apart from the continuum solvent, the electrolyte is
composed of two types of monovalent point-like ions: cations
(+) and anions (−) with valencies ±1 and equal diffusion co-
efficients D± ≡ D. The total number of cations and anions
is equal, ensuring overall electroneutrality in the system. The
electrodes are blocking, preventing ions from leaving the elec-
trolyte, and we exclude any chemical REDOX reactions. The
system is subjected to the AC sawtooth voltage of Eq. (2) con-
taining only two terms in the series, applied to the left elec-
trode placed in the plane z = −L

2 , whereas the right one, sit-
uated at z = L

2 , remains grounded. The imposed angular fre-
quency is denoted by ω , and Ψ0 represents the amplitude of
the applied voltage.

We study this system in terms of the the Poisson-Nernst-
Planck (PNP) equations. The ionic fluxes, denoted as J±(z, t),
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FIG. 2. Schemtaic illustration of the aqueous 1:1 electrolyte un-
der consideration, comprising a continuous solvent and two ionic
species, enclosed between two parallel blocking electrodes with a
separation distance L. The ions in the electrolyte are driven by the
time-dependent electric sawtooth potential Ψ(t) of Eq. (2) applied to
the electrode at z = − L

2 , while the opposite electrode at z = L
2 re-

mains grounded.

comprise a diffusive component arising from ion concentra-
tion gradients and a conductive component resulting from the
potential gradient. These aspects are collectively described by
the Nernst-Planck equation given by

J±(z, t) =−D
(

∂c±(z, t)
∂ z

±βec±(z, t)
∂Ψ(z, t)

∂ z

)
, (3)

where c±(z, t) represent the concentrations of cations (+) and
anions (−) at the position z and time t and Ψ(z, t) the local
electrostatic potential. Here e is the elementary charge and
β−1 the product of the Boltzmann constant and the tempera-
ture. Eq. (3) also assumes spatially constant diffusion coeffi-
cients. Given the absence of chemical reactions in the system,
the concentrations and fluxes are connected through the con-
tinuity equation

∂c±(z, t)
∂ t

+
∂J±(z, t)

∂ z
= 0. (4)

The local potential profile Ψ(z, t) is connected to the local
charge density e

(
c+(z, t)−c−(z, t)

)
through the Poisson equa-

tion, which for |z|< L
2 reads

∂ 2Ψ(z, t)
∂ z2 =− e

ε0ε

(
c+(z, t)− c−(z, t)

)
, (5)

where ε0 is the permittivity of vacuum and ε = 80 represents
water as a structureless continuum.

The PNP equations (3), (4), and (5) form a closed set that
fully describes the time-dependent profiles of the concentra-
tions c±, the fluxes J±, and the potential Ψ. The explicit solu-
tion of the PNP equations requires boundary and initial con-

ditions, for which we take

Ψ(−L/2, t) =
2Ψ0

π

(
sin(ωt)− 1

2
sin(2ωt)

)
, (6)

Ψ(L/2, t) = 0, (7)

J±(−L/2, t) = J±(L/2, t) = 0, (8)

c±(z, t = 0) = cs for z ∈ [−L/2,L/2]. (9)

Here cs represents the constant initial salt concentration,
which is identical for both ionic species in the 1 : 1 electrolyte
of interest here and thus satisfies global charge neutrality. As
implied by Eq. (4) coupled with the boundary conditions spec-
ified in Eq. (8), the total number of anions and cations in the
system is conserved such that

1
L

∫ L/2

−L/2
c±(z, t)dz = cs (10)

is satisfied at all times t ≥ 0. For a given set of parame-
ters Ψ0, ω , D, cs, and L Eqs. (5) – (10) constitute the sys-
tem of non-linear coupled differential equations. We employ
the finite-element solver of COMSOL® to numerically solve
these equations.

Convenient insight into relevant dimensionless system pa-
rameters can be obtained as follows. In the static (low-
frequency) limit equilibrium holds, such that the applied po-
tential Ψ(−L/2, t) = Ψ0 is a time-independent constant and
J±(z, t) = 0. In the linear-screening regime with |βeΨ0| ≲ 1,
the EDLs get fully developed at the two electrodes and the NP
equation (3) can be integrated to obtain the Boltzmann distri-
bution

c±(z) = c′s

(
1∓ Ψ0βesinh(κz)

2sinh(κL/2)

)
, (11)

with κ−1 the characteristic Debye length of the equilibrium
EDL given by

κ
−1 =

√
εε0

2e2βc′s
≡ λD. (12)

The concentration c′s is an integration constant that is very
close to cs in the large L-limit of interest here, so through-
out the paper we set c′s = cs in the definition of λD. In this
limit, as we have shown before in Ref. [45], the characteristic
timescale of EDL formation [46] is written as the RC time

τRC =
LλD

2D
=

L
2κD

. (13)

For future convenience we also define the Debye time

τD =
1

κ2D
= τRC

2
κL

, (14)

during which the ions diffuse over a distance of the order of
the Debye length [46, 47].
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For the convenience of numerical investigation of AREF,
we establish a standard parameter set that includes the (di-
mensionless) amplitude and frequency of the driving poten-
tial, denoted as βeΨ0 = 3 and ωτRC = 1, respectively. The
standard (dimensionless) system size is fixed at κL = 50. We
note that this standard parameter set is physically realistic, as
it corresponds for an aqueous 1:1 electrolyte with a salt con-
centration cs = 1 mM to a Debye length λD = 10 nm and hence
a system length L = 500 nm, and with a typical diffusion co-
efficient D = 1.09 µm2/ms we find τRC = 2.3 µs and hence a
driving period T = 14.4 µs. Any deviation from this standard
set will be explicitly stated. All measurements are performed
in the late-time limit-cycle regime, when all the transient ef-
fects have vanished. This way all the time-dependencies in
the system have the same period as that of the driving voltage,
with at most a phase difference as we will see.

III. AREF FROM SAWTOOTH POTENTIALS

Most of the previous work on AREF concentrated on asym-
metric electrolytes containing ions with unequal diffusion co-
efficients driven by a harmonic (single-frequency sinusoidal)
voltage [38–44, 48]. To appreciate the differences of AREF
between these asymmetric electrolytes and the systems of in-
terest here consisting of a symmetric 1:1 electrolyte (with
equal diffusion coefficients) driven by the sawtooth potential
of Eq. (6), we briefly recall the mechanism of AREF in the
asymmetric case.

As was discussed in Ref. [45], the mechanism behind the
creation of AREF in a system with an asymmetric electrolyte
relies on the concentration difference of the faster (more mo-
bile) ions gathering at the electrodes during a half-period T/2
and the slower (less mobile) oppositely charged ions during
the complementary half period, an effect that is particularly
strong for intermediate driving frequencies ωτRC ∼ 1. As a
result, in the vicinity of both electrodes the period-averaged
concentration of the faster ions exceeds that of the slower
ions, and the resulting period-averaged charge distribution
e⟨c+ − c−⟩(z) in the electrolyte was found to be nonzero
and results in a nontrivial period-averaged electrostatic po-
tential ⟨Ψ⟩(z) and an associated period-averaged electric field
(AREF) ⟨E⟩(z) =−d⟨ψ⟩(z)/dz. Here we defined the period-
average of a function f (z, t) as

⟨ f ⟩(z) = 1
T

∫ t0+T

t0
f (z, t)dt, (15)

where t0 is the (sufficiently late) time at which we start av-
eraging. Because of the symmetry and equivalence between
the two electrodes, at least at the period-averaged level, we
find (for the asymmetric electrolyte with sinusoidal driving)
perfect mirror symmetry with respect to the midplane for the
period-averaged potential, so ⟨Ψ⟩(z) = ⟨Ψ⟩(−z), and like-
wise for the ionic concentrations and the charge density. The
electric field, by contrast, exhibits perfect anti-mirror sym-
metry with respect to the midplane, thus ⟨E⟩(z) = −⟨E⟩(−z)
[45]. As a consequence of this symmetry, it was found in
Ref. [45] that a convenient integral quantity to characterize

(the strength of) AREF was the time- and space-averaged (di-

mensionless) electric potential U ≡ βe 1
L
∫ L

2
− L

2
dz⟨Ψ⟩(z). An

additional consequence of these (anti-)symmetries combined
with global charge neutrality was a vanishing period-averaged
surface charge density ⟨σ⟩ on both electrodes at z = ±L/2,
such that not only ⟨Ψ⟩(±L/2) = 0 but also ⟨E⟩(±L/2) = 0
for asymmetric electrolytes with symmetric driving voltages.

Compared to the case of asymmetric ion diffusion coeffi-
cients that we just discussed, the system of a 1:1 electrolyte
with equal ionic diffusion coefficients driven by the asymmet-
ric sawtooth voltage has a different mechanism for AREF cre-
ation. This is immediately apparent from Fig. 3(a), that shows
the numerical solution of the PNP equations of the period-
averaged charge density profile ⟨c+− c−⟩(z) for our standard
parameter set. At the left electrode placed at z = −L/2 we
see a period-averaged accumulation of negative ionic charge,
whereas on the opposite side at z = L/2 an equal but op-
posite (positive) charge density accumulates in the vicinity
of the electrode. Clearly, this charge density profile is anti-
symmetric with respect to mirroring in the midplane, ⟨c+ −
c−⟩(z)=−⟨c+−c−⟩(−z), which contrasts the mirror symme-
try we encountered earlier in the cases of unequal ionic mo-
bilities. Such an antisymmetric period-averaged charge distri-
bution creates a perfectly mirror-symmetric AREF ⟨E(z)⟩, as
also shown in Fig. 3(b), where we notice that the electric fields
at z =±L/2, so at the electrodes, do not vanish. This implies
by the Gauss law that the period-averaged surface charge ⟨σ⟩
on the electrodes is non-zero in this case. At the same time
we see in Fig. 3(c) that the period-averaged potential profile
⟨Ψ⟩(z) follows the anti-mirror-symmetry of the charge distri-
bution. As a consequence, its spatial average U will be iden-
tically zero, which implies that, unlike in Ref. [45], it cannot
be used as a measure for the AREF strength. Instead, it is now
natural to use the time-averaged surface charge density ⟨σ⟩
on the electrodes for this purpose, or rather its dimensionless
version

σ
′ ≡ ⟨σ⟩

σm
=

βeκ−1⟨E⟩(z)
4π sinh(βeΨ0/2)

∣∣∣
z=−L/2

, (16)

where we introduced the Gouy-Chapman surface charge den-
sity σm = e(κ/λB)sinh(βeΨ0/2) ≈ 7.6 mC/m2 at the static
voltage βeΨ0 = 3 as a reference, with the Bjerrum and Debye
length set to λB = e2/4πε0εkBT ≃ 0.72 nm and κ−1 ≃ 10 nm,
respectively.

To understand the mechanism behind AREF in the present
system, we will use the so-called equivalent circuit corre-
sponding to the system that we are studying. It is well known
that several aspects of electrolytic systems can often be ap-
proximated by equivalent electronic circuits [49–53], with
Ref. [54] providing a historical overview on this matter. As
was shown in Ref. [45], the system in Fig. 2 can in the linear
screening regime βeΨ0 ≪ 1 be approximated by the circuit
shown in Fig. 4(a), where the capacitors C1 and C2 and the
resistor R take, for an electrolytic system of lateral area A, the
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(a)

(b)

(c)

FIG. 3. Time-averaged dimensionless spatial profiles of the (a) ionic
charge density ⟨c+ − c−⟩/cs, (b) electric field βeκ−1⟨E⟩, and (c)
electric potential βe⟨Ψ⟩ in a 1:1 aqueous electrolyte confined be-
tween two planar electrodes separated by distance L = 50λD. The
electrode at z = L/2 is grounded, whereas the one at z = −L/2
is driven by an AC Sawtooth potential of Eq. (6) with amplitude
Ψ0 = 3/βe = 75 mV. Three different driving frequencies ωτRC =
0.1,0.22,1 with RC-time τRC given by Eq. (13) are denoted with dif-
ferent colors.

(a) (b)

FIG. 4. (a) equivalent electric circuit corresponding to the large elec-
trolytic cell with L ≫ κ−1 in the linear regime. Resistance and ca-
pacitance of the cell at infinite frequency are denoted by R and C2
respectively, whereas the total capacitance of two fully developed
electric double layers at the electrodes is denoted by C1, as described
by Eqs. (17) and (18). (b) Simplified equivalent electric circuit cor-
responding to the low-frequency case ωτRC ≪

√
κL/2 with C =C1.

form

C1 =
Aεε0κ

2
; C2 =

Aεε0

L
, (17)

R =
L
A
· 1

εε0Dκ2 =
L
A
· 1

2Dβe2cs
. (18)

Physically R corresponds to the Ohmic resistance of the ho-
mogeneous aqueous electrolyte with monovalent charge car-
riers of concentration 2cs and mobility βD, and C1 repre-
sents the capacity of the EDLs at the electrodes - it is the
net capacity of the two fully developed EDLs in series, each
with the linear-screening capacitance Aεε0κ . Similarly, C2
represents the purely dielectric capacitance of a water-filled
parallel-plate capacitor without any ionic charge carriers and
characterized by the size L and area A.

Despite the circuit of Fig. 4(a) being only a quantitative
mapping in the case of the linearized PNP equations valid
at small driving potentials, it was demonstrated in Ref. [45]
that a lot of qualitative information can still be extracted even
in the non-linear regime of interest here. At the same time,
Ref. [45] also showed that for low frequencies ωτs ≲ 1, where
τs =

√
τRCτD, the circuit of Fig. 4(a) can be successfully ap-

proximated by a simplified circuit shown in Fig. 4(b), which
will be employed in this paper. Following the derivations in
Ref. [45], and setting C = C1, we first analytically calculate
the charge Q(t) accumulated in the capacitors of the circuit
when the sawtooth driving voltage of Eq. (1) is applied, yield-
ing

Q(t) =
2Q0

π

∞

∑
n=1

(−1)n+1

n
√

(nωRC)2 +1
cos(nωt +ϕn), (19)

where Q0 = Ψ0C is a reference charge and ϕn =
arctan(1/(nωRC)) the n-the phase angle. In Fig. 5 we plot
two periods of Q(t)/Q0 as a function of (dimensionless) time
t/T for the same driving as in Fig.1(a) (so for all harmonic
modes rather than only two) for driving frequency ωτRC = 1.
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The phase shift between voltage and charge is evident. The
plot identifies the two (dimensionless) times t1 and t2 in be-
tween which Q(t) > 0, and likewise the interval between t2
and t3 = t1 + 1 during which Q(t) < 0. The plot also shows
the maximum q1, the minimum q2, and the integrated (ab-
solute) surface areas S3 and S4 under the curve of Q(t)/Q0.
We see for the present example that while the curve corre-
sponding to the area S3 has a higher amplitude than that of
the area S4, so |q1| > |q2|, the base of S4 is actually wider,
∆t1 ≡ t2 − t1 < ∆t2 ≡ t3 − t2. In the linear response regime
this is such that S3 = S4 when S1 = S2 in Fig. 1(a), which im-
plies a vanishing period-averaged charge on the capacitor in
this linearized case.

However, as we will see in more detail in Section IV below,
the electrolytic system of interest is in the non-linear screen-
ing regime with a nonzero period averaged (dimensionless)
surface charge on the left electrode σ ′ ∼ Ψ3

0. This is a con-
sequence of a nontrivial rescaling of the time-dependent elec-
trode charge σ(t), that causes the analogues of the extrema
q1 and q2 of the charge curve to scale non-linearly with the
voltage amplitude. In turn, this causes a nontrivial relation be-
tween the amplitude difference ∆q ≡ |q1|− |q2| and the base
width difference ∆t ≡ |∆t1 −∆t2|, leading to a non-zero time-
averaged area ∆S = S3 − S4 ̸= 0 and consequently to a non-
zero time-averaged surface charge σ ′ with a sign that depends
on the system parameters, as we will see in Section IV below.

FIG. 5. The time-dependent charge Q(t) (in units of Q0) as defined
in Eq. (19) stored in the capacitor of the linear equivalent circuit of
Fig. 4(b) as a function of time for the full sawtooth potential Ψ(t)
of Eq. (1). The asymmetry in the driving potential introduces not
only an asymmetry of the positive and negative charge amplitudes,
|q1| ̸= |q2|, but also of the time interval that the charge is positive
or negative, t2 − t1 ̸= t3 − t2. For linear circuits, or linear screening,
this translates into a vanishing period-averaged charge since S3 =
S4 identically. In the non-linear case of the electrolytic cell at high
voltages, however, this condition gets violated and results in a non-
zero period-averaged surface charge σ ′ on the electrodes.

3

1

FIG. 6. Period-averaged dimensionless surface charge σ ′ of Eq. (16)
plotted in the double-logarithmic representation against the driving
voltage amplitude for varying driving frequencies ω at our standard
parameter set (see text). The cubic scaling σ ′ ∼ Ψ3

0 demonstrates
that AREF is a non-linear effect.

IV. PARAMETER DEPENDENCE OF AREF

In this section we study the dependence of the numerically
obtained time-averaged surface charge σ ′, defined in Eq. (16),
on the main system parameters. We recall that all numerical
calculations are performed using the two-term truncation of
Eq. (2). The key results are presented in Fig. 6, where we
show that σ ′ ∝ Ψ3

0, and in Fig. 7, where we plot σ ′/(βeΨ0)
3,

in (a) and (c) as a function of the driving frequency for differ-
ent driving amplitudes (a) and different phase angles ∆φ be-
tween the two sinusoidal terms of the two-term sawtooth func-
tion in Eq. (2) (c) as we will see in more detail below, and in
(b) as a function of system size at several driving frequencies.
In all cases shown in Fig. 7, we see variations over an order
of magnitude and even changes of the sign, which testify for
the substantial tunability of AREF. However, we also see in
Fig. 6 that the order of magnitude of σ ′ is at most of the order
of 10−3, such that the period-averaged surface charge ⟨σ⟩ is at
least three orders of magnitude smaller than the typical static
Gouy-Chapman surface charge density σm at Ψ0 = 75 mV as
defined below Eq. (16) for our system parameters. This does
not imply, however, that AREFs are a mere quantitative effect
without qualitative consequences, since the force that is ex-
erted by an AREF on a (colloidal) body also depends on its
net charge (which should therefore be large enough for AREF
to be physically relevant, we estimate typically three orders of
magnitude larger than the unit charge for the present (typical)
parameters). Therefore, we will investigate, discuss, and in-
terpret the dependence of AREF on the system parameters in
more detail below.

A. Applied Voltage Amplitude

Similarly to Ref. [45], the range that we consider for the
driving voltage amplitude Ψ0 is limited from above by the
point ion approximation, which even for cs = 1mM can give
rise to unrealistically high local concentrations within the
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point-ion limit due to strong ion crowding effects that take
place in actual electrolytes at the electrodes [2, 55, 56]. This
occurs beyond βeΨ0 ≈ 8 − 9, which is therefore the upper
limit that we consider in Fig. 6, where we plot, for vari-
ous driving frequencies, the dependence of σ ′ on Ψ0 for our
standard parameter set. The slope of the double-logarithmic
curves is essentially identical to 3 across the range of frequen-
cies ωτRC ∈ [0.2,1] that we consider here, i.e. σ ′ ∝ Ψ3

0. This
non-linear scaling confirms that AREF is a non-linear screen-
ing effect in the present case of a symmetric electrolyte driven
by the sawtooth voltage, very similar to the earlier case of a
sinusoidal voltage driving an asymmetric electrolyte as stud-
ied in Refs. [40, 42, 45]. This entices the further study of
its dependence on frequency, the phase shift between the two
harmonic modes of the driving voltage, and the system size in
terms of the scaled form σ ′/(βeΨ0)

3 below.

B. Frequency

In Fig. 7(a) we plot σ ′/(βeΨ0)
3 as a function of the di-

mensionless frequency ωτRC for our standard parameter set
at a number of voltage amplitudes Ψ0. As expected, the
curves essentially collapse for all Ψ0 and decay to zero in
the high and low frequency limits. We assign the irregular-
ities in the graph for the lowest voltage in the high-frequency
regime ωτRC ∼ 2− 3 as numerical artefacts without any sig-
nificant physical meaning, stemming from the small num-
bers involved. Interestingly, however, in the frequency range
ωτRC ∼ 0.1−2 where the graphs are smooth, the average sur-
face charge curves exhibit a change of sign while featuring
both a positive maximum at ωτRC ∼ 1 and a negative min-
imum at ωτRC ∼ 0.3. The mechanism that generates such
curves can be best understood in the context of an “area com-
petition” between S3 and S4 under the Q(t) curve for the
equivalent circuit in Fig. 5, as we discussed above, but now
with the time-dependent surface charge density σ(t) obtained
from the nonlinear PNP equations being the analogue of the
capacitor charge Q(t) in the linear circuit.

Depending on the parameter range, the σ(t) analogue of
either ∆q or ∆t dominates during a period of the (late time)
voltage and charge oscillation, determining the the sign of the
time-averaged charge. To check this statement, we calculate
(the analogues of) ∆q and ∆t for the numerical results of σ(t)
(driven by the two-term sawtooth function) and plot their ratio
∆q/∆t as a function of the dimensionless frequency ωτRC in
Fig. 8. Interestingly, comparing this ratio to the σ ′(ω) curve
in Fig. 7(a), we see a remarkable similarity in the shape of the
curves, which suggests that a nontrivial competition between
the amplitudes of the time-dependent surface charge and the
duration of the time-interval of its positive and negative sign
is indeed able to explain the nontrivial non-monotonic shape
of the σ ′(ω) curve of Fig. 7(a).

(a)

(b)

(c)

FIG. 7. Numerically obtained period-averaged dimensionless surface
charge σ ′/(βeΨ0)

3 from late-time solutions of the PNP equations
for the standard parameter set (see text) plotted against (a) the di-
mensionless frequency ωτRC for several voltage amplitudes, (b) the
dimensionless system size κL for several dimensionless driving fre-
quencies ωτD , and (c) the driving frequency ωτRC for several phase
shifts ∆φ of Eq. (20). In (a) we see a collapse of the curves for sev-
eral voltage amplitudes Ψ0.
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FIG. 8. Ratio of the amplitude difference and time difference ∆q/∆t
for the numerical solution σ ′ as a function of dimensionless fre-
quency ωτRC. Plotted for the standard parameter set (see text), how-
ever with βeΨ0 = 7 to minimize the numerical noise seen at higher
frequencies in Fig. 7(a). The shape of the ∆q/∆t(ω) curve is remark-
ably similar to that of the σ ′(ω) curve in Fig. 7(a).

C. System Size

Fig. 7(b) shows the dependence of σ ′/(βeΨ0)
3 on system

size L (in units of the Debye length) for various driving fre-
quencies ωτD for our standard parameter set. Rather than us-
ing the dimensionless combination ωτRC of Eq. (13) to char-
acterize the frequency of the driving voltage, here we use ωτD
defined in Eq. (14) as this combination does not depend on L.
The maximum σ ′ for the relatively large system sizes of in-
terest, say in the range of κL ∈ [10,103], occur at larger κL
for lower frequencies ωτD, and one checks that they all cor-
respond to the regime where ωτRC ∼ 1. This agrees with our
findings of Fig. 7(a). In fact, the dependence of σ ′ on fre-
quency in Fig. 7(a) and on L in Fig. 7(b) are very similar,
which in retrospect is not surprising since the key dimension-
less parameter ωτRC is linear in both L and ω .

D. Phase Shift

As was mentioned in the introduction, the main advantage
of using a sawtooth function to drive a symmetric electrolyte
in the system of Fig. 2 compared to driving an asymmetric
electrolyte with a sinusoidal voltage like in Ref. [45], is that
one can manipulate AREF by simply altering the sawtooth
potential without having to change the electrolyte properties
(which would require the electrolyte to be changed in different
experiments). As we are using the two-term sawtooth voltage
of Eq. (6), it is thus interesting to see whether the AREF can
be amplified or suppressed by shifting the relative phase ∆φ

between two sinusoidal terms away from zero. For this reason
we consider the modified driving potential

Ψ(t) =
2Ψ0

π

(
sin(ωt)− 1

2
sin(2ωt +∆φ)

)
, (20)

which is identical to Eq. (2) for the case ∆φ = 0. We note
that a nonzero phase shift keeps the period-averaged driving

potential equal to zero while it does affect the rate of volt-
age change substantially and the maximum/minimum voltage
during a period somewhat. We plot this driving potential in
Fig. 9(a) at phase shifts ∆φ/π = 0,0.2,0.5, and 0.8 in the pan-
els I through IV, respectively, together with the charge Q(t) ac-
cumulated in the capacitor of the equivalent circuit of Fig. 4(b)
in Fig. 9(b). As we see in Fig. 9(a), any of the three nonzero
phase shifts increases the maximum and decreases the min-
imum of the driving voltage, resulting in an increase of ∆q
in the corresponding plots of Q(t) in Fig. 9(b). At the same
time, while ∆t changes with ∆φ , it does not get affected by the
non-linearity of AREF, thus it does not influence the surface
charge dependence on the phase shift σ ′(∆φ). On this basis,
one could expect a strong effect of ∆φ on the average surface
charge σ ′ in the non-linear electrolytic cell.

I II

III IV

(a)

I II

III IV

(b)

FIG. 9. (a) Two-term sawtooth voltage of Eq. (20) for phase shifts
∆φ/π equal to (I) 0, (II) 0.2, (III) 0.5, and (IV) 0.8, and (b) the
resulting charges accumulating in the capacitors of the equivalent
circuit of Fig. 4(b).
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This strong effect of the phase shift is indeed confirmed
by Fig. 7(c), where we plot σ ′/(βeΨ0)

3 as a function of the
dimensionless frequency ωτRC for our standard parameter set
at ∆φ/π = 0,0.2,0.5, and 0.8. We see that as we shift the
phase the AREF effect can actually increase by as much as
an order of magnitude, reaching its highest values at ∆φ =
0.5π . At the same time, we see that it only changes sign with
frequency for the case ∆φ = 0. Increase of ∆q with phase shift
is well reflected in Fig. 10, where we plot σ ′ as a function of
the phase shift ∆φ at a fixed frequency of ωτRC = 1. As we

FIG. 10. Dimensionless and scaled period-averaged surface charge
σ ′/(βeΨ0)

3 as obtained from numerical late-time solutions of the
PNP equations for the standard parameter set (see text) as a func-
tion of the phase difference ∆φ between the two sinusoidal terms of
the two-term sawtooth potential of Eq. (2) at ωτRC = 1. For these
parameters the period-averaged surface charge has a maximum at
∆φ = 0.4π and a minimum (of opposite sign) at ∆φ = 1.4π .

see, the average surface charge has a maximum at ∆φ = 0.4π

and a minimum at ∆φ = 1.4π , where it also has the opposite
sign.

E. Sawtooth AREF vs. Symmetric AREF

Here we briefly compare the spatial dependence and the
magnitude of AREF in the present case of a symmetric
electrolyte with equal ionic diffusion coefficients driven by
a sawtooth voltage with the more conventional case of an
asymmetric electrolyte (with different ionic diffusion coef-
ficients) driven by a sinusoidal voltage. We focus on the
period-averaged electric field profile shown in Fig. 3(b) for
the present standard parameter set and the equivalent plot
shown in Fig.2(b) of Ref. [45] for identical system parame-
ters (βeψ0 = 3, ωτRC = 1, κL = 50) at a ratio of ionic dif-
fusion coefficients equal to 2 and 3.5. A striking difference,
discussed briefly before, concerns the differences in mirror
symmetry with respect to the midplane. Also, for the case of
sawtooth driving we see two AREF peaks (a minimum and
a maximum) of the same order of magnitude in the Debye-
length vicinity of the electrodes, whereas in the case of the
asymmetric electrolyte we only obtain a single peak (a mini-
mum at one electrode and a maximum at the other in agree-
ment with the mirror anti-symmetry). We also note that the

scale of the AREF peaks is roughly an order of magnitude
larger in the asymmetric case compared to the sawtooth case,
however, the latter spreads almost twice as deep into the bulk
of the electrolyte.

V. DISCUSSION AND CONCLUSION

In this work we investigate the time-averaged static elec-
tric field generated within the electrolytic cell depicted in
Fig. 2 when exposed to a sawtooth-shaped AC potential, un-
der the condition of equal diffusion coefficients for monova-
lent cations and anions, i.e., D+ = D−. We numerically solve
the coupled non-linear Poisson-Nernst-Planck (PNP) equa-
tions for ionic diffusion and migration in the cell to examine
the dependence of the magnitude of the emerging asymmet-
ric rectified electric field (AREF) on key system parameters.
These parameters include the amplitude Ψ0 of the applied AC
sawtooth voltage, the driving frequency ω , the phase shift ∆φ

between the lowest two harmonic modes of the driving po-
tential, and the system size L, where we note that these sys-
tem parameters can all be externally tuned without requiring
a change of the electrolyte.

The asymmetry in the rate of change of the driving saw-
tooth voltage induces, despite the equal diffusion coefficients
of the cations and anions and despite a zero period-averaged
applied voltage, a nonzero period-averaged electrode charge
⟨σ⟩ that is responsible for a nonzero period-averaged asym-
metric rectified electric field (AREF) between the electrodes.
While AREF fundamentally represents a non-linear screening
phenomenon that we find to be proportional to Ψ3

0, we could
still obtain additional insights by conducting an analysis us-
ing the linear RC-circuit of Fig. 4(b) that was also used and
derived in Ref. [45]. The analytic expression for the time-
dependent charge Q(t) on the capacitor of this circuit, in par-
ticular the difference between (i) the maximum and the mini-
mum of this charge (represented by ∆q) and (ii) the duration of
the time-interval of positive and negative charge (represented
by ∆t), provides a clue on the physics of the nonlinear phe-
nomenon of AREF. These nonzero differences have opposite
effects on the the period-averaged charge, which cancels iden-
tically even for nonzero ∆q and ∆t in the case of linear circuits.
However, this cancellation is no longer exact in the nonlinear
case of the PNP equations, where an intricate competition be-
tween ∆q (favoring a net positive charge for our parameter
choices) and ∆t (favoring a net negative charge) depends sen-
sitively on the system parameters. For driving frequencies ω

that are of the same order as the inverse of the characteristic
RC-time of electric double layers, i.e., when ωτRC ∼ 1, this
competition between ∆q and ∆t induces the most prominent
period-averaged distribution of ionic charges, which, conse-
quently, results in the largest non-zero AREF structure. The
dependence on the system size L is largely reflected by the
dependence on the RC-time -which also depends on L. A
relatively strong AREF effect of an order of magnitude can
be induced by a phase difference ∆φ = π/2 between the two
modes of the driving voltage in the two-mode approximation.

Finally, we noted that a recent investigation on floating col-
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loids subjected to AC voltage within an electrolytic cell [41]
proposed that apart from AREF also dielectrophoresis (DEP)
might also play a role in counteracting the gravitational forces
on the colloids, depending on the system parameters. How-
ever, the relative contribution of each of these mechanisms
to the floating height of the colloids remains an open ques-
tion. It may well be possible to separate the contributions of
the two mechanisms by employing sawtooth potentials, which
we have shown here offer substantial opportunities for tun-
ing AREF without the need to change the electrolyte or the
colloidal suspension. We hope that this work stimulates ex-
perimental work along these lines to manipulate a given elec-
trolyte externally.
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