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MAXIMAL BRILL–NOETHER LOCI VIA DEGENERATIONS AND DOUBLE

COVERS

ANDREI BUD AND RICHARD HABURCAK

Abstract. Using limit linear series on chains of curves, we show that closures of certain Brill–
Noether loci contain a product of pointed Brill–Noether loci of small codimension. As a result,
we obtain new non-containments of Brill–Noether loci, in particular that dimensionally expected
non-containments hold for expected maximal Brill–Noether loci. Using these degenerations, we also
give a new proof that Brill–Noether loci with expected codimension −ρ ≤ ⌈g/2⌉ have a component
of the expected dimension. Additionally, we obtain new non-containments of Brill–Noether loci by
considering the locus of the source curves of unramified double covers.

Introduction

The main theorem of classical Brill–Noether theory [Gie82, GH80] shows that if C is a general
smooth projective curve of genus g, then C admits a nondegenerate (not lying in a hyperplane)
map C → Pr of degree d if and only if the Brill–Noether number

ρ(g, r, d) := g − (r + 1)(g − d+ r) ≥ 0.

A nondegenerate degree d map C → Pr corresponds to a line bundle L ∈ Pic(C) of degree d and a
subspace V ⊆ H0(C,L) of dimension r + 1. The pair (L, V ) is called a linear system of degree d
and dimension r on C, or a grd on C for short.

In the last few years, there has been a renewed focus on refined Brill–Noether theory, which aims
to understand linear systems on a curve in a component of a Brill–Noether locus

Mr
g,d = {C ∈ Mg | C admits a grd}

when ρ(g, r, d) < 0. In particular, there have been major advances in a refined Brill–Noether theory
for curves of fixed gonality [CPJ22, JR21, LLV20, Lar21, Pfl17]. Relatively little is known about
the geometry of Brill–Noether loci in general. It is known that Mr

g,d is a proper subvariety of Mg,

which can potentially have multiple components and satisfies codimMr
g,d ≤ max{0,−ρ(g, r, d)},

see [Ste98], where −ρ(g, r, d) is the expected codimension. See Section 1.1 for more details.
By adding basepoints and subtracting non-basepoints, one obtains many trivial containments of

Brill–Noether loci. The expected maximal Brill–Noether loci are precisely the loci which do not
admit such trivial containments, for a detailed characterization see Section 1.2. Inspired by work
on lifting line bundles on K3 surfaces, Auel and the second author posed a conjecture in [AH22]
concerning potential containments of the “largest” Brill–Noether loci.

Conjecture 1 (Maximal Brill–Noether Loci Conjecture). For any g ≥ 3, except for g = 7, 8, 9, the
expected maximal Brill–Noether loci are maximal with respect to containment.

There has been a flurry of recent progress on this conjecture in work of Auel–Haburcak–Larson,
Bud, and Teixidor i Bigas [AHL23, Bud24, TiB23]. In particular, Conjecture 1 holds in genus
g ≤ 23 and by work of Choi, Kim, and Kim [CK22, CKK14], in genus g such that

g + 1 or g + 2 ∈ {lcm(1, 2, . . . , n) for some n ∈ N≥3}.
In this paper, we give new non-containments of Brill–Noether loci. One expects that a Brill–

Noether locus of large expected dimension is not contained in a Brill–Noether locus of small expected
dimension. We prove that this is indeed the case.

Theorem 1. Let Mr
g,d and Ms

g,e be expected maximal Brill–Noether loci. If ρ(g, s, e) < ρ(g, r, d),

then Mr
g,d * Ms

g,e.
1
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We show that given an expected maximal Brill–Noether locus Mr
g,d, we can find a curve in the

closure of Mr
g,d in Mg that is not contained in the closure of any other expected maximal Brill–

Noether locus Ms
g,e with ρ(g, s, e) < ρ(g, r, d). To do this, we use limit linear series to show that

the closure of Mr
g,d contains a product of Brill–Noether loci with prescribed ramification having

expected codimension 1 or 2. Then Brill–Noether additivity and a few base cases yield Theorem 1.
Furthermore, we give a new proof of the existence of a component of a Brill–Noether locus of

the expected dimension.

Theorem 2. If d ≤ 2g − 2 and −ρ(g, r, d) ≤ ⌈g/2⌉, then Mr
g,d has a component of the expected

dimension.

We note that this does not improve the currently best known results on the existence of compo-
nents of the expected dimension, which are given in [Pfl22, TiB23]. However, our method has the
advantage of avoiding many of the combinatorial intricacies appearing in the previous proofs.

We also study non-containments of Brill–Noether loci coming from restrictions on linear series

on a curve ‹C admitting an étale double cover ‹C → C of a curve of genus g. In particular, the
image, Im(χg), of the map χg : Rg → M2g−1 sending the double cover to the source curve interacts
interestingly with the Brill–Noether stratification of M2g−1. For double covers, Bertram shows in
[Ber87, Theorem 1.4] that Im(χg) is contained in certain Brill–Noether loci. Conversely, Schwarz

shows in [Sch17, Theorem 1.1] that for a general double cover ‹C → C, letting g̃ be the genus of ‹C,

if ρ(g̃, r, d) < −r, then ‹C admits no grd. Using these restrictions, as well as ideas of Aprodu and
Farkas [AF12], we show infinitely many non-containments of expected maximal Brill–Noether loci.

Theorem 3. Let g = 1+r(r+1)+2ε for some 0 ≤ ε < r
2 and let s, d be positive integers satisfying

either

• ρ(g, s, d) = −s− 1, or
• ρ(g, s, d) = −s, d is odd and s 6≡ 3 (mod 4),

then there is a non-containment

Mr
g,g−1 * Ms

g,d.

Already taking ε = 0 gives infinitely many non-containments of expected maximal Brill–Noether
loci, see Corollary 5.5.

Outline. In Section 1, we recall facts about Brill–Noether loci, limit linear series, and Prym curves.
In particular, we give more precise definitions of expected maximal Brill–Noether loci in Section 1.2,
including some useful facts for our proofs. In Section 2, we prove non-containments of pointed
Brill–Noether loci of small codimension which act as the base cases for our proof of Theorem 1.
In Section 3, we prove our main technical result, Proposition 3.1 and give a proof of Theorem 1
as Theorem 3.7. In Section 4, we use an inductive argument and the argument of Proposition 3.1
to prove Theorem 2. Finally, in Section 5, we prove additional non-containments of Brill–Noether
loci coming from Prym curves.
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1. Background

1.1. Brill–Noether loci. Brill–Noether theory studies how curves map to projective space. A
map C → Ps factors as a non-degenerate map C → Pr and the linear embedding Pr ⊆ Ps. We
restrict our attention to non-degenerate maps C → Pr, which are determined by a grd, that is, an
element of

Gr
d(C) := {(L, V ) | L ∈ Picd(C), V ⊆ H0(C,L), dimV = r + 1}.

There is a natural globalization of Gr
d(C) to a moduli space Gr

g,d over the moduli space Mg of

smooth curves of genus g, where the natural map Gr
g,d → Mg has fiber Gr

d(C) above C. The
Brill–Noether loci

Mr
g,d := {C ∈ Mg | C admits a grd}

are the images of the corresponding maps Gr
g,d → Mg.

Many classical theorems in Brill–Noether theory can be restated in terms of components of Gr
g,d.

For example, the classical Brill–Noether theorem states that Gr
g,d has a unique component surjecting

onto Mg when ρ(g, r, d) ≥ 0, and this component has relative dimension ρ(g, r, d) [Pfl22]. The
expected relative dimension of Gr

g,d is ρ(g, r, d), in particular when ρ(g, r, d) < 0, Mr
g,d has expected

codimension −ρ(g, r, d) in Mg.
When Brill–Noether loci are equidimensional, perhaps even irreducible, one can use simple di-

mension arguments to prove non-containments of Brill–Noether loci, large loci cannot be contained
in small loci. However, only Brill–Noether loci with ρ = −1 and M2

g,d with ρ = −2 are known to

be irreducible [CK22, EH89, Ste98]. More is known about the existence of components of expected
dimension, however not much is known about equidimensionality of components. It is known that
the codimension of any component of Mr

g,d is at most −ρ(g, r, d), and when −3 ≤ ρ(g, r, d) ≤ −1

(additionally assuming g ≥ 12 when ρ(g, r, d) = −3), the Brill–Noether loci are equidimensional of
the expected dimension [Edi93, Ste98]. Complicating the picture, components of larger than ex-
pected dimension can exist, examples include Castelnuovo curves, see for example [Pfl22, Remark
1.4].

When ρ is not too negative, avoiding the Castelnuovo curve examples, it is expected that there is
a component of expected dimension. Recently, Pflueger and Teixidor i Bigas independently showed
that when ρ ≥ −g + 3, Mr

g,d has a component of expected dimension [Pfl22, TiB23]. We give a
new proof of the existence of a component of expected dimension for Brill–Noether loci of expected
codimension ≤ ⌈g/2⌉.

1.2. Expected maximal Brill–Noether loci. Many statement of a refined Brill–Noether the-
ory can be restated as studying the stratification of Mg by Brill–Noether loci. There are trivial

containments Mr
g,d ⊆ Mr

g,d+1 obtained by adding a basepoint to a grd on C; and Mr
g,d ⊆ Mr−1

g,d−1

when ρ(g, r − 1, d − 1) < 0 by subtracting a non-basepoint [Far00b, LC12]. The expected maximal

Brill–Noether loci are defined as the Brill–Noether loci not admitting these trivial containments.
Concretely, for fixed r ≥ 1 a Brill–Noether locus Mr

g,d is expected maximal if d is maximal such that

ρ(g, r, d) < 0 and ρ(g, r−1, d−1) ≥ 0. Accounting for Serre duality, which showsMr
g,d = Mg−d+r−1

g,2g−2−d,

every Brill–Noether locus is contained in at least one expected maximal Brill–Noether locus. As
observed in [AHL23, Lemma 1.1], the expected maximal Brill–Noether loci are exactly the Mr

g,d

such that

(1) 1 ≤ r ≤
® ⌈√

g − 1
⌉

if g ≥
⌊√

g
⌋2

+
⌊√

g
⌋

⌊√
g − 1

⌋
if g <

⌊√
g
⌋2

+
⌊√

g
⌋
,

and for each such r

(2) d = dmax(g, r) := r +

°
gr

r + 1

§
− 1.
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In [AH22], Auel and the second author posed Conjecture 1, which says that the expected max-
imal Brill–Noether loci should be maximal with respect to containment, except when g = 7, 8, 9.
Concretely, for any two Mr

g,d and Ms
g,e expected maximal, there should exist a curve C admitting

a grd but no gse. We note that the exceptional cases in genus 7, 8, and 9, come from unexpected
containments of Brill–Noether loci obtained from projections from points of multiplicity ≥ 2 in
genus 7 and 9 [AH22, Propositions 6.2 and 6.4] or from a trisecant line in genus 8, as shown
by Mukai [Muk93, Lemma 3.8].) Following this, they proved Conjecture 1 in genus g ≤ 19, 22,
and 23 using various K3 surface techniques and Brill–Noether theory for curves of fixed gonal-
ity. Moreover, work of Choi, Kim, and Kim [CK22, CKK14] showing that Brill–Noether loci with
ρ = −1,−2 are distinct verifies Conjecture 1 in infinitely many genera, cf. [AH22]. More recently,
Auel–Haburcak–Larson employed the gonality stratification and the refined Brill–Noether theory
for curves of fixed gonality to verify the g = 20 case [AHL23], and the first author has verified the
g = 21 case by employing a degeneration argument and studying strata of differentials [Bud24].
Various non-containments of expected maximal Brill–Noether loci are also known, for details see
[AH22, AHL23, Bud24, TiB23].

We end with a few useful facts about expected maximal Brill–Noether loci.

Lemma 1.1 ([AHL23, Lemma 4.1]). Let g mod r+1 be the smallest non-negative representative.

For an expected maximal Brill–Noether locus Mr
g,d, we have −ρ(g, r, d) = r + 1− (g mod r + 1).

Moreover, for r satisfying Equation (1), the expected maximal Brill–Noether loci are exactly the
Brill–Noether loci with the largest expected dimension.

Lemma 1.2. For r satisfying Equation (1) if −r − 1 ≤ ρ(g, r, d) ≤ −1, then Mr
g,d is expected

maximal.

Proof. A straightforward computation shows that if −r − 1 ≤ ρ(g, r, d) ≤ −1, then d ≥ dmax(g, r)
and ρ(g, r, d + 1) = ρ(g, r, d) + r + 1 ≥ 0. For r satisfying Equation (1) and ρ(g, r, d) < 0, we have
r + 1 ≤ g − d + r, hence ρ(g, r − 1, d − 1) = ρ(g, r, d) + g − d + r ≥ 0. Thus Mr

g,d is expected
maximal. �

1.3. Limit linear series and pointed Brill–Noether loci. We recall the basics of limit linear
series and pointed Brill–Noether loci. Let C be a smooth curve. We follow the standard terminology
from [EH86] and [Far00b].

Let g, r, d be positive integers satisfying d < g + r. Given a curve C of genus g, a linear series
ℓ = (L, V ) ∈ Gr

d(C), and fixing a point p ∈ C, we order the finite set {ordp(σ)}σ∈V of vanishing
orders of sections, giving a vanishing sequence

aℓ(p) : 0 ≤ aℓ0(p) < aℓ1(p) · · · < aℓr(p) ≤ d

of non-negative integers. The ramification sequence of ℓ at p

0 ≤ bℓ0(p) ≤ · · · ≤ bℓr(p) ≤ d− r

is given by bℓi(p) := aℓi(p)− i, and the weight of ℓ at p is

wℓ(p) =

r∑

i=1

bℓi(p).

When the linear series ℓ is understood, we omit it from the notation.
We call a sequence of integers 0 ≤ b0 ≤ · · · br ≤ d − r a ramification sequence of type (r, d) and

weight w(b) =
∑

bi, and given two ramification sequences of type (r, d), we say (bi) ≤ (ci) when
bi ≤ ci for all 0 ≤ i ≤ r. Similarly, we call a sequence of integers 0 ≤ a0 < a1 < · · · < ar ≤ d a
vanishing sequence of type (r, d). Given n smooth points p1, . . . , pn on a curve C and n ramification
sequences b1, . . . , bn of type (r, d), we define

Gr
d(C, (p1, b

1), . . . , (pn, b
n)) := {ℓ ∈ Gr

d(C) | bℓ(pi) ≥ bi},
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which is a determinantal variety of expected dimension

ρ(g, r, d, b1 , . . . , bn) := ρ(g, r, d) −
n∑

i=1

w(bi),

which is the adjusted Brill–Noether number. If the linear series ℓ and the vanishing sequences are
understood, we sometimes abbreviate ρ(g, r, d, b1 , . . . , bn) = ρ(ℓ, p1, . . . , pn) to emphasize the points
rather than the ramification sequence.

We will work mainly with vanishing sequences, hence given a ramification sequence (bi) of type
(r, d) we define the associated vanishing sequence as (ai) := (bi + i).

Similarly, one can define pointed versions of W r
d (C), namely

W r
d (C, (p1, b

1), . . . , (pn, b
n)) := {L ∈ Picd(C) | h0(C,L(−aji pj)) ≥ r + 1− i

for all 0 ≤ i ≤ r and all 1 ≤ j ≤ n}.
One may also globalize these constructions, as with Wr

d and Gr
g,d. Namely, given ramification

sequences b1, . . . , bn of type (r, d), with a1, . . . , an the associated vanishing sequences, we define the
pointed Brill–Noether loci

Mr
g,d(a

1, . . . , an) := {C ∈ Mg,n | Gr
d(C, (p1, b

1), . . . , (pn, b
n)) 6= ∅} ⊆ Mg,n.

When the entries of the vanishing sequences are consecutive numbers, the corresponding point is
simply a base-point of the linear series. In particular, by subtracting the base-point a0p, one sees
that Mr

g,d(a0, a0 + 1, . . . , a0 + r) = Mr
g,d−a

0

, viewed in Mg,1.

For a curve C of compact type (i.e. every node of C is disconnecting, or equivalently a curve
whose dual graph is a tree or whose Jacobian is compact), a crude limit grd on C is a collection of
ordinary linear series

ℓ = {ℓY = (LY , VY ) ∈ Gr
d(Y ) | Y ⊆ C is an irreducible component}

satisfying a compatibility condition on the intersections of components. Namely, if Y and Z are
irreducible components of C with p = Y ∩ Z, then

aℓYi (p) + aℓZr−i(p) ≥ d for all 0 ≤ i ≤ r.

When equality holds everywhere, we say that ℓ is a refined limit grd. The linear series ℓY ∈ Gr
d(Y )

is called the Y -aspect of the limit linear series ℓ.
In [EH86, Lemma 3.6], it is proven that the adjusted Brill–Noether number is additive. Namely

ρ(g, r, d) ≥
∑

Y⊆C

ρ(ℓY , b
ℓY (p1), . . . , b

ℓY (pk)),

where p1, . . . , pk are the intersections of Y with the other components of C, and equality holds
exactly when ℓ is a refined limit linear series. Furthermore, due to the determinantal nature of
Gr

d(C, (p1, b
1), . . . , (pn, b

n)), as shown in [EH86, Corollary 3.5], limit linear series that move in a
space of the expected dimension smooth to nearby curves.

1.4. Prym–Brill–Noether loci. We recall some basic facts about the Prym moduli space Rg of
unramified double covers of curves of genus g, and Prym–Brill–Noether loci which are useful in
Section 5.

Recall that the moduli space of Prym curves

Rg := {[C, η] | C ∈ Mg, η ∈ Pic0(C) \ {OC}, η⊗2 ∼= OC},
introduced by Mumford in his seminal paper [Mum74] and further popularized by Beauville in
[Bea77], parameterizes smooth curves of genus g together with a 2-torsion point of the Jacobian of
C. The data of such a pair [C, η] ∈ Rg is equivalent to the datum of an unramified double cover

f : ‹C → C where ‹C := Spec(OC ⊕ η). As the cover is unramified, we immediately see that the
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genus of ‹C is given by g(‹C) = 2g(C) − 1 = 2g − 1. The étale double cover f : ‹C → C induces a
norm map

Nmf : Pic2g−2
Ä‹C
ä
→ Pic2g−2(C), Nmf

(
O‹C(D)

)
:= OC (f(D)) .

The Prym moduli space Rg parametrizing unramified double covers of curves of genus g, has many
applications in the study of principally polarized Abelian varieties, Mg, and Brill–Noether theory.
In particular, Welters defined in [Wel85] the Prym–Brill–Noether loci

V r(f : ‹C → C) := {L ∈ Pic(‹C) | Nmf (L) ∼= ωC , h0(‹C,L) ≥ r+ 1 and h0(‹C,L) ≡ r + 1 mod 2}.
It was subsequently shown in two papers [Wel85, Ber87] that when g ≥

(
r+1
2

)
+ 1, the locus

V r(f : ‹C → C) is non-empty of dimension at least g − 1 −
(
r+1
2

)
, and that equality is attained for

generic [f : ‹C → C] ∈ Rg. Moreover, when g <
(
r+1
2

)
+1, then V r(f : ‹C → C) is empty for generic

[f : ‹C → C]. Recently, Schwarz investigated the Brill–Noether theory for general unramified cyclic

covers of degree n, parameterized by Rg,n, and showed that for general [f : ‹C → C] ∈ Rg,n, ‹C
admits no grd if ρ(g(‹C), r, d) < −r, where g(‹C) = n(g − 1) + 1 is the genus of ‹C, see [Sch17] for
more details.

In Section 5, we consider the natural map

χg : Rg → M2g−1, [f : ‹C → C] 7→ [‹C],

which sends the étale double cover to the source curve, and investigate how the image, Im(χg),
interacts with the Brill–Noether stratification of M2g−1.

2. Non-containments of pointed Brill–Noether loci of small codimension

The goal of this section is to provide some preliminary results that will be used to prove
Theorem 1 via degeneration techniques. We want to find curves in the closure of Mr

g,d in Mg

that cannot be contained in the closure of another expected maximal Brill–Noether locus Ms
g,e. As

pointed Brill–Noether loci naturally appear in the boundary of Brill–Noether loci, in this section
we will prove some non-containment results for them.

One key statement is that pointed Brill–Noether loci of expected codimension 1 are not contained
in pointed Brill–Noether loci of larger expected codimension.

Proposition 2.1. Let g, r, d, s, e be positive integers and let a, b be vanishing sequences of type

(r, d) and respectively (s, e), such that ρ(g, r, d, a) = −1 and ρ(g, s, e, b) ≤ −2. Then there is a

non-containment

Mr
g,d(a) 6⊆ Ms

g,e(b)

Proof. This result is an immediate consequence of [EH89, Theorem 1.2]. The locus Mr
g,d(a) is an

irreducible divisor of Mg,1 while the locus Ms
g,e(b) has codimension 2 or higher. �

This result can be extended to pointed Brill–Noether loci in Mg,2.

Corollary 2.2. Let g, r, d, s, e be positive integers and let a, b, c be vanishing sequences of type

(r, d) and respectively (s, e), such that ρ(g, r, d, a) = −1 and ρ(g, s, e, b, c) ≤ −2. Then, letting

π : Mg,2 → Mg,1 be the map forgetting the second marking, there is a non-containment

π−1Mr
g,d(a) 6⊆ Ms

g,e(b, c).

Proof. Let [P1, p, p1, p2] ∈ M0,3 and consider the clutching map

Mg,1 → Mg,2

sending a pointed curve [C, q] to [C∪q∼pP1, p1, p2]. The pullback of π−1Mr
g,d(a) is simply Mr

g,d(a),

while the pullback of Ms
g,e(b1, b2) consists of loci with Brill–Noether number strictly less than −1.

Proposition 2.1 yields the conclusion. �
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We want to show that containments are well-behaved with respect to the expected codimen-
sion, i.e., no Brill–Noether locus is contained in another Brill–Noether locus of higher expected
codimension. We start with the case of codimension 2.

Proposition 2.3. Let Mr
g,d ⊆ Mg be a Brill–Noether locus satisfying d < g + r, ρ(g, r, d) = −2

and r+1 ≤ g−d+r. If Ms
g,e(b) is a pointed Brill–Noether locus with ρ(g, s, e, b) ≤ −3, then letting

π : Mg,1 → Mg be the forgetful map, there is a non-containment

π−1Mr
g,d 6⊆ Ms

g,e(b).

Proof. If g ≥ 4r + 2, we can consider a clutching map

Mg1,1 ×Mg2,1 → Mg

with g1 = (r + 1)k1 − 1 and g2 = (r + 1)k2 − 1 for some k1, k2 ≥ 2.
The locus Mr

g1,d
(rk2 − 1, rk2, . . . , rk2 + r − 1) × Mr

g2,d
(rk1 − 1, rk1, . . . , rk1 + r − 1) is a non-

empty product of loci with Brill–Noether number −1, and appears in the pullback of Mr
g,d via the

clutching map as a result of [EH86, Corollary 3.5].
We consider the diagram

Mg1,1 ×Mg2,2 Mg,1

Mg1,1 ×Mg2,1 Mg

ι

π

where the vertical maps are forgetful maps, while the horizontal maps are the obvious clutchings.
By Brill–Noether additivity (cf. [EH86, Proposition 4.6]) and Corollary 2.2, the pullback of

Mr
g1,d

(rk2 − 1, rk2, . . . , rk2 + r − 1)×Mr
g2,d

(rk1 − 1, rk1, . . . , rk1 + r − 1) to Mg1,1 ×Mg2,2 is not

contained in ι−1Ms
g,e(b). This implies the required non-containment

π−1Mr
g,d 6⊆ Ms

g,e(b).

We are left to treat the cases when g < 4r + 2. In this situation, we have

4r + 4 > g + 2 = (r + 1)(g − d+ r) ≥ (r + 1)2

and hence 1 ≤ r ≤ 2.
If r = 1, then 4 ≤ g < 6, and the condition ρ(g, r, d) = −2 implies g = 4 and d = 2, whereby

Mr
g,d is the hyperelliptic locus.
Let W2 ⊆ M2,1 be the Weierstrass divisor and consider the clutching

M2,1 ×M2,1 → M4.

The locus W2×W2 appears in the pullback of M1
4,2 via the clutching. The rest of the proof follows

analogously to the case g ≥ 4r + 2.
When r = 2, we have 7 ≤ g < 10, and the condition ρ(g, 2, d) = −2 implies g = 7 and d = 6. We

consider the clutching
M2,1 ×M5,1 → M7.

We take the product of codimension 1 loci M2
2,6(2, 4, 6) ×M2

5,6(0, 2, 4). By [EH86, Corollary 3.5],

this locus appears in the pullback of M2
7,6 via the clutching map. The proof of non-containment

now follows as in the case g ≥ 4r + 2. �

In fact, the same argument as in the proof of Corollary 2.2 can be used to extend the result to
codimension 2 loci.

Corollary 2.4. Let g, r, d, s, e be positive integers and let b, c be vanishing sequences of type (s, e)
such that ρ(g, r, d) = −2 and ρ(g, s, e, b, c) ≤ −3. Then, letting π : Mg,2 → Mg be the map

forgetting the markings, there is a non-containment

π−1Mr
g,d 6⊆ Ms

g,e(b, c).
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This corollary, together with Brill–Noether additivity [EH86, Proposition 4.6] will be the key
results in proving Theorem 1.

3. Dimensionally expected non-containments

In this section, we prove that given two expected maximal Brill–Noether loci Mr
g,d and Ms

g,e

satisfying ρ(g, r, d) > ρ(g, s, e) (i.e. the expected dimension of Ms
g,e is smaller than the expected

dimension of Mr
g,d), we have Mr

g,d * Ms
g,e. Our approach is in two steps. We first construct a

chain curve C1 ∪C2 · · · ∪Ck appearing in the boundary of Mr
g,d by virtue of [EH86, Corollary 3.5].

We then use Brill–Noether additivity to conclude that this curve does not admit a limit linear series
of type gse, thus proving the non-containment Mr

g,d * Ms
g,e.

Proposition 3.1. Let Mr
g,d be a Brill–Noether locus satisfying the numerical condition

(∗) (2r + 1)

õ−ρ(g, r, d) + 1

2

û
−
õ−ρ(g, r, d)

2

û
≤ g.

Then the closure of this locus in Mg contains a chain curve [C1 ∪C2 ∪ · · ·Ck] such that

• Each irreducible component Ci is generic in a Brill–Noether locus Mr
gi,di

with

−1 ≥ ρ(gi, r, di) ≥ −2;

• Each glueing point is generic on both irreducible components it connects.

Proof. Let k =
ö−ρ(g,r,d)+1

2

ù
and consider the clutching

ϕ : Mg1,1 ×
(

k−1∏

i=2

Mgi,2

)
×Mgk,1 → Mg,

sending a tuple
(
[C1, p1], [C2, q

1
2 , q

2
2], . . . , [Ck−1, q

1
k−1, q

2
k−1], [Ck, pk]

)
to the curve

‹C := C1 ∪p1∼q1
2

C2 ∪q2
2
∼q1

3

C3 ∪ · · · ∪q2
k−1

∼pk
Ck.

We want to construct a chain curve [C1∪C2 · · ·∪Ck] admitting a smoothable limit grd and respecting
the conditions in the hypothesis. We remark that it is sufficient to find a limit grd on this chain
so that the vanishing orders are consecutive numbers for each node. Let (v1, v1 + 1, . . . , v1 + r) be
the vanishing orders at p1 for the C1-aspect, (v

1
i , v

1
i +1, . . . , v1i + r) and (v2i , v

2
i +1, . . . , v2i + r) the

vanishing orders at q1i and q2i for the Ci-aspect and (vk, vk + 1, . . . , vk + r) the vanishing orders at
pk for the Ck-aspect.

We treat first the case ρ(g, r, d) is even.

We show how to determine gi and vji from g, r, d. Note that ρ(g, r, d) = −2k ≡ g (mod r + 1).

Starting with (r−1, r−1, . . . , r−1) ∈ (Z>0)
⊕k, we add r+1 to the first entry then the second, and so

on, repeating cyclically until we obtain (g1, g2 . . . , gk) where gi ≡ −2 (mod r+1) and g =
∑k

i=1 gi.

Let vi =
gi+2
r+1 + d− r − gi. The vanishing orders are given inductively by

v1 =
g1 + 2

r + 1
+ d− r − g1

v12 = d− v1 − r

v22 = v2 − v12

v1i = d− v2i−1 − r

v2i = vi − v1i =
gi + 2

r + 1
− gi + v2i−1.
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By construction, the vanishing orders satisfy the compatibility condition to be a refined limit
linear series for i ≤ k − 1, and at pk we have

vk + r + v2k−1 =

(
k∑

i=1

gi + 2

r + 1
− gi

)
+ 2d− r

=
g − ρ(g, r, d)

r + 1
− g + 2d− r

= d,

thus the compatibility condition is satisfied at every clutching point. Moreover, by definition
vi = v1i + v2i and one checks that

ρ(g, r, d, (v1 , . . . , v1 + r)) = −2,

ρ(g, r, d, (v1i , . . . , v
1
i + r), (v2i , . . . , v

2
i + r)) = −2 for 2 ≤ i ≤ k − 1, and

ρ(g, r, d, (vk , . . . , vk + r)) = −2.

Finally, taking di = d − vi, we note that the ith aspect corresponds to a grdi on Ci which satisfies

ρ(gi, r, di) = −2, thus Mr
gi,di

is a Brill–Noether locus of codimension 2.

The locus of curves in Im(ϕ) admitting a grd with vanishing orders as above is of expected
dimension and satisfies the conditions in the hypothesis. Finally, [EH86, Corollary 3.5] implies that
this locus appears in the closure of Mr

g,d, as required.

The condition (∗) was tacitly used to ensure that gi > r − 1 for all i and hence that Mr
gi,di

is

non-empty, see [TiB23, Theorem 2.1].
We now treat the case ρ(g, r, d) is odd.

We will keep the notations from the even case. In this situation, we have

ρ(g, r, d) = −2k + 1 ≡ g (mod r + 1).

Starting with (r − 1, r − 1, . . . , r − 1, r) ∈ (Z>0)
⊕k, we add r + 1 to the first entry then the

second, and so on, repeating cyclically until we obtain (g1, g2 . . . , gk) where gi ≡ −2 (mod r + 1)

for 1 ≤ i ≤ k−1, gk ≡ −1 (mod r+1) and g =
∑k

i=1 gi. Let vi =
gi+2
r+1 +d− r− gi for 1 ≤ i ≤ k−1

and vk = gk+1
r+1 + d− r − gk. The vanishing orders are determined inductively by

v1 =
g1 + 2

r + 1
+ d− r − g1

v12 = d− v1 − r

v22 = v2 − v12

v1i = d− v2i−1 − r

v2i = vi − v1i =
gi + 2

r + 1
− gi + v2i−1.

By construction, a grd with these vanishing orders satisfies the compatibility condition to be a refined
limit linear series for i ≤ k − 1, and at pk we have

vk + r + v2k−1 =

(
k−1∑

i=1

gi + 2

r + 1
− gi

)
+

gk + 1

r + 1
− gk + 2d− r

=
g − ρ(g, r, d)

r + 1
− g + 2d− r

= d,

thus the compatibility condition is satisfied at every clutching point. As before, vi = v1i + v2i by
definition and one checks that ρ(gi, r, d − vi) = −2 for 1 ≤ i ≤ k − 1 and ρ(gk, r, d − vk) = −1.
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Taking di = d − vi we obtain the Brill–Noether loci Mr
gi,di

having either codimension 1 or 2. By

taking [Ci] ∈ Mr
gi,di

and glueing at generic points to form a chain [C1 ∪ C2 ∪ · · · ∪ Ck] we obtain
our desired curve. �

The numerical condition (∗) ensures that all the Brill–Noether loci we consider are non-empty.
The condition is very mild. We identify precisely when the numerical condition above holds.

Lemma 3.2. Let Mr
g,d be an expected maximal Brill–Noether locus. Then

(∗) (2r + 1)

õ−ρ(g, r, d) + 1

2

û
−
õ−ρ(g, r, d)

2

û
≤ g

holds unless ρ(g, r, d) = −(r + 1) = −
⌈√

g
⌉
is odd and g is not a square.

Remark 3.3. We note that (∗) does not hold in general when ρ(g, r, d) = −r − 1 is odd and
r =

⌈√
g − 1

⌉
, the expected maximal Brill–Noether locus M6

42,41 provides such an example. In

fact, for any genus of the form g = n2−n with
⌈√

g − 1
⌉
even, the expected maximal Brill–Noether

locus M⌊√g⌋
g,d contradicts (∗).

Proof. Assume that ρ(g, r, d) is even, then

(2r + 1)

õ−ρ(g, r, d) + 1

2

û
−
õ−ρ(g, r, d)

2

û
= −rρ(g, r, d),

and since for expected maximal loci −ρ(g, r, d) ≤ r + 1, we have −rρ(g, r, d) ≤ r(r + 1). To see
that this holds for expected maximal Brill–Noether loci, first note that r+ 1 ≤ g − d+ r. We now
compute

ρ(g, r, d) ≥ −r − 1

g + r + 1 ≥ (r + 1)(g − d+ r) ≥ (r + 1)2

g ≥ r(r + 1),

as was to be shown.
Assume now that ρ(g, r, d) is odd. Then (∗) reads

−rρ(g, r, d) + r + 1 ≤ g.

As above, one sees that if −ρ(g, r, d) ≤ r − 1, then this holds. If −ρ(g, r, d) = r, then (∗) reads
r2 + r + 1 ≤ g, which clearly holds if r ≤ √

g − 1. Similarly, if −ρ(g, r, d) = r + 1, then (∗) reads

(r + 1)2 ≤ g, which holds if r ≤ √
g − 1.

Thus we may assume that r =
⌈√

g − 1
⌉
for g not a square, and r ≤ −ρ(g, r, d) ≤ r + 1.

It remains to show that (∗) holds when −ρ(g, r, d) = r =
⌈√

g − 1
⌉
=
⌊√

g
⌋
is odd, g is not a

square, and g ≥
⌊√

g
⌋2

+
⌊√

g
⌋
, see Equation (1) in Section 1.2. In this case, (∗) reads

r2 + r + 1 ≤ g.

We show that this holds. From Lemma 1.1, we have

−ρ(g, r, d) = r ≡ r + 1− (g mod r + 1),

hence g ≡ 1 mod r + 1. Thus, as g ≥
⌊√

g
⌋2

+
⌊√

g
⌋
= r(r + 1), we must have g ≥ r2 + r + 1, as

claimed. �

Remark 3.4. In particular, (∗) is satisfied for all but possibly one expected maximal Brill–Noether
locus Mr

g,d, the one with largest r and smallest ρ. Indeed, when (∗) is not satisfied, then we have

ρ(g, r, d) < ρ(g, s, e) for all other expected maximal Brill–Noether loci Ms
g,e.

By imposing different requirements on the dimensions of the Brill–Noether loci Mr
gi,di

we can
obtain similar results. The proof of Proposition 3.1 can be adapted to conclude these new results.
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Proposition 3.5. Let Mr
g,d be a Brill–Noether locus satisfying the numerical condition

−ρ(g, r, d) · (2r + 1) ≤ g.

Then the closure of this locus in Mg contains a chain curve [C1 ∪C2 ∪ · · ·Ck] such that

• Each curve Ci is generic in a Brill–Noether divisor Mr
gi,di

of some Mgi;

• Each glueing point is generic on both components it connects.

In fact, if we allow the “clutching components” Mr
gi,di

of the expected maximal Brill–Noether
loci to be of expected codimension 3, a similar proposition holds with no numerical requirement.

Proposition 3.6. Let Mr
g,d be an expected maximal Brill–Noether locus. The closure of this locus

in Mg contains a chain curve [C1 ∪C2 ∪ · · ·Ck] such that

• Each curve Ci is generic in a Brill–Noether locus Mr
gi,di

with −1 ≥ ρ(gi, r, di) ≥ −3;
• Each glueing point is generic on both components it connects.

With these results in hand we prove our main theorem, that the dimensionally expected non-
containments of expected maximal Brill–Noether loci hold.

Theorem 3.7. Let Mr
g,d and Ms

g,e be expected maximal Brill–Noether loci. If ρ(g, s, e) < ρ(g, r, d),

then Mr
g,d * Ms

g,e.

Proof. As noted in Remark 3.4, the condition (∗) of Proposition 3.1 holds unless

−ρ(g, r, d) = r + 1 = ⌈√g − 1⌉+ 1

is odd and g is not a square, whereby ρ(g, r, d) < ρ(g, s, e) for all expected maximal loci Ms
g,e. By

assumption, we have ρ(g, s, e) < ρ(g, r, d), thus we may assume (∗) holds.
Consider a chain curve

‹C := C1 ∪p1∼q1
2

C2 ∪q2
2
∼q1

3

C3 ∪ · · · ∪q2
k−1

∼pk
Ck

in the boundary of Mr
g,d as described in Proposition 3.1. Each irreducible component Ci is

generic in a Brill–Noether locus of codimension 1 or 2, depending on the parity of ρ(g, r, d) as
in Proposition 3.1.

Assume for contradiction that we have the containment Mr
g,d ⊆ Ms

g,e. This implies that ‹C
admits a limit gse . Denoting the aspects of the limit gse by li, Proposition 2.1, Proposition 2.3 and

Corollary 2.4 imply that ρ(l1, p1) ≥ −2, ρ(li, q
1
i , q

2
i ) ≥ −2, and ρ(lk, pk) ≥

®
−1 if ρ(g, r, d) is odd

−2 if ρ(g, r, d) is even
.

Brill–Noether additivity gives

ρ(g, s, e) ≥ ρ(l1, p1)+

(
k−1∑

i=2

ρ(li, q
1
i , q

2
i )

)
+ρ(lk, pk) ≥ −2k+2+

®
−1 if ρ(g, r, d) is odd

−2 if ρ(g, r, d) is even
= ρ(g, r, d),

contradicting ρ(g, s, e) < ρ(g, r, d). �

4. Existence of components of expected dimension

The question of whether Brill–Noether loci, or more generally the schemes Gr
g,d, have components

of the expected dimension has recently received attention in the work of many authors, in particular
Pflueger and Teixidor i Bigas [Pfl22, TiB23]. They show that when −ρ(g, r, d) ≤ g − 3, then there
exists components of expected dimension (or expected relative dimension for Gr

g,d → Mg) [Pfl22,

Theorem A], and in case d 6= g − 1, then this also holds for −ρ(g, r, d) ≤ g − 2 [TiB23, Theorem
2.1]. We give a new proof of the existence of components of expected dimension in a smaller range.

Reasoning as in Proposition 3.1 immediately gives components of the expected dimension.
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Theorem 4.1. If d ≤ 2g − 2 and −ρ(g, r, d) ≤ ⌈g/2⌉, then Mr
g,d has a component of the expected

dimension.

Proof. The low genus cases 2 ≤ g ≤ 7 are an immediate consequence of [TiB23], while the case
r = 1 is well-known in the literature, see [Far01] and [AC81]. We assume g ≥ 8, r ≥ 2 and prove
the statement by reasoning inductively. We will consider two cases, depending on how large the
value −ρ(g, r, d) is.

Case I: We assume −ρ(g, r, d) ≥ r.
In this case, we consider a (hyperelliptic) curve [C1] ∈ Mr

r+2,2r and a curve [C2] ∈ Mr
g−r−2,d−r

and let p1 ∈ C1 and p2 ∈ C2.
We know that the locus Mr

r+2,2r = M1
r+2,2 is irreducible of codimension r. By induction, we

also know that Mr
g−r−2,d−r has a component of expected dimension, as the numerical conditions

in the hypothesis are satisfied:

• The condition

ρ(g − r − 2, r, d − r) = ρ(g, r, d) + r ≥ −
°
g − r − 2

2

§

is an immediate consequence of r ≥ 2 and the hypothesis ρ(g, r, d) ≥ −⌈g/2⌉.
• For the condition d− r ≤ 2(g− r− 2)− 2, i.e. d ≤ 2g− r− 6, we assume d ≤ g− 1 by Serre
duality. If the condition is not satisfied, we obtain the inequality

2g − r − 5 ≤ d ≤ g − 1

and hence g ≤ r + 4 and d ≤ r + 3. Clifford’s inequality 2r ≤ d implies r ≤ 3 and hence
g ≤ 7, contradicting our assumption.

By taking [C2] in a component of expected dimension ofMr
g−r−2,d−r and reasoning as in the proof

of Proposition 3.1 we obtain that [C1 ∪p1∼p2 C2] ∈ Mr

g,d. In particular, we found a locus having

expected codimension in the boundary of Mg. This locus must be contained in a component of
Mr

g,d of expected codimension −ρ(g, r, d).

Case II: Assume that −ρ(g, r, d) ≤ r − 1.
In this situation, we consider

[C1] ∈ Mr
3r+3+ρ(g,r,d),4r+ρ(g,r,d) and [C2] ∈ Mr

g−3r−3−ρ(g,r,d),d−3r−ρ(g,r,d).

We note that the genus g− 3r− 3− ρ(g, r, d) is nonnegative. Indeed, from Lemma 1.2, we see that
Mr

g,d is expected maximal, hence

r ≤
® ⌈√

g − 1
⌉

if g ≥
⌊√

g
⌋2

+
⌊√

g
⌋

⌊√
g − 1

⌋
if g <

⌊√
g
⌋2

+
⌊√

g
⌋
,

and we note that the inequality

g ≤ 3r + 2 + ρ(g, r, d)

cannot be satisfied for g ≥ 8. We also note that since Mr
g,d is expected maximal and g ≥ 8, the

degree d− 3r − ρ(g, r, d) is non-negative.
Reasoning inductively we see that Mr

3r+3+ρ(g,r,d),4r+ρ(g,r,d) has a component of codimension

−ρ(g, r, d) in M3r+3+ρ(g,r,d).
Moreover, as

ρ(g − 3r − 3− ρ(g, r, d), r, d − 3r − ρ(g, r, d)) = 0,

we obtain Mr
g−3r−3−ρ(g,r,d),d−3r−ρ(g,r,d) = Mg−3r−3−ρ(g,r,d), hence the Brill–Noether locus has codi-

mension 0, and has a component of expected dimension.
Reasoning as in the proof of Proposition 3.1 we get that [C1 ∪p1∼p2 C2] ∈ Mr

g,d when [C1] is
contained in a component of expected dimension of Mr

g−3r−3−ρ(g,r,d),d−3r−ρ(g,r,d).
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In particular, we found a locus having expected codimension −ρ(g, r, d) in the boundary. This
locus must be in the intersection of the boundary with a component of Mr

g,d having codimension

−ρ(g, r, d) in Mg. �

5. Non-containments obtained from Prym

In this section, we look at the Prym moduli space Rg parametrizing unramified double covers

[f : ‹C → C] of genus g curves, and consider the map

χg : Rg → M2g−1

sending the double cover [f : ‹C → C] to the source curve ‹C. In analogy to [AHL23], where gonality
loci were used to distinguish Brill–Noether loci, we consider how Im(χg) intersects the Brill–Noether
stratification of M2g−1, thereby obtaining new non-containments of Brill–Noether loci.

The following proposition is an immediate consequence of [Ber87, Theorem 1.4].

Proposition 5.1. Let g = 1 + r(r+1)
2 + ε for 0 ≤ ε < r

2 . Then

Im(χg) ⊆ Mr
g̃,2g−2.

where g̃ = 2g − 1 = 1 + r(r + 1) + 2ε.

Proof. We have the following obvious containment between Prym–Brill–Noether and Brill–Noether
spaces:

V r(f : ‹C → C) ⊆ W r
2g−2(

‹C)

By [Ber87, Theorem 1.4], V r(f : ‹C → C) 6= ∅ for any [f : ‹C → C] ∈ Rg, it follows that any ‹C in
the image of χg admits a gr2g−2, i.e.

Im(χg) ⊆ Mr
2g−1,2g−2. �

We remark that Mr
2g−1,2g−2 is expected maximal. Indeed, as g̃ = 2g − 1, we have

−r − 1 ≤ ρ(2g − 1, r, 2g − 2) = 2g − 1− (r + 1)(r + 1) = 2ε− r ≤ −1

and hence as r ≤ √
2g − 1, we see that r satisfies Equation (1) (with genus g̃ = 2g − 1), hence

Lemma 1.2 shows that Mr
2g−1,2g−2 is expected maximal.

Conversely, [Sch17, Theorem 1.1] shows that Im(χg) is not contained in certain Brill–Noether
loci.

Proposition 5.2. Let g̃ = 2g−1 and r, d two numbers such that ρ(g̃, r, d) = −r−1. Then we have

the non-containment

Im(χg) 6⊆ Mr
g̃,d.

Using the method of [AF12, Theorem 0.4] we can prove that Im(χg) is not contained in certain
Brill–Noether loci.

Proposition 5.3. Let g̃ = 2g − 1 and r, d two numbers such that ρ(g̃, r, d) = −r and either

• r is even and d is odd, or

• r ≡ 1 (mod 4) and d is odd.

Then we have the non-containment

Im(χg) 6⊆ Mr
g̃,d.

Proof. We assume Im(χg) ⊆ Mr
g̃,d and we will reach a contradiction. For this, we will provide a

curve in the closure Im(χg) that does not admit a limit grd.
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As in the proof of [AF12, Theorem 0.4], let πE : ‹E → E be an étale double cover of an elliptic
curve, p ∈ E and {x, y} := π−1

E (p). Taking [C1, p1] and [C2, p2], two copies of a generic pointed
curve [C, p] ∈ Mg−1,1, we obtain a double cover

[C1 ∪p1∼x
‹E ∪y∼p2 C2 → C ∪p E] ∈ Rg

and see that ‹C := [C1 ∪ ‹E ∪ C2/p1 ∼ x, p2 ∼ y] ∈ Im(χg), see the boundary description of Rg in

[FL10] and [BCF04]. Assume that ‹C admits a limit grd and denote by l1, l̃ and l2 its aspects over

the curves C1, ‹E and C2. Moreover, we denote by wi the vanishing orders of li at the node pi for

i = 1, 2 and by w̃1, w̃2 the vanishing orders of l̃ at the points x and y.
By Brill–Noether additivity, we have

ρ(2g − 1, r, d) = −r ≥ ρ(l1, p1) + ρ(l2, p2) + ρ(l̃, x, y) ≥ 0 + 0 + (−r) = −r

We have used here that the Brill–Noether number is non-negative for every linear series on a generic

pointed curve [C, p] ∈ Mg−1,1, see [EH87, Theorem 1.1], and that ρ(l̃, x, y) ≥ −r for every grd and
every two points on an elliptic curve, see [Far00a, Proposition 1.4.1].

This double inequality implies that ρ(l1, p1) = ρ(l2, p2) = 0 and ρ(l̃, x, y) = −r and the limit
linear series is refined. Let (a0, . . . , ar) and (b0, . . . , br) be the entries of w̃1 and w̃2, respectively.

Because ρ(l̃, x, y) = −r, we must have ai + br−i = d for every 0 ≤ i ≤ r. Moreover, because
2x ≡ 2y all the ai’s have the same parity. Implicitly, all the bi’s have the same parity.

Because the limit linear series is refined, we must have w2 = (a0, . . . , ar) and w1 = (b0, . . . , br).
Because ρ(g − 1, r, d, w1) = ρ(g − 1, r, d, w2) = 0 we get that

r∑

i=0

ai =

r∑

i=0

bi =
(r + 1)d

2

When r is even and d is odd, this is impossible.
When r ≡ 1 (mod 4) and d is odd, we obtain the contradiction

0 ≡
r∑

i=0

ai ≡
(r + 1)d

2
≡ 1 (mod 2).

Therefore the curve ‹C does not admit any limit grd. �

As a consequence of Proposition 5.2 and Proposition 5.3, we obtain new non-containments of
Brill–Noether loci.

Corollary 5.4. Let g = 1 + r(r + 1) + 2ε for some 0 ≤ ε < r
2 and let s, d be positive integers

satisfying either

• ρ(g, s, d) = −s− 1, or
• ρ(g, s, d) = −s, d is odd and s 6≡ 3 (mod 4),

then there is a non-containment

Mr
g,g−1 * Ms

g,d.

Proof. Let g′ := 1+ r(r+1)
2 +ε. By Proposition 5.1, a generic element in the locus Im(χg′) is contained

in Mr
g,g−1 but Proposition 5.2 or Proposition 5.3 show that Im(χg′) * Ms

g,d. The conclusion
follows. �

This gives infinitely many non-containments of expected maximal Brill–Noether loci of the form
Mr

g,d * Ms
g,e with s < r, which has been heretofore out of reach of other techniques in general.

We give an example of an infinite family of non-containments by taking ε = 0.
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Corollary 5.5. Let r be an even integer not divisible by 4 and let g = r2 + r+ 1. Then we have a

non-containment of expected maximal Brill–Noether loci

Mr
g,g−1 * Mr−1

g,g−3.

Proof. One checks that ρ(g, r, g − 1) = −r, and ρ(g, r− 1, g − 3) = −r+1. The result follows from
Corollary 5.4. �

By taking larger values of ε, one might potentially obtain further families of non-containments
of expected maximal Brill–Noether loci.

Remark 5.6. These results, however, cannot show the conjectured non-containments of expected
maximal Brill–Noether loci of the form

Mr
r2+r,r2+r−1 * Mr−1

r2+r,r2+r−3
.

In fact, at present, these non-containments remain out of reach in general for all known techniques.
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Annales scientifiques de l’École Normale Supérieure, 22:33–53, 1989. 3, 6
[Far00a] G. Farkas. The birational geometry of the moduli space of curves. Academisch Proefschrift, Universiteit

van Amsterdam, 2000. 14
[Far00b] G. Farkas. The geometry of the moduli space of curves of genus 23. Mathematische Annalen, 318:43–65,

2000. 3, 4
[Far01] G. Farkas. Brill–Noether loci and the gonality stratification of Mg . Journal für die reine und angewandte

Mathematik, 2001:185–200, 2001. 12
[FL10] G. Farkas and K. Ludwig. The Kodaira dimension of the moduli space of Prym varieties. Journal of the

European Mathematical Society, 12:755–795, 2010. 14
[GH80] P. Griffiths and J. Harris. On the variety of special linear systems on a general algebraic curve. Duke

Mathematical Journal, 47:233–272, 1980. 1
[Gie82] D. Gieseker. Stable curves and special divisors: Petri’s conjecture. Inventiones Mathematicae, 66:251–275,

1982. 1



16 ANDREI BUD AND RICHARD HABURCAK

[JR21] D. Jensen and D. Ranganathan. Brill–Noether theory for curves of a fixed gonality. Forum of Mathematics.
Pi, 9:e1, 2021. 1

[Lar21] H. Larson. A refined Brill–Noether theory over Hurwitz spaces. Inventiones Mathematicae, 224:767–790,
2021. 1

[LC12] M. Lelli-Chiesa. The Gieseker–Petri divisor in Mg for g ≤ 13. Geometriae Dedicata, 158:149–165, 2012. 3
[LLV20] E. Larson, H. Larson, and I. Vogt. Global Brill–Noether theory over the Hurwitz space, 2020. to appear in

Geometry & Topology, Preprint, arXiv:2008.10765. 1
[Muk93] S. Mukai. Curves and Grassmannians. In Algebraic geometry and related topics (Inchon, 1992), volume I

of Conf. Proc. Lecture Notes Algebraic Geom., pages 19–40. Int. Press, Cambridge, MA, 1993. 4
[Mum74] D. Mumford. Prym varieties I. Contributions to analysis, pages 325–350, 1974. 5
[Pfl17] N. Pflueger. Brill–Noether varieties of k-gonal curves. Advances in Mathematics, 312:46–63, 2017. 1
[Pfl22] N. Pflueger. Linear series with ρ < 0 via thrifty lego-building. Preprint, arXiv:2201.08869, 2022. 2, 3, 11
[Sch17] I. Schwarz. Brill–Noether theory for cyclic covers. Journal of Pure and Applied Algebra, 221:2420–2430,

2017. 2, 6, 13
[Ste98] F. Steffen. A generalized principal ideal theorem with an application to Brill–Noether theory. Inventiones

Mathematicae, 132:73–89, 1998. 1, 3
[TiB23] Montserrat Teixidor i Bigas. Brill–Noether loci. Preprint, arXiv:2308.10581, 2023. 1, 2, 3, 4, 9, 11, 12

[Wel85] Gerald E. Welters. A theorem of Gieseker-Petri type for Prym varieties. Annales Scientifiques de l’École
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