
Promises and technological prospects of two-dimensional Rashba materials

Arjyama Bordoloi ,1 A. C. Garcia-Castro ,2 Zachary Romestan,3 Aldo H. Romero ,3 and Sobhit Singh 1, 4, ∗

1Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
2School of Physics, Universidad Industrial de Santander,
Carrera 27 Calle 9, 680002 Bucaramanga, Colombia

3Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, USA
4Materials Science Program, University of Rochester, Rochester, New York 14627, USA

(Dated: April 20, 2024)

The Rashba spin-orbit coupling effect, primarily arising from structural-inversion asymmetry in
periodic crystals, has garnered considerable attention due to its tunability and potential applications
in spintronics. Its capability to manipulate electron spin without an external magnetic field opens
new avenues for spintronic device design, particularly in semiconductor technology. Within this
framework, 2D Rashba materials hold special interest due to their inherent characteristics, which
facilitate miniaturization and engineering capabilities. In this Perspective article, we provide
an overview of recent advancements in the research of 2D Rashba materials, aiming to offer a
comprehensive understanding of the diverse manifestations and multifaceted implications of the
Rashba effect in material science. Rather than merely presenting a list of materials, our approach
involves synthesizing various viewpoints, assessing current trends, and addressing challenges
within the field. Our objective is to bridge the gap between fundamental research and practical
applications by correlating each material with the necessary advancements required to translate
theoretical concepts into tangible technologies. Furthermore, we highlight promising avenues for
future research and development, drawing from insights gleaned from the current state of the field.
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I. INTRODUCTION

Spintronics is a rapidly burgeoning research field with
the potential to supersede conventional electronics in
seamlessly integrating memory, processing, communica-
tion, and sensing by utilizing electrons’ spin degree of
freedom as a logical unit [1–9]. The field of spintronics
represents a significant shift in the approach to electronic
devices, focusing on the transport of electron spin rather
than on the conventional flow of charge current. Var-
ious methods, including thermal, optical, electric, and
magnetic techniques, have facilitated this paradigm shift,
contributing to the versatility and potential of spintronic
applications [10, 11]. However, the design of most spin-
tronic devices relies heavily on the principles of giant
magnetoresistance (GMR) [12, 13] and tunneling magne-
toresistance (TMR) [14]. These principles, first identified
in the late 1980s and the early 1990s, have been founda-
tional to developing spintronics [15–20]. GMR involves
significant changes in the electrical resistance in response
to an external magnetic field in layered ferromagnetic
materials. Conversely, TMR is a phenomenon in which
the resistance of a magnetic tunnel junction changes de-
pending on the relative alignment of the magnetization in
ferromagnetic layers separated by an insulating barrier.

A common characteristic of most of the spintronic de-
vices is ferromagnetic materials. While ferromagnetic
materials are integral to the functioning of GMR- and
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TMR-based devices, they pose several challenges, par-
ticularly regarding device integration [20–24]. Integra-
tion issues stem from factors such as the incompatibility
of ferromagnetic materials with standard semiconductor
processes, difficulties in controlling their magnetic prop-
erties at the nanoscale, and challenges in maintaining
consistent performance under varying operational con-
ditions. In response to these challenges, semiconductor
spintronics has emerged as a promising alternative. This
approach leverages the properties of semiconductors com-
bined with spin-orbit coupling (SOC) to generate and
manipulate spin currents. SOC is a relativistic effect that
arises from the interaction between an electron’s spin and
its orbital motion.

Among the various SOC effects explored in semicon-
ductor spintronics, Rashba spin-orbit coupling (RSOC)
has gained considerable attention [25–28]. RSOC is a
phenomenon in which an external electric field can tune
the SOC-induced effects, making it highly adaptable for
spintronic device applications. This tunability is a cru-
cial advantage of RSOC over other SOC effects because it
allows the manipulation of spin currents without requir-
ing an external magnetic field. This independence from
magnetic fields is particularly beneficial in semiconduc-
tor spintronics because it enables the design of spintronic
devices using nonmagnetic materials. This approach cir-
cumvents the integration challenges of ferromagnetic ma-
terials and opens new avenues for device functionality
and miniaturization [29–32].

The concept of RSOC was initially proposed by Em-
manuel Rashba in 1959 [25]. However, it gained signif-
icant prominence in the scientific community following
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two publications in 1984 by Bychkov and Rashba [27, 28]
in response to the experimental findings related to the
Quantum Hall Effect (QHE) [33, 34]. These foundational
papers, published in the early 1980s, provide crucial in-
sights into the Quantum Hall Effect, a phenomenon ob-
served in two-dimensional (2D) electron systems under
strong magnetic fields, which later played a pivotal role
in understanding various quantum phenomena.

Originally, RSOC was believed to be exclusive to 2D
surfaces and interfaces. This assumption was based on
the understanding that RSOC arises from structural in-
version asymmetry (SIA) in these confined systems [21].
The relativistic motion of electrons in an asymmetric
crystal potential induced by the SIA leads to the gen-
eration of an effective magnetic field, denoted as Beff .
This field acts analogously to an external magnetic field
but is intrinsic to material’s crystal structure. However,
subsequent research has significantly expanded our un-
derstanding of RSOC, revealing its presence even in bulk
three-dimensional crystal structures [28, 35–39], and in
centrosymmetric crystals (hidden Rashba effect) [40–45].
This revelation, supported by various studies conducted
in the 21st century, underscores the ubiquity and versa-
tility of RSOC in different material systems [46].

The effective magnetic fieldBeff resulting from the SIA
has profound implications for the behavior of electron
spins in nonmagnetic materials. When electrons are sub-
jected to this field, their spins experience torque, causing
them to precess. This precession is the physical manifes-
tation of the RSOC and is a critical factor in manipulat-
ing spin currents in spintronic devices [22].

Spin field-effect transistors (s-FETs), first proposed by
Datta and Das in 1990, mark one of the significant ad-
vancements towards applying RSOC in practical spin-
tronic devices [47]. In s-FETs, spins injected from a
ferromagnetic (FM) source are transported to the ferro-
magnetic drain by their precessional motion around the
magnetic field governed by the RSOC in two-dimensional
electron gas (2DEG) hosted by a semiconducting chan-
nel, as schematically shown in Figure 1. The spin-
precession length and, hence, the spin orientation of the
carriers can be modulated by an external gate voltage
that tunes the Rashba spin-splitting parameter.

Apart from this, the interplay of RSOC with super-
conductivity brings up the possibility of realizing various
exotic quantum states, which might have a revolution-
ary impact in the field of quantum information process-
ing [48–50]. The combination of 2D Rashba materials
with s-wave superconductors under broken time-reversal
symmetry is predicted to host topologically-protected
Majorana edge modes [51, 52]. These Majorana states
are unique and robust against certain types of pertur-
bations, making them promising candidates for fault-
tolerant topological quantum computation if realized ex-
perimentally [53–55].

In the context of spintronic device applications, 2D
Rashba materials are particularly attractive due to their
inherent characteristics, facilitating miniaturization and

FIG. 1. (a) (Color online) Schematic representation of elec-
trons traversing from a ferromagnetic source to a ferromag-
netic drain within 2DEG hosted by a semiconducting chan-
nel, in the presence of a perpendicular electric field Ez that
induces a Rashba magnetic field BRy. (b) Precessional spin
movement of electrons around the Rashba magnetic field while
traveling from the source to the drain, modulated by the gate
voltage.

engineering capabilities. In this Perspective article, we
aim to offer an overview of recent progress in research-
ing 2D Rashba materials. Starting with Section II, which
delves into the fundamental theoretical concepts essential
for understanding the Rashba effect, Section III provides
a comprehensive summary of the recent advancements in
the study of various 2D Rashba materials. These include
AB binary monolayers, transition metal dichalcogenides
(TMDs), Janus TMDs, and other Janus monolayers, as
well as van der Waals (vdW) heterostructures. Addition-
ally, Section III explores diverse strategies for manipu-
lating Rashba spin splitting in materials. This includes
applying external electric fields, strain engineering, and
the influence of substrate proximity – critical factors in
identifying materials suitable for prospective spintronic
device design. Furthermore, the role of RSOC in gov-
erning the nontrivial-topological electronic phase transi-
tion in specific 2D materials is discussed in Subsection
III F. The optical manipulation of RSOC is included in
the subsequent Subsection IIIG. Section IV presents an
overview of the practical applications of RSOC in spin-
tronic technology, followed by a Summary and Outlook
in Section V.

II. THEORETICAL FOUNDATION

SOC is a relativistic phenomenon that lifts the spin
degeneracy of electronic bands provided both space-
inversion (I) and time-reversal (TR) symmetries are not
conserved simultaneously [56–59]. In the case of free elec-
tron gas, the presence of I and TR symmetries mandates
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the parabolic nature of electronic bands to retain their
spin degeneracy, as illustrated in Fig. 2(a). The TR sym-
metry dictates E(k, ↑) = E(-k, ↓), while the I symmetry
mandates E(k, ↑) = E(-k, ↑), where E and k denote the
energy eigenvalues and crystal momentum, respectively.
The up and down arrows represent the spin-up and spin-
down states. The breaking of inversion symmetry (while
preserving TR symmetry) induces spin splitting of energy
bands at all generic k points, except at the time-reversal-
invariant momenta (TRIM) points, where Kramer’s de-
generacy holds [60].

In nonmagnetic polar materials, i.e., preserved TR but
broken I symmetry, the RSOC can be described as a lin-
ear coupling between electron’s spin σ and crystal mo-
mentum k. A naive concept of RSOC can be illustrated
by considering the case of a free 2DEG [29]. A rela-
tivistic electron of mass m with momentum k moving
in an electric field (E = E ẑ), acting in the direction
of broken inversion symmetry experiences a magnetic
field Beff =− ℏ

mc2 (k × E), where ℏ is reduced Planck’s
constant and c is the speed of light. The Zeeman inter-
action of electron’s spin moment with the effective mag-
netic field mimics the form of RSOC. Thus, the Rashba
Hamiltonian (ĤR) can be expressed as

ĤR =
eℏ
2m

(σ ·B) = αR(σ × k) · ẑ, (1)

where αR is the Rashba parameter, which represents the
strength of the SOC, and it is a crucial design parameter
on Rashba materials, as it represents the strength of the
spin splitting. The Hamiltonian for a 2DEG, including
the Rashba term, reads:

Ĥ =
ℏ2k2

2m
+ αR(σ × k) · ẑ. (2)

Solving equation Ĥ|ψ⟩ =E|ψ⟩ yields following energy
eigenvalues and eigenstates.

E± =
ℏ2k2

2m
± αRk =

ℏ2

2m
(k ± kR)

2
+ ER, and (3)

|ψ±(k)⟩ =
1√
2

(
±e−iθ

1

)
. (4)

Figure 2(b) represents a prototypical electronic band
structure illustrating the lifting of spin degeneracy due
to RSOC. The offset Rashba momentum kR (=mαR)
and Rashba energy ER (= mαR

2/2) can be determined
computationally and the Rashba parameter αR can be
calculated using the expression αR = 2ER/kR. Fur-
thermore, angle θ in equation 4 can be represented as
tan−1(ky/kx). On the other hand, the experimental ob-
servation of RSOC is possible using either electron pho-
toemission or transport experiments.

The spin texture is obtained by calculating the expec-
tation value of the spin operator σ, expressed as

⟨ψ±(k)|σ|ψ±(k)⟩ = ±

 cos θ
−sin θ

0

 . (5)

Hence, the spin texture is independent of the magni-
tude of k; rather, it depends on its direction within the
plane of the 2DEG. As k → −k, the angle θ varies from
0 to π, reversing the spin orientation. This ensures the
conservation of TR symmetry in pure Rashba materials.
Often, materials possessing high-symmetry surfaces,

such as those characterized by point groups C3v and C4v,
exhibit anisotropic behaviour in their Rashba spin split-
ting, which may not be captured within the conventional
Rashba model having linear-momentum dependence. In
such cases, the Hamiltonian must incorporate terms up
to the third-order in k [61, 62].

III. RASHBA EFFECT IN 2D MATERIALS

In this Perspective article, our primary focus is on
conventional 2D Rashba materials. Our discussion aims
to provide a holistic view of the diversity of Rashba ef-
fect and its multifaceted implications in material science.
Through this approach, we aim to enrich the discourse
on Rashba materials, offering insights into the conven-
tional Rashba materials and thereby contributing to the
broader understanding and application of Rashba physics
in advanced materials development.
Beyond transition metal dichalcogenides (TMDs) and

group-IV monolayers such as silicene, germanene, and
stanene (as discussed below in this section), vari-
ous emerging classes of 2D materials like halide per-
ovskites [68] and topological insulators also showcase
Rashba-induced phenomena [30]. These materials, char-
acterized by high carrier mobility, adjustable band gaps,
and robust light-matter interactions, are further em-
powered by the Rashba effect to support innovative de-
vice functionalities. For example, the manipulation of
spin texture and spin-momentum locking in topologi-
cal insulators, facilitated by the Rashba effect, enables
the development of new quantum devices that lever-
age the topological protection of edge states for effi-
cient, low-dissipation transport [69–72]. Exploring the
Rashba effect in 2D materials extends beyond practi-
cal applications to deepen our understanding of funda-
mental physics, such as the dynamics between spin-orbit
coupling and electron-electron interactions in reduced di-
mensions [73–78]. This foundational knowledge is vital
for advancing quantum materials and devices grounded
in topological physics and spintronics principles. The
Rashba effect in 2D materials expands the functional ma-
terial library for cutting-edge applications. It pushes the
boundaries of our theoretical and experimental grasp of
spin-orbit phenomena in condensed matter physics [79].
Below we provide a comprehensive overview of various

2D materials exhibiting Rashba effect. Our discussion is
not just a catalog of materials; it represents a synthesis
of our viewpoints with the current trends and challenges
within the field. We aim to bridge the gap between fun-
damental research and practical applications by corre-
lating each material with the necessary advancements to
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FIG. 2. (a) (Color online) Schematic representation of spin degenerate electronic band structure for 2DEG without SOC. (b)
Rashba spin splitting resulting in spin degeneracy at all k points, except at the TRIM point. ER and kR denote the Rashba
energy and Rashba momentum offset, respectively. (c) Schematic 3D representation of electronic band structure in the presence
of the Rashba effect. (d) Helical spin texture at a constant energy surface for the case of pure Rashba spin splitting.

transition theoretical concepts into tangible technologies.
This analysis encompasses an assessment of the current
state of the field, identifying promising avenues for future
research and development.

A. AB binary buckled monolayers

Centrosymmetric 2D phosphorenes do not exhibit the
Rashba effect. However, RSOC can be induced by al-
loying phosphorene with heavier elements. The resulting
buckled hexagonal PX (X = As, Bi, and Sb) monolay-
ers, possess significant Rashba splitting near the Γ point
of conduction band minimum (CBM) and αR shows an
increasing trend from 0.13 to 1.56 eV Å with increasing
atomic number of X in agreement with the expected in-
creasing of the SOC strength [80]. Moreover, the sta-
ble free-standing buckled honeycomb monolayers of BiSb
and AlBi exhibit a large and tunable RSOC with αR of
2.3 [64] and 2.77 eV Å [81], respectively. In the AlBi
monolayer, RSOC is sensitive to strain, while in the
BiSb monolayer, it is sensitive to both strain and electric
field [81]. Wu et al. [81] designed a spin field-effect tran-
sistor (s-FET) based on BiSb monolayer and reported a
short spin channel length (42 nm, tunable with strain)
compared to conventional s-FETs (about 2–5µm).

Isostructural monolayers of h-NbN and h-TaN are re-
ported to exhibit a substantial Rashba spin splitting,
with αR values of 2.9 and 4.23 eVÅ, respectively [82].
The h-TaN monolayer has a higher value of αR compared

to h-NbN due to the larger SOC induced by the heav-
ier Ta atoms [82]. Among the monolayer MgX (X=S,
Se, Te) family, MgTe exhibits the highest Rashba spin
splitting with αR of 0.63 eVÅ [83]. Likewise, ZnTe and
CdTe exhibit moderate Rashba spin splitting with αR of
1.06 eVÅ and 1.27 eVÅ, respectively [84]. Based on the
first-principles calculations, Liu et al. [85] report moder-
ate αR values of 0.60, 0.62, and 0.60 eVÅ for GeTe, SnTe,
and PbTe monolayers, respectively. Rehman et al. [86],
on the other hand, investigated the Rashba properties
of MX monolayers (M = Mo, W; and X = C, S, Se)
and determined the Rashba parameter near the Γ point
of valence band maximum (VBM) to be 0.14, 1.02, 1.2,
and 1.26 eVÅ, for MoC, WC, WS, and WSe monolay-
ers, respectively. Remarkably, these monolayers demon-
strated a quantum valley Hall effect due to their distinc-
tive Berry curvatures [86]. Figure 3(a) shows the crys-
tal structure of the binary buckled square monolayers of
PbX (whereX = S, Se, and Te), which inherently exhibit
RSOC. Specifically, the buckled square PbS monolayers
exhibit αR values of 1.03 and 5.10 eV Å near the Γ- and
M -points of Brillouin zone for the conduction band min-
imum (CBM), respectively. However, the Rashba effect
is absent in the planar square PbS monolayer due to the
presence of inversion symmetry [63].

Generally, the intrinsic RSOC present in 2D materi-
als can be effectively tuned by applying external per-
turbative methods, including electric fields and strain.
This tunability makes these materials suitable candidates
for spintronic devices. PBi monolayer, which exhibits
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FIG. 3. Some of the typical 2D Rashba materials. (a) Structure of 2D square buckled PbX (X = S, Se, Te) monolayer from top
and side views, employing distinct colors for different atom types [63]. (b) 2D hexagonal buckled configuration of BiSb, where
purple and pink balls symbolize Bi and Sb atoms, respectively [64]. (c) Structure of Janus MoSSe, a representative structure
of the family of 2D Janus TMDs [65]. (d) Left: AA and BB configuration of symmetrically passivated Mo2CO2 from the side
view. Right: Non-centrosymmetric AA and BB terminating configurations of Janus Mo2COX (X = S, Se, Te; F, Cl, Br, I)
[66]. (e)Side view of the Janus bilayer of WSeTe/MoSeTe for five stacking orders [67].

the highest Rashba splitting among all PX monolayers,
shows a variation of αR from 1.56 to 4.41 eVÅ under 10%
biaxial tensile strain [80]. In BiSb, αR increases from
2.3 eVÅ to 3.56 eVÅ at 6% biaxial tensile strain and re-
duces to 1.77 eVÅ at 4% compressive strain. Further-
more, when subjected to strain, BiSb monolayer, crystal
structure shown in Fig. 3(b), changes from a direct to an
indirect bandgap semiconductor [64]. On the contrary,
RSOC in GaTe monolayer is nearly insensitive to biaxial
strain [87]. The αR in MgTe monolayer can be tuned up
to ±0.2 eVÅ under applied biaxial strain [83]. Similarly,
applying a positive electric field or compressive strain can
significantly enhance the αR in MX monolayers. Con-
versely, applying a negative electric field or tensile strain
weakens the Rashba effect in these materials [86].

B. TMDs and Janus TMDs

The hexagonal 2D transition-metal dichalcogenides
(TMDs) (MX2, M = Mo, W, and X = S, Se, Te) do not
exhibit intrinsic RSOC due to their out-of-plane mirror
symmetry. However, this symmetry can be broken and
RSOC can be induced in these materials by replacing
one of the chalcogen atoms, X, with another chalcogen
element, Y , resulting in the formation of Janus TMDs
(M = Mo, W; and {X, Y } = S, Se, Te; where X ̸=Y )
that stabilize in a hexagonal crystal structure as shown
in Fig. 3(c) [88]. Typical Janus MXY semiconductors
have a stable structure at ambient conditions similar to
the conventional 2D TMDs and possess intrinsic RSOC
due to the built-in electric field present, perpendicular
to the monolayer plane from the chalcogen atom with a
larger atomic number (lower electronegativity) to the one
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with smaller atomic no (higher electronegativity) [89–
91]. With the same chalcogenides, WXY has a higher
value of αR than that of MoXY since W has a higher
SOC than Mo. The value of αR in these materials can
be increased further with the application of an external
electric field (Eext) parallel to the intrinsic field as it in-
creases the charge accumulation in the chalcogen atom
with a smaller atomic number [91]. Conversely, Eext ap-
plied opposite to the intrinsic field weakens the Rashba
effect. As presented in Fig. 4(a), among all other MXY
monolayers, WSeTe exhibits the most significant change
in αR with an increase of 0.031 eV Å near the Γ point
under an electric field of 0.5 V/Å when compared to its
intrinsic value. On the contrary, MoSTe and WSTe are
nearly insensitive to the applied field [91].

FIG. 4. (Color online) Modulation of the Rashba parameter
αR in 2D Janus TMDs under the influence of (a) an exter-
nal electric field and (b) biaxial strain. Figure adopted from
Ref. [91].

Janus TMDs exhibit a nonlinear change in αR when
subjected to an in-plane biaxial strain. Figure 4(b) de-
picts the change in αR of the Janus MXY monolayers
with applied biaxial strain. Among all others, MoSeTe
shows the highest increase in αR from 0.5 to 1.1 eV Å
under a compressive strain of 3%. Hu et al. [91] also
reported a significant increase in the anisotropic Rashba
spin splitting of these materials with the application of a
compressive strain.

On the other hand, compared to other Janus TMDs
such as MoSSe and WSSe, strain-free monolayers of
CrSSe, CrSTe, and CrSeTe show relatively higher values
of the intrinsic Rashba parameter of 0.26, 0.31, and 1.23
eV Å, respectively. With an applied compressive strain
of 2%, αR of CrSSe, CrSTe, and CrSeTe monolayers in-
creases up to 0.66, 0.50, and 2.11 eV Å, respectively [92].
Anisotropic Rashba spin splitting arising from RSOC is
observed around the M -point in PtXY (X = Y = S,
Se, Te; X ̸= Y ) monolayers. The calculated values of αR

from theM - to the Γ-point are 1.654, 1.103, and 0.435 eV
Å, while the values from the M - to K-point are 1.333,
1.244, and 0.746 eV Å for PtSSe, PtSTe, and PtSeTe,
respectively [93].

RSOC can also be induced in centrosymmetric TMDs
by applying an external electric field. Eext breaks the
inversion symmetry in these crystals and induces Rashba

spin splitting. Yao et al. [94] reported a significant linear
increase of αR with increasing Eext in six MX2 mono-
layers. Figure 5 illustrates the variation in the Rashba
parameter of 2D TMDs in response to an applied exter-
nal electric field. Notably, the anions play a significant
role in the electric-field dependence of RSOC in these
materials. Conversely, the cations make a minimal con-
tribution to the field dependence of RSOC as they are
strongly shielded from the external electric field by the
anions [94].

FIG. 5. (Color online) Variation in the Rashba parameter
of 2D TMDs in response to an applied external electric field.
Figure adopted from Ref. [94].

C. Other 2D Janus monolayers

Apart from the Janus TMDs, various other Janus
monolayers have also gained significant attention due to
their large Rashba spin splitting and potential applica-
tions in spintronic devices. Bhat et al. [95] performed ab-
initio calculations on Janus SnXY monolayers ({X, Y }=
S, Se, Te; with X ̸= Y ) to study how RSOC is affected by
the replacement of the transition metal in Janus TMDs
with a metal. The resulting Janus SnSSe, SnSeTe, and
SnSTe monolayers exhibit anisotropic Rashba spin split-
ting having αR of 0.109 eV Å, 0.273 eV Å, and 0.755 eV Å,
respectively [95]. Notably, Bafekry et al. [96] reported a
huge Rashba spin splitting in BiTeCl and BiTeBr mono-
layers with αR as 7.48 eV Å and 9.15 eV Å, respectively.
Conversely, BiTeI and SbTeI monolayers are reported to
exhibit a relatively smaller αR of 1.97 eV Å and 1.39 eV Å
respectively [97]. The value of αR for InTeF was deter-
mined to be 1.08 eV Å [98].
Another interesting class of 2D Rashba materials is the

Janus transitional-metal trichalcogenide (TMTC) mono-
layers with the chemical formula of MX2Y (M = Ti,
Zr, Hf; X ̸= Y = S, Se). These materials show RSOC
due to the cumulative effect of SOC and the lack of in-
plane mirror symmetry. In the case ofMS3-based TMTC
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monolayers, the Rashba spin splitting occurring near the
Γ point of VBM is mainly contributed by the dxy orbitals
of the transition-metal atoms. The Rashba parameter
in these systems varies as TiS2Se > ZrS2Se > HfS2Se
due to decrease in the built-in electric field. On the con-
trary,MSe3-based TMTC monolayers do not exhibit any
RSOC, owing to the lack of any contribution from the
dxy orbitals of the transition metal near the Fermi level.
The calculated value of ∆ER, ∆kR and αR for the Janus
TiS2Se monolayer is 40 meV, 0.074 Å−1, and 1.081 eV Å,
respectively [99].

Indirect band gap semiconductors of 2D Janus tellu-
rite (Te2Se) monolayers show RSOC near the Γ point of
CBM, the significant contribution of which arises from
the pz orbitals of Te atoms [100]. Guo et al. [101] re-
cently predicted a new class of Janus materials MA2Z4

(M = transition metal such as W, V, Nb, Ta, Ti, Zr, Hf,
or Cr; A = Si or Ge, and Z = N, P, or As) with intrinsic
RSOC. The predicted monolayers ofMSiGeN4 (M = Mo
and W) are dynamically and thermally stable and exhibit
RSOC with a Rashba energy of 0.8 meV and 4.2 meV for
MoSiGeN4 and WSiGeN4, respectively [101, 102].

An exciting class of 2D Janus Rashba materials with
a substantially large value of αR has been recently pro-
posed by Karmakar et al. [66]. These materials belong
to the Janus Mo2COX structures, which are derived
from the parent compound Mo2CO2, a popular class of
2D MXenes in the family of 2D transition metal car-
bides/nitrides/carbonitrides with the generic formula of
Mn+1XnT 2 (M = 3d or 4d transition metals, X = C or
N, T = surface termination unit, n = 1–3). Here, RSOC
is induced by breaking the inversion symmetry present
in the parent compound Mo2CO2, with the replacement
of one of the terminating O layers either with a halogen
(F, Cl, Br, and I) or a chalcogen (S, Se, and Te) layer
[see Fig. 3(d)].

D. Rashba effect at interfaces and junctions

Constructing vdW heterostructures is a promising ap-
proach for manipulating the properties of the constituent
monolayers. The structural asymmetry within these
heterostructures creates a net out-of-plane electric field
which impacts the system’s RSOC. Consequently, elec-
tronic properties undergo significant changes compared
to the individual monolayers. For instance, with the for-
mation of a bilayer, Liu et al. [85] observed an almost
two-fold increase in the Rashba spin splitting at the CBM
of MTe (M = Ge, Sn, and Pb) compared to its mono-
layer. This increase is attributed to the doubling of the
dipole moment. The calculated values of αR are 1.10,
1.02, and 1.05 eV Å for GeTe, SnTe, and PbTe bilayers,
respectively [85].

The 2D III-VI chalcogenide NX (N = Ga, In; X =
S, Se, Te) monolayers do not exhibit any intrinsic RSOC
owing to the out-of-plane mirror symmetry. Neverthe-
less, this limitation is overcome by constructing vdW

heterostructures of InSe with GaTe and InTe. These
heterostructures, namely InSe/GaTe and InSe/InTe, ex-
hibit significant RSOC at the CBM with αR of 0.50,
and 0.44 eV Å, respectively, where RSOC mainly orig-
inates from the InSe layer [104]. First principles studies
on the GaX/MX2 (M = Mo, W; X = S, Se, Te) het-
erostructures reveal an increase in Rashba spin splitting
with increased SOC in the p-orbitals of chalcogen atoms.
Strikingly, the replacement of Mo with W decreases the
strength of RSOC due to the increase in d-orbital contri-
bution near the valance band edge at the expense of the p-
orbital of the chalcogen atoms confirming the major con-
tribution of the p-orbitals to the Rashba spin splitting.
Similar observations hold true for the MoS2/Bi(111) sys-
tem [105].

Furthermore, InTeF/AlN and InTeF/BN heterostruc-
tures exhibit αR of 1.13 and 1.08 eV Å, respectively [98].
A significant Rashba spin splitting with an energy of
110meV was observed near the Γ point of PtSe2/MoSe2
heterostructures, which is mainly attributed to the strong
interfacial SOC arising from the hybridization between
the two constituent monolayers [106]. Moreover, by ap-
plying strain and electric fields, the RSOC in these ma-
terials can be tuned effectively. Particularly, with the
application of 6% in-plane strain, the Rashba coefficient
increases up to 1.33 and 1.26 eV Å for InSe/GaTe and
InSe/InTe, respectively [104]. The first-principles cal-
culations on the RSOC exhibited by InTe/PtSe2 het-
erostructures reveal Rashba-type spin splitting near the
Γ point of VBM, which can be manipulated by strain
engineering. While tensile strain increases the αR, com-
pressive strain weakens the RSOC. On the other hand,
strong interlayer coupling promotes RSOC resulting in an
enhanced αR with decreased interlayer distances [107].

Peng et al. [108] report a significant Rashba spin split-
ting near the Γ point of MoS2/Bi2Te3 that mainly arises
from the Bi2Te3 layer, while the MoS2 layer plays an
inductive role. The αR in these systems are compara-
ble to those observed in {Bi2Se3}2/InP(111) heterostruc-
tures as observed from the angle-resolved photoemission
spectroscopy (ARPES) measurements. The spin tex-
tures measured experimentally for different thicknesses of
{Bi2Se3}2/InP(111) heterostructures reveal Rashba-like
splitting of the massive Dirac cones in the surface states
as a result of the substrate-induced inversion asymme-
try [100].

In a recent study, Sattar et al. [109] observed that αR

varies significantly with changing thickness of the consti-
tuting layers in Bi2Se3/PtSe2 heterostructures. Specifi-
cally, the heterostructure consisting of 2-quintuple layers
(QL) Bi2Se3/ 2L PtSe2 exhibits αR of 16.84 eV Å and 4.4
eV Å at VBM and CBM respectively, which are among
the highest reported values for known 2D Rashba ma-
terials [109]. Intrinsic RSOC is also present in Janus
SnSSe/WSSe semiconductor heterostructures, which ex-
hibit a Rashba spin splitting near the Fermi level with
αR of 0.7 eV Å. With the application of 12.8% of com-
pressive strain this αR increases up to 1.07 eV Å. On
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FIG. 6. (Color online) (a) ARPES spectra around the K point in the Brillouin zone of graphene in graphene/Au/Ni(111). Cross
symbols indicate the positions in the Dirac cone of the p-states in graphene probed by spin- and angle-resolved photoemission
spectra as shown in (b). Blue (red) lines in (b) represent spin-up (down) spectra. k|| is the in-plane component of the wave
vector. Figure adopted from Ref. [103].

the contrary, metallic heterostructures of Janus layers
SnSTe/WSTe and SnSeTe/WSeTe do not exhibit any
Rashba-type splitting [95].

Further, Kunihashi et al. [110] studied the effect of in-
corporating heavier Bi elements into GaAs heterostruc-
tures by employing time- and spatially- resolved Kerr
rotation measurements on the 70 nm thick epitaxially
grown layer of GaAs0.961Bi0.039. Their results revealed
that RSOC prevailed over the Dresselhaus effect, with
the measured value of αR as 2.5meVÅ. Interestingly, a
decrease in αR was observed with an increase in the pump
laser intensity due to the light-induced screening effect
on the built-in potential gradient [110]. GaSe/MoSe2
heterostructures also exhibit a Rashba splitting of 0.49
eV Å. Notably, these heterostructures exhibit the coexis-
tence of Rashba splitting and band splitting at theK and
K ′ valleys, highlighting their potential for applications in
spintronics and valleytronics [111].

E. Proximity-induced RSOC

Proximity-induced SOC primarily occurs within a few
atomic layers of the low-SOC material near its interface
when a heterostructure is formed with a material exhibit-
ing stronger SOC. This phenomenon may result in the
charge transfer between the material and the substrate
or the formation of a thin interfacial layer with slightly
altered electronic states [113–116]. Graphene shows a
substantial increase in RSOC with the proximity effect
of substrates. In its free-standing form, graphene pos-
sesses the intrinsic spin-orbit splitting of around 50µeV.
However, the Rashba spin splitting of the Dirac cones can
be enhanced up to 13-100meV when synthesized epitax-
ially with high SOC elements including Ag, Au, and Pb
intercalated, or in direct contact with different substrates
such as Ni, Ir, and Co [103, 117–122]. The anomalous in-
crease in the spin splitting can be attributed to a strong
π-d hybridization between graphene and the substrate.
Figures 6(b) shows the variation in RSOC of graphene in

graphene/Au/Ni(111) heterostructure on account of the
proximity-induced effect of the substrate.
The use of thin layers of 3D topological insulators like

Bi2Se3 or Bi2Te3 as substrate can further increase RSOC
in graphene [123, 124]. On the other hand, TMDs, as
mentioned above, do not exhibit any intrinsic RSOC.
However, MoTe2 when placed on top of EuO substrate
shows a relatively large Rashba spin splitting owing to
the proximity-induced interactions [125]. Furthermore,
the Janus WSSe semiconductor exhibits an increase in
αR from 0.17 to 0.95 eVÅ under the proximity effect of
MnO (111) [126].

F. Nontrivial topological phase induced by RSOC

Recent theoretical and experimental studies on topo-
logical insulators (TI) have developed a profound under-
standing of how electronic band structure in certain ma-
terials can be altered significantly by SOC effects. SOC
often leads to band inversion near the Fermi level, driv-
ing the topological phase transition in materials [69–72].
In the case of 2D (3D) TIs, this type of transformation
leads to the formation of Dirac-cone states, characterized
by a distinctive spin-momentum interdependence on the
metallic edge (surface) states. This exciting feature forms
the basis of the quantum spin Hall effect, with profound
implications for condensed matter physics and potential
applications in novel spintronic devices. Due to the con-
servation of TR-symmetry, the opposite edge states of
the 2D nontrivial TIs possess opposite spin chirality and
are charge neutral [127–130].
BiTeI well exemplifies this phenomenon. Under nor-

mal conditions, BiTeI exhibits a substantial Rashba spin
splitting of 3.85 eV Å. Strikingly, BiTeI can transform a
topologically trivial state to a nontrivial TI by apply-
ing hydrostatic pressure, as shown in Figure 7. Under
ambient conditions the system possesses a conventional
band gap of 286meV and a Rashba energy of 110meV.
However, with hydrostatic compression, beyond a crit-



9

FIG. 7. (Color online) Computed electronic band dispersions in proximity to the Fermi level (EF) for both I-terminated (top
panels) and Te-terminated (bottom panels) surfaces of BiTeI, subjected to hydrostatic compression by (a, b) V/V0=1, (c,
d) V/V0=0.89, and (e, f) V/V0=0.86. The corresponding Fermi surfaces for cases (e) and (f) are depicted in (g) and (h)
respectively. Figure adopted from Ref. [112].

ical point an inverted band gap emerges between the
top valence band and the bottom conduction band lead-
ing to a topologically nontrivial phase [112]. Similarly,
Jozwiak et al. [131], based on their DFT calculations on
a 7-quintuple layer thick slab of Bi2Se3, demonstrated
that the emergence of surface band inversion in the sur-
face electronic configuration of the topological insulator
Bi2Se3 is mainly caused by RSOC [131–133].

In 2D materials, one of the intriguing materials fea-
turing the coexistence of both RSOC and topologically
nontrivial edge states is the Janus RbKNaBi monolayer
[134]. It is a quantum spin hall insulator with a relatively
large band gap and is dynamically and thermally stable.
RbKNaBi possesses intrinsic RSOC owing to a built-in
electric field because of the difference in electronegativ-
ities between the top and bottom atomic layers. Fig-
ures 8(a) and 8(b) show the electronic band structure
of RbKNaBi with the orbital projection of s, px + ipy,
and pz orbitals of Bi, calculated using GGA and GGA
+ SOC approximations, respectively. A SOC-induced
band inversion can be noticed at the Fermi level near
the Γ point. Interestingly, RbKNaBi shows a topologi-
cally nontrivial behavior, as shown in Figs. 8(c,d). A
single pair of helical edge states are present within the
band gap of nearly 229 meV. The band gap is sufficiently
large to protect the helical edge states against thermally
activated carriers, enabling the realization of the room
temperature quantum spin Hall effect.

An intriguing area of research has emerged recently, fo-
cusing on proposing artificial engineering of TIs through

strategic layering of topologically trivial Rashba mono-
layers, utilizing first-principles calculations. In 2013, Das
et al. [135] introduced a novel approach of designing a
3D TI by stacking bilayers composed of two-dimensional
Fermi gases, each exhibiting opposite RSOC on adjacent
layers. They observed that while a single bilayer consis-
tently demonstrated topologically trivial behavior, topo-
logically nontrivial insulating states emerged only in the
bulk after crossing a critical number of bilayers. On the
other hand, Nechaev et al. [136], through theoretical in-
vestigations, found that a centrosymmetric sextuple layer
formed by combining two BiTeI trilayers with opposite
RSOC exhibits an inverted bandgap of sufficient magni-
tude for practical applications. However, they observed
that the sextuple layer transitioned to a topologically
trivial state with just a 5% increase in vdW spacing. This
strategic approach presents new avenues for designing in-
triguing topological materials by leveraging the inherent
RSOC in 2D materials.

G. Optical manipulation of Rashba effect

RSOC plays a crucial role in spin field-effect transis-
tors, enabling information processing and storage with-
out reliance on external magnetic fields. However, the
spin relaxation mechanism in the 2D semiconducting
channels limits the precision and accuracy of these de-
vices. Achieving a persistent spin helix (PSH) condition
in the 2DEG is an effective solution to tackle this chal-
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FIG. 8. Electronic band structure of RbKNaBi with the or-
bital projection of s, px + py, and pz orbitals of Bi calculated
(a) without and (b) with SOC. (c) Evolution of WCC com-
puted using GGA + SOC, indicating a nontrivial Z2 topologi-
cal invariant (Z2 = 1). (c) Projected edge spectrum revealing
a nontrivial metallic edge state within the bandgap. Figure
adopted from Ref. [134].

lenge. Hence, efficient engineering of RSOC and Dres-
selhaus effect in 2D materials is of subsequent impor-
tance [137]. While the Rashba parameter can be manip-
ulated by an external electric field and/or strain, and the
Dresselhaus effect can be tuned by controlling the width
of the quantum wells [138], these adjustments often re-
quire complex fabrication processes. However, replac-
ing the gate in state-of-the-art s-FETs with an optical
field presents a promising avenue for developing faster
and more energy-efficient devices. This approach offers
a flexible and efficient means to control the RSOC [139].
Notably, optical tuning is a non-destructive as well as re-
versible technique that can accurately alter the electron
density and effectively screen the intrinsic electric field in
the system without relying on the excitation beam [140].

Ma et al. [141] investigated the optical tuning
of RSOC and Dresselhaus effect in the 2DEG of
GaAs/Al0.3Ga0.7As by measuring the spin-galvanic ef-
fect (SGE). They introduced an additional control light
above the barrier’s bandgap to tune the SGE excited
by a circularly polarized light below the bandgap of
GaAs. Their observations reveal an efficient optical
tunability of RSOC compared to Dresselhaus SOC in
GaAs/Al0.3Ga0.7As. Specifically, they demonstrate that
the ratio of Rashba- and Dresselhaus-related SGE cur-
rents varies systematically with the increasing power of
the control light, as shown in Fig. 9(a). Above a criti-
cal point inverse PSH emerges of resulting an extended

spin lifetime. This emphasizes the potential of optical
tuning as an effective technique for modulating SOC, of-
fering implications for the design of spintronic devices
with prolonged spin coherence time [141].
On the other hand, Michiardi et al. [142], as part

of their study on topological insulator Bi2Se3, demon-
strated efficient tuning of RSOC using optical pulses
with a picosecond timescale. According to their proposed
mechanism, optical excitation above the energy gap in-
duces charge redistribution perpendicular to the surface
in the presence of a band-bending surface potential. This
generates an ultrafast photovoltage that modulates the
αR within a sub-picosecond timeframe. The measured
change in Rashba momentum ∆kR within the first quan-
tum well state (QWS1), approximately 3.5 × 10−3 Å−1,
corresponds to an alteration in the spin precession angle
of π over a distance of less than 100 nm [142]. This im-
plies that the effect becomes noticeable in devices of simi-
lar length under ballistic transport conditions. The use of
optical pulses to manipulate Rashba splitting in 2DEGs
with a picosecond-level timescale represents a significant
advancement in optically controlled spintronic devices.
Another study on Ge/Si0.15Ge0.85 multiple quantum

wells further supports the viability of contactless optical
excitation as an effective method for tuning SOC, thus
paving the way for electro-optic modulation of spin-based
quantum devices consisting of group IV heterostruc-
tures [143].

FIG. 9. (a) Optical manipulation of the Rashba-to-
Dresselhaus coefficient ratio (α/β) in GaAs/Al0.3Ga0.7As
with increasing power of the control light, displayed in a semi-
logarithmic plot. The solid line illustrates the baseline ratio
in the absence of control light. (b) Orientation of the effec-
tive magnetic field vector, Beff , within the momentum space
when the inverse persistent spin helix (α = −β) condition
is satisfied. While the arrows indicate the direction of Beff ,
their lengths symbolize the corresponding field strength. Beff

is the resultant of the Dresselhaus and Rashba effective mag-
netic fields. A unidirectional alignment of Beff is ensured by
the inverse persistent spin helix condition. Figure adopted
from Ref. [141].

H. Electrically-controlled 2D Rashba systems

More recently, the realization of 2D ferroelectricity
has been demonstrated in various compounds [144–151].
Some of which, profit from the spontaneous polarization
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coupling with the strong SOC leading to a reversible
Rashba 2D compound. In striking difference to bulk fer-
roelectrics that aim to be growth in ultra-thin films, the
2D ferroelectric materials do not suffer from the polar-
ization cancellation induced by the depolarizing fields.
The latter presented as a result of the ultra thin-films di-
mensionality. Additionally, due to the weak vdW interac-
tion between the layers, the 2D ferroelectric Rashba com-
pounds are ideal for the experimental processing show-

ing a large CMOS growth compatibility. Finally, and as
an additional advantage of the 2D ferroelectric Rashba
compounds is that, as demonstrated in the WTe2 com-
pounds [152, 153], the covalent bonding in the layer favors
the charge screening resulting in a metallic ferroelectricty
behavior ideal for controlling the spin-texture by electric
field in 2D devices. For more details on 2D-ferroelectric
Rashba semiconductors (2D-fersc), we refer the reader
to Refs. [144, 145, 150].

TABLE I: List of Rashba parameters (ER, kR, and αR) of some 2D
Rashba materials. Additionally, here are displayed several tentative
functionalities depending on the family and particular compound. Those
could cover, but are not limited to, spin field-effect transistors (s-fet),
2D-ferroelectric Rashba semiconductors (2D-fersc), and optical-Rashba
devices (ord).

Materials ER (meV) kR (Å−1) αR (eVÅ) Ref. Functionality

AB binary monolayer
h-TaN 74 - 4.23 [82]
h-NbN 52 - 2.9 [82]
AlBi 22 0.016 2.8 [154, 155] s-fet, 2D-fersc
PbSi 9 0.007 2.7 [154, 155] s-fet, 2D-fersc
BiSb 13 0.011 2.3 [64]
BiAs - - 1.95 [154] s-fet
TlP - - 1.79 [154, 155] s-fet, 2D-fersc
BiP - - 1.6 [154]
PbBi 20 0.025 1.6 [80]
PBi - - 1.56 [80]
GaSb - - 1.45 [155] s-fet, 2D-fersc
BiN - - 1.31 [154]
WSe - - 1.26 [86]
WS - - 1.2 [86]
BiB - - 1.16 [154, 155] s-fet
ZnTe - - 1.06 [156]
PbTe bilayer - - 1.05 [85]
SnTe bilayer - - 1.02 [85]
WC - - 1.02 [86]
GeTe bilayer - - 1.0 [85] s-fet, 2D-fersc
GaTe 15 0.029 1.0 [87]
MgTe - - 0.63 [83]
GeTe monolayer 2 - 0.6 [85]
PbTe monolayer 2 - 0.6 [85]
SnTe Monolayer - - 0.6 [85]
PSb - 0.006 0.4 [80]
MoC - - 0.14 [86]
PAs 0.1 0.002 0.1 [80]

2D Janus Monolayers
BiTeBr - - 9.15 [96, 157] s-fet
BiTeCl - - 7.48 [96]
Mo2COI (AA) 0.1129 0.0571 3.9491 [66]
Mo2COTe (BB) 0.0768 0.0640 2.3967 [66]
Mo2COSe (BB) 0.1789 0.1470 2.3247 [66]
BiTeI 40 0.043 1.97 [97, 157] s-fet
Mo2COS (BB) 0.1789 0.1879 1.9045 [66]
Janus Sb2Se2Te armchair (zigzag) - - 1.53 (1.52) [158]
Mo2COCl (BB) 0.1022 0.1376 1.4854 [66]
SbTeI 17 0.024 1.39 [97]
CrSeTe - - 1.23 [92, 155]
TiS2Se 40 0.074 1.081 [99]
InTeF monolayer - - 1.08 [98]
Sb2SeTe2 monolayers: armchair (zigzag) - - 1.00 (1.12) [158]
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WSeTe 52 0.17 0.92 [155, 159, 160] s-fet
Mo2COBr (AA) 0.0072 0.0176 0.8185 [66]
SnSTe 6.95 0.0184 0.755 [95]
WSSe 3.6 0.01 0.72 [155, 159]
ZrS2Se 19 0.053 0.717 [99]
HfS2Se 15 0.053 0.566 [99]
MoSSe 1.4 0.005 0.53 [155, 159] s-fet
CrSTe - - 0.31 [92]
RbKNaBi 1.3 - 0.274 [134]
SnSeTe 2.46 0.018 0.273 [95]
CrSSe - - 0.26 [92, 155]
WSTe 7.78 0.0631 0.247 [95, 155] s-fet
WSiGeN4 4.2 0.076 0.111 [101]
SnSSe (Γ-K) 1.03 0.0189 0.109 [95]
MoSiGeN4 0.8 0.048 0.033 [101]
MoSeTe - - 0.012 [155, 159] s-fet

2D Van der Waals Hetrostructures
1QL(2QL) Bi2Se3/1L PtSe2 4.8 (4.0) 0.002 (0.002) 4.8 (4.0) [109]
BiSb/AlN - - 1.5 [64]
PtSe2/MoSe2 - - 1.3 [106] s-fet, ord
AlN/InTeF 11 - 1.13 [98]
BN/InTeF 10 - 1.08 [98]
J-SnSSe/WSSe 42.91 0.126 0.681 [95]
Bi(111) surface 14 0.05 0.55 [161]
InSe/GaTe - - 0.5 [104]
GaSe/MoSe2 31 0.13 0.49 [162] s-fet
InSe/InTe - - 0.44 [104]
Au (111) surface 2.1 0.012 0.33 [163]
J-SnSTe/WSTe 2.47 0.0366 0.135 [95]
InGaAs/InAlAs surface <1.0 0.028 0.07 [164, 165] s-fet
LaAlO3/SrTiO3 interface ∼1.0 - 0.02 [166, 167] ord
GaS/MoS2 2 0.05 - [162] s-fet
GaS/WS2 1 0.03 - [162] s-fet, ord
GaSe/WSe2 22 0.11 - [162] s-fet
GaTe/MoTe2 48 0.12 - [162] s-fet
GaTe/WTe2 47 0.11 - [162] s-fet
KTaO3/K(Zn,Ni)F3 interface 64 0.044 - [167, 168] ord

IV. APPLICATIONS IN SPINTRONIC
INDUSTRY: POSSIBLE DEVICE REALIZATIONS

Spintronic presents a promising next-generation plat-
form, surpassing traditional electronics by leveraging
electrons’ spin degree of freedom [7–9, 169, 170]. Fur-
thermore, manipulating spin as a logical unit in spin-
tronic opens up novel avenues for neuromorphic [171, 172]
and probabilistic computing [173]. Spintronic improves
scaling, processing speed, and energy efficiency compared
to electronics and establishes a direct interface with ex-
isting technologies. For instance, spin valve and magnetic
tunnel junction (MTJ) devices found swift applications
in disk read heads, proximity sensors for automobiles, au-
tomated industrial tools, and biomedical devices follow-
ing the discovery of giant magnetoresistance [174, 175].
However, reliance on external magnetic field limits the
energy efficiency of MTJ- and GMR-based devices.

The discovery of spin-transfer torques (STT) [176, 177]
enables all-electric control over spin states and resistance
in GMR devices, enhancing scalability. This has led to

the development of scalable nonvolatile magnetic random
access memory (RAM) using STT, replacing static RAM
and showing potential applications in dynamic RAM
technology [178–180]. While GMR devices are currently
integrated into conventional electronic platforms, an all-
spintronic platform requires further innovation in mate-
rials design and the fabrication of high-density and low-
power components. Notably, STT devices face challenges
such as dependence on high-performance magnets, spin
filtration, low spin carrier lifetimes and diffusion lengths,
Joule heating, and voltage breakdown [7–9, 169].

Recent phenomena include the spin Hall ef-
fect (SHE) [181–185] and Rashba-Edelstein effect
(REE) [182], along with their optical [186] and ther-
mal [187] equivalents, introduce new possibilities for
efficient spin manipulation. Focusing on SHE and REE,
an applied voltage generates a spin-polarized current
and interfacial spin accumulation, similar to STT but
without charge flowing through the magnetic layers.
This process reduces the impact of Joule heating and
minimizes the risk of voltage breakdown compared to
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STT. Additionally, these spin-orbit torques (SOT) can
excite various magnetic materials [188], enabling the
switching of single-layer magnets and efficient manipu-
lation and excitation of domain walls, skyrmions, and
spin waves. However, progress with SOT is hindered by
low charge-spin conversion efficiency [7] and reliance on
heavy elements.

A diverse range of spin transistors, leveraging various
operational principles, has been proposed in the liter-
ature [170, 189]. One notable example demonstrating
practical applications of RSOC is the Datta-Das spin
transistor, also referred to as the spin FET [47]. In this
transistor, an external gate voltage controls the flow of
spin-polarized electrons. The device typically consists
of a Rashba semiconductor (channel) with two ferro-
magnetic contacts, which act as a source and drain (see
Fig. 1). The gate voltage is used to manipulate the spin
of electrons, allowing for the modulation of the spin cur-
rent between the ferromagnetic contacts.

Furthermore, the concept of a bipolar spin switch, in-
troduced by Johnson [190] in 1993, outlines a spin in-
jection technique employing a thin ferromagnetic film to
polarize the spin axes of electrons transporting an electric
current in a ferromagnetic-nonmagnetic-ferromagnetic
metal trilayer structure. This configuration yields a
three-terminal, current-biased device with a bipolar volt-
age (or current) output dependent on the magnetization
orientations of the two ferromagnets.

As observed in layered bulk compounds [191–195], the
intrinsic coupling between the broken inversion symme-
try and SOC opens the possibility of an electrically-
controlled Rashba device. In this potential device design,
realization relies on the feasibility of polarization switch-
ing in the 2D ferroelectric layer, unlocking spin-texture
reversal and spin control. Potential candidates include
the {Mo,W}Te2 [152, 153, 196–198], AgBiP2Se6 [144],
and AB monolayers [144] in which, the out-of-plane po-
larization can be switched. Some efforts towards such
direction have shown the successful design of the electric
field control of valleytronics [155, 199, 200]. Moreover,
an additional advantage of the 2D vdW ferroelectrics is
the feasible functionalization and growth on substrates,
offering a doable engineering of the potential device.

Other proposed devices profit from the
Aharonov–Casher effect [201] in which charge-neutral
magnetic moments experience quantum oscillations in
the presence of an external electric field [202]. Such pro-
posal considers Rashba active materials ring shaped, by
lithography for examples, in which, the spin momenta,
associated to the electons’s flow, present a difference at
the end of the loop.

V. SUMMARY AND OUTLOOK

Highlighted in this Perspective is the crucial signifi-
cance of the Rashba effect in broadening the research

horizons within the domain of 2D materials, surpass-
ing the confines of graphene. This investigation en-
compasses transition-metal dichalcogenides, silicene, ger-
manene, and stanene. The Rashba effect enhances the
comprehension of these materials and establishes the
groundwork for actualizing diverse unprecedented phys-
ical occurrences and technological advancements. Key
areas influenced by the Rashba effect include:

Spin-Orbitronics: This emerging field represents a syn-
ergistic blend of spintronics and orbitronics, where
both spin and orbital degrees of freedom are manip-
ulated [203, 204]. The Rashba effect plays a crucial
role in this integration, enabling the simultaneous
control of spin and orbital characteristics, which
could revolutionize the design and functionality of
electronic devices [205].

Nonlinear Spintronics: In strong electron-electron in-
teractions, the Rashba effect contributes to the
emergence of nonlinear spintronic phenomena [206,
207]. This interaction can lead to higher-order har-
monics in spin currents, opening up new possibili-
ties for advanced information processing and stor-
age technologies that leverage these complex spin
dynamics. Furthermore, strong electron-electron
interactions in Rashba materials can yield non-
conventional correlated states, unusual collective
modes, bound electron pairs with non-trivial or-
bital and spin structures [73–78].

Spin-Photovoltaics and Optospintronics: This
area explores the intersection between photonics
and spintronics, where the Rashba effect facilitates
the coupling between light and spin-polarized cur-
rents [208, 209]. This coupling could lead to novel
spin-photovoltaic devices, which harness light to
generate spin currents, and optospintronics, which
combines optical and spintronic functionalities for
innovative applications.

Thermal Spintronics: The Rashba effect is instrumen-
tal in controlling spin currents induced by thermal
gradients, an essential aspect of thermal spintron-
ics [210, 211]. This control is crucial for developing
spin-based thermoelectric devices, which can con-
vert waste heat into sound energy, offering a novel
approach to energy efficiency and sustainability.

Ultrafast Spin Dynamics: The Rashba effect pro-
vides an ideal platform for the ultrafast manipu-
lation of spin states [212]. This capability is essen-
tial for creating ultrafast memory devices, where
rapid and precise control over spin dynamics is
paramount and can use materials with a signifi-
cant Rashba effect [213]. The ability to manipulate
spin states on extremely short timescales could lead
to a new generation of high-speed, high-efficiency
memory and processing devices, significantly out-
performing current technologies in speed and en-
ergy consumption.
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Each of the aforementioned domains signifies a notable
progression in materials science and technology, steered
by the distinctive characteristics of the Rashba effect in
2D materials. The exploration of Rashba materials, par-
ticularly in the context of 2D vdW materials, has made
significant strides. However, despite the extensive list
of identified Rashba materials, there remains a gap in
developing a comprehensive descriptor that can effec-
tively pinpoint optimal systems with isolated spin states
and large tunable splitting [62]. The existence of heavy
atoms in these materials stands as a pivotal element ow-
ing to their robust SOC, a fundamental aspect in the
emergence of the Rashba effect. Furthermore, 2D layers
with pronounced crystal-potential gradients are imper-
ative. Nevertheless, the obstacle resides in pinpointing
explicit, measurable factors that can be methodically uti-
lized to foresee and enhance Rashba attributes in the ma-
terials’ design phase. This absence of a conclusive array
of parameters or a descriptor constrains the capacity to
effectively engineer materials with targeted Rashba char-
acteristics.

From a theoretical perspective, current methodologies
primarily involve analyzing the spin texture to confirm
the existence of Rashba effects. While effective, this ap-
proach often requires a comprehensive analysis of the
electronic band structure, including SOC effects, which
can be complex and resource-intensive. A more stream-
lined method to calculate the Rashba parameter would
be highly beneficial. Ideally, such a methodology would
allow for estimating αR without necessitating a complete
band structure analysis, thereby simplifying the identifi-
cation and characterization of Rashba materials in high-
throughput calculations.

To address all these challenges, future research could
focus on:

• Developing Predictive Models: Machine learning
and data-driven approaches could be employed to
develop predictive models that identify potential
Rashba materials based on their atomic and elec-
tronic properties [62]. Even if regression models
are trained, obtaining a reasonable estimation of
the Rashba parameter would be possible.

• High-Throughput Screening: Leveraging computa-
tional tools for high-throughput screening of ma-
terials could expedite the discovery of new Rashba
systems using established criteria and theoretical
models [214, 215].

• Advanced Computational Methods: Improving com-
putational methods to more efficiently calculate
αR (beyond the linear-k Rashba model) and other

relevant parameters, possibly through developing
new algorithms or adapting existing ones to target
Rashba-related properties specifically.

• Experimental Validation: Complement theoretical
advancements with experimental techniques to val-
idate predictions and refine models, ensuring the
theoretical descriptors are grounded in practical,
observable phenomena.

In essence, although notable advancements have been
achieved in pinpointing 2D Rashba materials, there
exists a distinct requirement for more sophisticated
descriptors and computational approaches to scrutinize
both traditional and unconventional (hidden) Rashba
systems. These progressions would substantially aug-
ment the capacity to devise and leverage materials
with precise Rashba attributes, thereby facilitating a
more effective and focused progression in spintronics
development.
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M. Bibes, Oxide spin-orbitronics: spin–charge intercon-
version and topological spin textures, Nature Reviews
Materials 7, 258 (2022).

[204] W. Zhang and K. M. Krishnan, Epitaxial exchange-bias
systems: From fundamentals to future spin-orbitronics,
Materials Science and Engineering: R: Reports 105, 1
(2016).

[205] Y. Dong, T. Xu, H.-A. Zhou, L. Cai, H. Wu, J. Tang,
and W. Jiang, Electrically reconfigurable 3d spin-
orbitronics, Advanced Functional Materials 31, 2007485
(2021).

[206] G. Finocchio, M. Di Ventra, K. Y. Camsari,
K. Everschor-Sitte, P. K. Amiri, and Z. Zeng, The

promise of spintronics for unconventional computing,
Journal of Magnetism and Magnetic Materials 521,
167506 (2021).

[207] B. Wang, S. Shan, X. Wu, C. Wang, C. Pandey,
T. Nie, W. Zhao, Y. Li, J. Miao, and L. Wang, Pi-
cosecond nonlinear spintronic dynamics investigated by
terahertz emission spectroscopy, Applied Physics Let-
ters 115 (2019).

[208] L. Guo, S. Hu, X. Gu, R. Zhang, K. Wang, W. Yan, and
X. Sun, Emerging spintronic materials and functionali-
ties, Advanced Materials , 2301854 (2023).

[209] J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and
S. O. Valenzuela, Van der waals heterostructures for
spintronics and opto-spintronics, Nature Nanotechnol-
ogy 16, 856 (2021).

[210] H. Nakayama, B. Xu, S. Iwamoto, K. Yamamoto,
R. Iguchi, A. Miura, T. Hirai, Y. Miura, Y. Sakuraba,
J. Shiomi, et al., Above-room-temperature giant ther-
mal conductivity switching in spintronic multilayers,
Applied Physics Letters 118 (2021).

[211] K.-i. Uchida and R. Iguchi, Spintronic thermal man-
agement, Journal of the Physical Society of Japan 90,
122001 (2021).

[212] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y.
Bigot, Ultrafast spin dynamics in ferromagnetic nickel,
Physical review letters 76, 4250 (1996).

[213] J. H. Mentink, J. Hellsvik, D. Afanasiev, B. Ivanov,
A. Kirilyuk, A. Kimel, O. Eriksson, M. Katsnelson, and
T. Rasing, Ultrafast spin dynamics in multisublattice
magnets, Physical review letters 108, 057202 (2012).

[214] J. Chen, K. Wu, W. Hu, and J. Yang, High-throughput
inverse design for 2d ferroelectric rashba semiconduc-
tors, Journal of the American Chemical Society 144,
20035 (2022).

[215] Y. He, X. Li, J. Yang, W. Li, G. Li, T. Wu, W. Yu, and
L. Zhu, High-throughput screening giant bulk spin-split
materials, Results in Physics 49, 106490 (2023).

https://doi.org/10.1038/s41467-019-11949-5
https://doi.org/10.1103/PhysRevLett.125.046402
https://doi.org/10.1039/C9NR10865C
https://doi.org/10.1021/acs.jpclett.3c02917
https://doi.org/10.1021/acs.jpclett.3c02917
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1063/1.3647569
https://doi.org/10.1063/1.3647569
https://doi.org/10.1021/jacs.2c08827
https://doi.org/10.1021/jacs.2c08827
https://doi.org/https://doi.org/10.1016/j.rinp.2023.106490

	Promises and technological prospects of two-dimensional Rashba materials
	Abstract
	Introduction
	Theoretical foundation
	Rashba Effect in 2D Materials
	AB binary buckled monolayers
	TMDs and Janus TMDs
	Other 2D Janus monolayers
	Rashba effect at interfaces and junctions
	Proximity-induced RSOC
	Nontrivial topological phase induced by RSOC
	Optical manipulation of Rashba effect
	Electrically-controlled 2D Rashba systems

	Applications in spintronic industry: Possible device realizations
	Summary and Outlook
	Acknowledgements
	References


