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ABSTRACT:  

Clone-censor-weighting (CCW) is an analytic method for studying treatment regimens that are 

indistinguishable from one another at baseline without relying on landmark dates or creating 

immortal person time. One particularly interesting CCW application is estimating outcomes 

when starting treatment within specific time windows in observational data (e.g., starting a 

treatment within 30 days of hospitalization). In such cases, CCW estimates something fairly 

complex. We show how using CCW to study a regimen such as “start treatment prior to day 30” 

estimates the potential outcome of a hypothetical intervention where A) prior to day 30, everyone 

follows the treatment start distribution of the study population and B) everyone who has not 

initiated by day 30 initiates on day 30. As a result, the distribution of treatment initiation timings 

provides essential context for the results of CCW studies. We also show that if the exposure 

effect varies over time, ignoring exposure history when estimating inverse probability of 

censoring weights (IPCW) estimates the risk under an impossible intervention and can create 

selection bias. Finally, we examine some simplifying assumptions that can make this complex 

treatment effect more interpretable and allow everyone to contribute to IPCW. 
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 Researchers have been attempting to mimic randomized trials in nonexperimental data 

for decades. One persistent challenge has been correctly allocating the time experienced by 

individuals while different treatment regimens cannot be distinguished from one another. 

Randomized trials can assign patients to different durations of treatment (e.g., randomize patients 

receiving chemotherapy for colon cancer to receive up to six vs or up to twelve infusions). In 

observational data, on the other hand, it can be impossible to determine the treatment regimens 

compatible with a specific patient’s data until well after baseline. Traditional means to analyze 

these data generally change the estimated quantity vs a hypothetical trial,(1) require strong 

assumptions to estimate that quantity,(2) or fail to align the dates when eligibility is assessed, 

treatment starts, and follow-up begins.(3, 4) 

  One analytic solution available in nonexperimental data involves cloning participants 

into various treatment regimens, censoring clones when they are no longer compatible with that 

treatment regimen, and weighting uncensored clones based on the inverse of their probability of 

remaining uncensored (IPCW) (hereafter referred to as CCW for clone-censor-weighting).(5) 

Initially proposed to study dynamic treatment regimens, CCW has become closely tied to the 

target trial framework as a method for studying treatment regimens indistinguishable from one 

another at baseline without randomization or outcome modeling with the G-formula.(6, 7) In 

addition to the regimen types above, CCW can compare outcomes when individuals receive the 

same treatment at different times (e.g., surveillance colonoscopy every 3 vs. 7 years).(8) CCW 

can also study the effect of initiating treatment within a specific window (e.g., statin initiation 

within 6 months vs no treatment(9) or starting hormone therapy at 3 months vs at disease 

progression).(10) 
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 Unfortunately, the quantity CCW estimates when used to study regimens like “start a 

treatment within 30 days” can be difficult to articulate. Without major simplifying assumptions, 

it does not correspond to everyone starting at day 0, or day 30, or randomly from day 0 to 30, or 

randomly depending on covariates from day 0 to 30.  Using simple data sets of a few individuals 

and a straightforward simulation, we demonstrate that using CCW to study a regimen such as 

“start treatment prior to day 30” estimates potential outcomes under a hypothetical intervention 

where A) prior to day 30, everyone follows the treatment start distribution of the study 

population and B) everyone who has not initiated by day 30 is forced to initiate on day 30. We 

also show that CCW that omit cumulative exposure history treat everyone who is forced to 

initiate on day 30 as if they have the cumulative exposure history of those who initiated prior to 

day 30 (resulting in an impossible intervention or selection bias, depending on your perspective) 

and that this problem is avoided if the only individuals contributing to the IPCWs are those who 

initiate on day 30. Finally, we show some simplifying assumptions that make it easier to interpret 

this complicated quantity. 

 

METHODS 

 Key context 

Primary goal-We aimed to articulate and describe the hypothetical intervention that 

would generate the quantity estimated when applying CCW methods to a specific population and 

studying a treatment regimen such as “add inhaled corticosteroids (ICS) to long-acting beta-

agonists (LABA) within the 30 days following discharge from the hospital with a primary 

diagnosis of chronic obstructive pulmonary disease (COPD) exacerbation” in situations without 

any simplifying assumptions (e.g., the absence of a treatment effect until 30 days or otherwise 
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treating day 0 and day 30 as completely interchangeable). We focused on the expectation of a 

binary potential outcome (e.g., 𝐸[𝑌𝑎=1]) under a single hypothetical intervention, rather than a 

treatment effect involving contrasting two potential outcomes under corresponding interventions 

on a specific scale (e.g.,  𝐸[𝑌𝑎=1] − 𝐸[𝑌𝑎=0]). 

An overview of using CCW to study different timings of treatment initiation-Implementing 

CCW can be daunting, but it is not as complex as it might initially seem.(3, 8) Take the above 

example estimating potential outcomes in those who add ICS to LABA after hospitalization for a 

COPD exacerbation. 

First, specify the index event, eligibility criteria, and the treatment regimen (which, 

identify the censoring criteria). In the example, the index event would be “discharge from the 

hospital after COPD exacerbation,” the eligibility criteria would be “current use of LABA and no 

past use of ICS,” and the treatment regimen would be “initiate ICS within 30 days of the index 

event.” This regimen has a single censoring criteria: not initiating ICS within 30 days of the 

index event, meaning that no one will be censored until day 30. 

Second, identify everyone who A) experienced the index event and B) met eligibility 

criteria. Create a copy, or clone, of these individuals assigned to each treatment regimen of 

interest. For the COPD study, this would mean finding all individuals that are 1) discharged from 

the hospital with a COPD exacerbation, 2) are currently taking LABA, and 3) have no past use of 

ICS. Each person meeting the criteria is cloned, with the clone assigned to the “initiate ICS 

within 30 days of the index event” treatment regimen. Note that we are examining only one 

treatment regimen and one potential outcome and could use the original observations; cloning is 

mentioned here for those unfamiliar with the design. 
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Third, apply censoring criteria to the clones within the corresponding treatment regimen. 

In the example, that would mean censoring any clones from the data set who did not initiate 

treatment with ICS on or prior to day 30 on day 30. 

Fourth, to handle potential selection bias created by this censoring process, create time-

varying weights for each clone’s person-time based on the covariate-conditional inverse 

probability of remaining uncensored (IPCW).(11, 12) Additional censoring processes (e.g., loss 

of insurance coverage or changing healthcare providers) must be handled separately. As a note, if 

the goal is to estimate incidence rates and there is an effect of treatment, weights must be used 

even if no covariates predict censoring. In our case, this would mean identifying the clones who 

survived to day 30, estimating the probability of remaining uncensored at day 30, and then 

assigning the clones who remained uncensored IPCW. 

Figure 1 is a visual representation of steps two, three, and four. We create new copies of 

everyone eligible for the analysis (in the figure, individuals 2, 3, and 4), starting with the index 

date; we censor the observations when they deviate from our “start ICS by 30 days” regimen 

(meaning clone 3 and 4 get censored at day 30); and then we create IPCW, where each clone 

receives a weight of 1 for the first 30 days and then clone 2 receives a weight of 3 starting at day 

30 because that is their inverse probability of remaining uncensored. 

Finally, all that is left is to analyze the data to obtain the outcome measure of interest 

(e.g., risk or incidence rate) using a method that appropriately accounts for the weights we 

created. 

A simple demonstration of the CCW intervention 

With this process clearly understood, let us apply CCW to three different small data sets 

shown in Figure 2. 
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 Simple data set 1 (Figure 2A)-This data set includes only two individuals: Adrianna and 

Betty. Adrianna never starts ICS, while Betty starts ICS exactly 30 days following her index 

hospitalization. We clone both individuals and assign them to the “treat by 30 days” regimen. 

Adrianna’s clone is censored at day 30, while Betty’s clone is never censored. This means that 

after day 30 Betty’s person-time receives a weight of 2 so that their outcomes “stand in” for 

Adrianna’s. Note that if we had more people, we might instead only upweight those individuals 

with covariates similar to Adrianna at day 30. Since we keep Adrianna in our analytic data set 

prior to day 30, it’s as though they initiated ICS on day 30. Using CCW to study a 30-day 

initiation window with this data set corresponds to an intervention where Adrianna and Betty 

both start treatment on day 30. 

 Simple data set 2 (Figure 2B)-This data set still includes Adrianna, but includes a new 

individual (Chen) rather than Betty. Instead of starting treatment on day 30, like Betty did, Chen 

started ICS immediately following hospital discharge (meaning they started on day 0). We create 

our two clones and once again assign them to the “start ICS by 30 days” regimen. Chen’s clone 

is never censored and Adrianna’s clone is, once again, censored on day 30. Just like Betty, Chen 

receives a weight of 2 to “stand in” for Adrianna after day 30. Since we keep Adrianna in the 

analytic data set prior to day 30, it is still as if Adrianna initiated ICS on day 30. This time, using 

CCW to study a 30-day initiation window corresponds to an intervention where Chen starts 

treatment at day 0 and Adrianna starts treatment at day 30. More than that, because we have no 

choice but to use Chen to “stand in” for Adrianna following day 30, it’s as though Adrianna 

started treatment on day 30 with the previous exposure profile of Chen (i.e., as if they were on 

treatment since day 0).  



8 
 

This is impossible; we cannot start Adrianna on ICS on day 30 as if she were exposed to 

ICS since day 0. This can also be viewed as a form of selection bias, with exposure history 

predicting the probability of remaining uncensored and risk of the outcome.(13-15) In general, if 

sample data set 2 represents all our data, we cannot emulate a real trial involving the “start by 30 

days” treatment regimen without strong assumptions about the treatment effect (to be discussed 

below). 

 Simple data set 3 (Figure 2C)-The final simple data set includes Adrianna, Betty, and 

Chen, meaning it includes one individual who started ICS immediately after discharge (Chen), 

one individual who started 30 days after discharge (Betty), and one person who never started at 

all (Adrianna). Once again, Betty and Chen are never censored and Adrianna is censored at day 

30. Rather than receiving a weight of 2 after day 30, however, Betty and Chen now each receive 

a weight of 1.5 (the two of them “stand in” for Adrianna as a pair). Our hypothetical intervention 

again starts Chen on day 0 and Adrianna and Betty on day 30, but now treats Adrianna’s 

exposure history after day 30 as if it were an equal mixture of Betty’s (i.e., no previous exposure) 

and Chen’s (i.e., exposed since day 0). Once again, this is an impossible intervention, as our 

theoretical trial would have to start Adrianna on day 30 but somehow intervene to set her 

exposure history to be equally no exposure (from Betty) and 30 prior days of exposure (from 

Chen). 

 Avoiding impossible interventions and selection bias-Fortunately, there is a way to ensure 

IPCW do not estimate the effect of an impossible intervention when the data include a mix of 

individuals who started at the end of the exposure window and individuals who started earlier-

estimate the probability of remaining uncensored at day 30 only among those who either 

initiated at day 30 (or, if there are not enough people on exactly day 30, those close enough in 
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time to day 30 such that they have equivalent exposure history) or did not. Those who initiated 

at day 30 then receive an IPCW based on this probability and everyone who initiated prior to day 

30 receives an IPCW of 1 (or, if there’s other censoring criteria, the weight they had previously). 

In data set 3, for example, we can give Chen’s follow-up after day 30 a weight of 1 and Betty’s 

follow-up after day 30 a weight of 2 so that the only one “standing in” for Adrianna is Betty. We 

are now estimating the effect of starting Chen on day 0 and Adrianna and Betty on day 30, an 

intervention that could be implemented in a real trial. 

 Notably, that the other intervention is impossible does not mean it is always 

uninformative. Under specific assumptions, the outcome under the impossible intervention 

equals the outcome under the more reasonable one; it is only problematic if exposure history and 

timing is an outcome predictor independent of current exposure. If there is no treatment effect or 

the effect of exposure is instantaneous and constant (i.e., similar to diuretics’ effect on blood 

pressure or heparin’s effect on preventing blood clots), exposure history will not predict the 

outcome or create selection bias and the treatment effect estimated will be the same whether 

IPCW in data set 3 include both Betty and Chen or only Betty.  

A general rule for the intervention-With these examples in mind, using CCW to study a 

“start by 30 days” regimen corresponds to a two-stage intervention: 

1. Until day 30, allow the population to initiate treatment under the “natural course” of 

the original population observed from day 0 to 30. 

2. Force individuals in the population who have yet to initiate treatment at day 30 to 

start immediately. 

 Thus, the treatment distribution underlying the hypothetical intervention varies depending 

on how initiation timing is distributed in the study population. 
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 Notably, when studying a treatment regimen such as initiating treatment from 30 to 90 

days, the hypothetical intervention has three steps: 

1. Until day 30, prevent anyone in the population from initiating. 

2. From day 30 to 90, allow the population to initiate treatment under the “natural 

course” of the original population observed from day 30 to 90. 

3. Force any individuals in the population who have yet to initiate treatment at day 90 to 

start immediately. 

 

 Simulation description 

 To verify the results of the simple examples in more complex situations and test the 

extent to which assumptions could simplify the intervention discussed above, we created several 

different simulated data sets with a time-varying treatment X that was continued once started, an 

outcome Y, and another covariate C that was associated with the outcome. Outcomes occurred 

over three time units, each representing a month in our example with inhaled corticosteroids (i.e., 

period 0-1 = day 0-30, 1-2 = day 30-60, 2-3 = day 60-90). The only source of censoring is 

individuals failing to initiate treatment by day 30. 

Base simulation-Our base simulation mimicked the situation with ICS, meaning that X 

had an effect on Y that occurred immediately but increased over time, with an increase after the 

first time unit. The mathematical model for the outcome was: 

𝑃(𝑌) = (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) + 0.1 ∗ 𝐶 + 0.1 ∗ 𝑋 + 0.04 ∗ 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑋 + 0.05 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑋. 

 Additional scenarios-We simulated five other scenarios exploring how specific types of 

exposure effects impacted the similarity of different CCW estimates to one another and to the 

various interventions. These included: 
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A) A scenario with no exposure effect. 

B) A scenario where exposure had a purely instantaneous effect. 

C) A scenario where anyone treated at time 0 or 1 experienced an effect starting at time 1 

(regardless of whether an individual initiated at time 0 or time 1). 

D) A scenario where exposure had a delayed effect that begins 1 unit after initiating 

treatment. 

E) A scenario where the effect of exposure was purely cumulative over time. 

CCW analyses: The hypothetical regimen examined was “treat by time 1”, meaning 

individuals were censored from the regimen if they did not initiate at time 0 or time 1. We 

performed two separate CCW analyses. In one analysis (“limited” CCW), only those who 

initiated at time 1 were included in IPCW, with all the time 0 initiators receiving weights of 1. In 

the other (“all initiator” CCW), we allowed those who initiated at time 0 to contribute to IPCW 

estimated at time 1. We estimated the time 3 (i.e., 90 day) risks using both approaches. 

Hypothetical interventions: We compared CCW time 3 risks to the true risks obtained via 

Monte Carlo simulation(16) with 10 repeated samples of the original 5,000,000 individual 

population using the true treatment and outcome models under four different hypothetical 

interventions. These interventions included: 

1. Start everyone on X at time 0. 

2. Start everyone on X at time 1.  

3. Allow the population to follow its natural exposure distribution until time 1 and then 

start everyone who has yet to start by time 1 to start at time 1 (“feasible 

intervention”). 
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4. Allow the population to follow its natural exposure distribution until time 1 and then 

start everyone who has yet to initiate by time 1 at time 1, assigning those who are 

forced to start in this way a previous exposure history based on the distribution 

among those who naturally started by time 1 (“impossible intervention”). 

In every scenario, the probability of starting X at time 0 was higher in those with C=1 and 

the probability of Y was higher in those with C=1 (making adjustment for C necessary to 

estimate an unbiased risk under any intervention). Each scenario included 5,000,000 individuals 

to minimize the influence of random variation. Figure 3 summarizes the simulation structure and 

interventions we examined. Full parameters for the outcome model in each scenario are listed in 

Table 1. 

 

RESULTS 

 Table 2 shows each scenario’s time 3 risk in the cohort after cloning, censoring, and 

using either “limited” CCW that only upweight those who started at time 1 or “all initiator” 

CCW that include those who started at time 0 and time 1. The panels also include the time 3 risk 

when implementing the four interventions. 

 In the base case, all four interventions yield different risks, but the “limited” (56.6%) and 

“all initiator” (risk=59.1%) CCW approaches matched the “feasible” (56.6%) and “impossible” 

(59.1%) interventions, respectively. When there is no effect of the treatment (Scenario A) or 

when the exposure effect takes effect at time 1 regardless of whether it is received at time 0 or 

time 1 (Scenario C), all interventions and CCW approaches result in the same risk estimate 

(26.4% or 41.8%, respectively). When the exposure effect is only instantaneous in Scenario B, 

on the other hand, the two CCW approaches and the “impossible” and “feasible” interventions 
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still yield the same risk (~43.1%), but that risk differs from the interventions that start everyone 

at time 0 (48.2%) or time 1 (41.8%). If the treatment effect is cumulative as in scenario D or 

takes effect after one time unit as it does in scenario E (i.e., when the exposure effect is time-

varying), however, all four interventions result in different risks of the outcome, with the “all 

initiator” CCW analysis again corresponding to the risk of the “impossible” intervention. 

 Table 3 summarizes how different situations impact whether A) one can include those 

who initiate before the end of the period in IPCW and B) whether the distribution of treatment 

during the period can be safely ignored. 

 

DISCUSSION 

 Cloning, censoring, and weighting individuals can estimate potential outcomes under 

regimens that involve initiating treatment in a specific window. That said, the hypothetical 

intervention it corresponds to (having the population naturally initiate treatment prior to that date 

and then forcing everyone remaining to initiate on that date) is quite complicated and population 

specific. While it does correspond to a hypothetical target trial, that randomized trial may not 

align well with a relevant research question. In particular, the intervention can correspond to 

quite different exposure patterns in different populations during the treatment initiation window, 

with Figure 4 providing examples of how cumulative initiation patterns under this hypothetical 

intervention can change in different populations. Perhaps most critically, if IPCW contributors 

are selected inappropriately, the intervention can diverge from any realistic intervention by 

retroactively assigning those who initiate at the end of the treatment window the exposure history 

of those who initiated prior. Still, some assumptions like there being no effect or no effect until 
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the end of the time window can render the outcome estimated by CCW more interpretable and 

not limited to the specific initiation pattern present in the study population. 

 Clarifying the quantity estimated by CCW in this context has major advantages. First, it 

establishes that researchers using the design to study different treatment windows should provide 

information on the distribution of treatment timings within each treatment window to provide 

context to their results. If everyone in the study population initiates on day 89 or 91, differences 

between “start by day 90” and “start from day 90-180” regimens are very small, while in another 

population in which everyone starts on either day 0 or 180 differences could be enormous. It also 

reinforces the importance of avoiding comparisons like “start by day 7” to “do not start by day 

7”, as the latter includes everything from starting on day 8 to never starting. Finally, it stresses 

the importance of the study’s time axes; while a 7-day window may create too much variation for 

a study of the 14-day effectiveness of antibiotics (rapid effect onset and short treatment 

duration), a 30-day window may be completely interchangeable when studying five-year 

effectiveness of statins (long onset of effect and long duration of treatment). 

 Second, understanding the exact quantity estimated by CCW is essential for research 

using simulations to contrast the performance of CCW with alternatives for estimating the effect 

of treatment regimens that are indistinguishable at baseline (e.g., the G-formula).(17, 18) In any 

but the simplest simulation studies, “true” potential outcomes (and any associated treatment 

effects) come from Monte Carlo simulation of the relevant intervention using the true treatment, 

covariate, and outcome models. This “true” outcome can be used to calculate bias, mean squared 

error, and confidence interval coverage to compare with other analytic methods.(18) 

Understanding the relevant assumptions also helps identify when researchers can derive the truth 
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from simpler Monte Carlo simulations that do not incorporate the specific timing of treatment 

initiation or cumulative exposure. 

 We also identified when CCW inadvertently estimates an impossible treatment effect 

involving treating people who initiate at the end of the window as if they had previous exposure 

to treatment. This selection bias can be avoided if IPCW are created in initiators from the end of 

the interval, with those who initiated previously still contributing to the study but keeping their 

previous weights (similar, but not identical to, to fixing weights at 1)(19). While this approach 

may not always be required, researchers should consider it when the treatment effect under study 

varies over time due to a lag in treatment effect, a cumulative exposure effect, a delayed 

exposure effect, or other mechanisms. The appropriate definition of “end of the window,” the 

precision lost by excluding others from IPCW, and whether this matters at all depends on a 

study-specific factors ranging from the distribution of times when people begin to be exposed to 

the exposure itself to the outcome of interest. 

 This work is not comprehensive. We focused on a single application of CCW (the study 

of initiating treatment within a specific window from an index event) and on the hypothetical 

intervention underlying the outcome it estimates. We also used a very simple simulation with one 

static confounder. While there are some situations that closely parallel this one (such as stopping 

a sustained treatment within a specific time window),(20) they were not the focus of this 

research. Future work exploring elements unique to comparing potential outcomes under 

hypothetical interventions (e.g., confounding, effect measure modification, and time-varying 

confounding) is essential to lend additional interpretability to risk differences, risk ratios, 

incidence rate ratios, and hazard ratios obtained in studies using CCW. Methods for transporting 
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or generalizing these effects to populations with different covariate distribution and different 

initiation timings also warrant investigation.  

 Finally, we hope that these results will not dissuade any researchers from conducting 

CCW analyses. Indeed, we think additional clarity surrounding CCW should only make people 

more willing to apply the method. While the hypothetical intervention may be complicated and 

may not correspond to a well-defined target trial without some assumptions, said assumptions 

may hold in many cases. Moreover, the population-specific nature of the resulting effect 

estimates is equally impactful for actual trials that randomize patients to start treatment within 

treatment windows. 

 

Conclusion 

 Using CCW to estimate the consequences of starting a treatment in a specific window 

provides amazing opportunities for non-experimental epidemiologic research. If researchers do 

not properly account for the complexity of the quantity CCW estimates and do not share the 

timing of treatment during the treatment windows, however, they run the risk of misrepresenting 

their findings or estimating the effects of impossible interventions.  
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Figure 1: An overview of how to use cloning, censoring, and weighting to study an “initiate 

treatment by day 30 following an index event” regimen. Each line represents a potential 

observation, with gray diamonds corresponding to the index event, black boxes corresponding to 

the treatment that must be initiated within 30 days, and white circles corresponding to the date 

individuals are censored. The thickness of the line corresponds to the weight given to that section 

of person-time, and dashed lines represent time following a censoring event. 
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Figure 2: Three example data sets (panel A, B, and C) where we could implement clone-censor 

weighting to study a treatment regimen of initiating treatment (e.g., inhaled corticosteroids) by 

day 30 following an index event (e.g., COPD exacerbation) after meeting eligibility criteria (e.g., 

current use of LABA). The gray diamonds represent index events, the black squares the 

treatment of interest, and the white circles censoring events (in this case, not initiating by day 

30). The thickness of the solid lines corresponds to the weight that time receives in the final 

analysis, with the dashed lines showing time following a censoring event. 
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Figure 3: Simulation structure, with the black boxes representing different steps in the 

simulation process. Note that all individuals stay on X after starting it. The different hypothetical 

interventions are described using gray text with gray dashed arrows pointing to the steps and 

times an intervention would occur. 
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Table 1: Equations to calculate P(Y) for individuals in each scenario. 

Scenario Equation for P(Y) 

Base scenario 𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 + 

0.1 ∗ 𝑋 + 

0.04 ∗ (𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑋) + 

0.05 ∗ (𝑋 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) 

Scenario A: No exposure effect 𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 

Scenario B: Exposure effect is instantaneous 𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 + 

0.1 ∗ 𝑋 

Scenario C: Exposure takes effect at time 1 If t=0,  

𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 

If t ≥1, 

(𝑌) = 0.05 + 0.1 ∗ 𝐶 + 

0.1 ∗ 𝑋 

Scenario D: Exposure effect is delayed by 1 time unit 𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 + 

0.1 ∗ (𝑋 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) 

Scenario E: Exposure effect is cumulative 𝑃(𝑌) = 0.05 + 0.1 ∗ 𝐶 + 

0.05 ∗ (𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑋) 
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Table 2: Risk estimated at time 3 (i.e., 90 days) using different CCW methods along with the true risks obtained from Monte Carlo 

simulation under four hypothetical interventions. 
Scenario Limited 

CCW  

All initiator 

CCW  

Hypothetical 

intervention 1: Start 

everyone at time 0 

Hypothetical intervention 2: 

Start everyone at time 1 

Hypothetical intervention 3: 

Feasible intervention(a)  

Hypothetical intervention 

4: Impossible 

intervention(b) 

Base scenario 56.6% 59.1% 67.4% 53.6% 56.6% 59.1% 

Scenario A: No 

exposure effect 

26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 

Scenario B: 

Exposure effect is 

instantaneous 

43.2% 43.2% 48.2% 41.8% 43.1% 43.2% 

Scenario C: 

Exposure takes 

effect at time 1 

41.8% 41.8% 41.8% 41.8% 41.8% 41.8% 

Scenario D: 

Exposure effect is 

delayed by 1 time 

unit 

36.1% 38.6% 41.8% 34.6% 36.1% 38.6% 

Scenario E: 

Exposure effect is 

cumulative 

40.3% 42.8% 48.4% 38.2% 40.4% 42.8% 

CCW=clone censor weighting. 

(a): An intervention allowing the population to follow its natural exposure distribution until time 1 and then starting everyone who has yet to start by time 1 to start at time 1. 

(b) An intervention allowing the population to follow its natural exposure distribution until time 1 and then starting everyone who has yet to initiate by time 1 at time 1, assigning 

those who are forced to start in this way a previous exposure history based on the distribution among those who naturally started by time 1. 
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Table 3: Table describing the situations where estimates will be unbiased when including individual individuals who initiate prior to 

the end of the period and whether you can ignore the distribution of treatment during the initiation period when interpreting results. 

Situation Can you include those who initiate prior to the 

end of the period in IPCW? 

Can you ignore the distribution of treatment 

during the period when interpreting results? 

No exposure effect Yes Yes 

Exposure effect begins after the end of the period 

(regardless of when people start) 

Yes Yes 

Exposure effect is instantaneous Yes No 

Exposure effect is delayed (i.e., there is a lag 

period) 

No No 

Exposure effect is cumulative or otherwise time-

varying 

No No 

IPCW = inverse probability of censoring weights. 
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Figure 4: A plot of the cumulative proportion of the population initiating by each date from day 

0 to day 30 in the intervention that corresponds to a CCW analysis of a “start by day 30” 

treatment regimen in various populations. Each line corresponds to a specific type of treatment 

distribution (brown = late start, green = early start, red = start times vary based on a normal 

distribution, blue = start times follow a uniform distribution). In every population, there is a 

sudden spike at day 30 when those who have yet to initiate start treatment under the hypothetical 

intervention. 
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