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Abstract
There has been a growing interest in off-policy evalu-
ation in the literature such as recommender systems
and personalized medicine. We have so far seen
significant progress in developing estimators aimed
at accurately estimating the effectiveness of counter-
factual policies based on biased logged data. How-
ever, there are many cases where those estimators
are used not only to evaluate the value of decision
making policies but also to search for the best hy-
perparameters from a large candidate space. This
work explores the latter hyperparameter optimiza-
tion (HPO) task for off-policy learning. We empiri-
cally show that naively applying an unbiased estima-
tor of the generalization performance as a surrogate
objective in HPO can cause an unexpected failure,
merely pursuing hyperparameters whose generaliza-
tion performance is greatly overestimated. We then
propose simple and computationally efficient cor-
rections to the typical HPO procedure to deal with
the aforementioned issues simultaneously. Empiri-
cal investigations demonstrate the effectiveness of
our proposed HPO algorithm in situations where the
typical procedure fails severely.

1 Introduction
Interactive decision making systems, such as recommender
systems, produce logged data valuable for optimizing future
decision making. For example, the logs of an e-commerce
recommender system record which product was recommended
and whether the users purchased it, giving the system de-
signer a rich logged dataset useful for evaluating and improv-
ing the decision making quality. This type of historical data
is often called logged bandit data and is one of the most
ubiquitous forms of data available in many real-life applica-
tions [Swaminathan and Joachims, 2015a; Su et al., 2020;
Kiyohara et al., 2021; Saito et al., 2024].

Off-Policy Learning (OPL) aims to train a new decision
making policy using only the logged bandit data. OPL
is useful in that it can improve the decision making sys-
tem continuously in a batch manner without requiring a
risky exploration. Owing to the ubiquity of logged ban-
dit data in the real-world, significant attention has been

paid to OPL of contextual bandits [Strehl et al., 2010;
Swaminathan and Joachims, 2015a; 2015b; Wang et al., 2017;
Kallus et al., 2021; Kiyohara et al., 2023; 2024].

The fundamental problem in OPL is that the outcome is only
observed for the action chosen by the system in the past. Thus,
estimating the generalization performance of a policy is non-
trivial because we cannot naively apply the empirical risk as
done in typical supervised machine learning (ML). Therefore,
a variety of estimators have been developed in the field of
off-policy evaluation (OPE), such as Inverse Propensity Score
(IPS) [Precup et al., 2000] and Doubly Robust (DR) [Dudı́k et
al., 2014]. Then, a feasible approach to OPL is to maximize
one such estimator as a surrogate objective using only the
logged data. Hyperparameter optimization (HPO) can also be
performed based on one of the estimators on a validation set
of the logged data [Paine et al., 2020].

In this study, we investigate how well automatic HPO al-
gorithms work for OPL using only the available logged data.
In particular, we empirically find two critical issues in HPO
that have yet to be investigated in the literature, but can have
a significant adverse impact on the effectiveness of the OPL
pipeline. The first issue is optimistic bias, which implies that
the hyperparameter values selected by an HPO procedure are
often the ones whose performance is greatly overestimated.
In HPO, we often use an unbiased estimator as a strategy to
optimize the generalization performance (primary objective)
using only validation data. The problem is that, when opti-
mizing the validation performance as a surrogate objective,
HPO can identify a set of hyperparameters whose validation
performance looks good but its generalization performance
is detrimental. As a result, the typical HPO procedure often
produces a highly sub-optimal solution, even with an unbiased
estimator of the generalization performance. The second issue
is unsafe behavior, which suggests that the typical HPO proce-
dure can output a solution, which underperforms the logging
(data collection) policy, even when we set the logging policy
as an initial solution. This is problematic because a logging
policy is often a baseline policy to improve upon in OPL. If
an HPO procedure aggravates the performance of the logging
policy, there is no need to implement it in practice.

After formulating the problem in Section 2, Section 3 pro-
vides clear empirical evidence of optimistic bias and unsafe
behavior. We observe these phenomena even when we use
an unbiased surrogate objective and a popular adaptive HPO
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algorithm. We also explain these observations theoretically,
demonstrating that ignoring the fact that HPO optimizes the
validation performance as a surrogate of the generalization
performance can lead to a worse regret of HPO algorithms.
More specifically, we identify that a heavy-tailed distribution
of overestimation bias during HPO can cause an unexpected
gap between the generalization and validation regret. These
empirical and theoretical observations result in our proposed
corrections to the typical HPO procedure, which we describe
in Section 4. Finally, Section 5 conducts comprehensive ex-
periments and demonstrates that our simple corrections can
deal with the aforementioned issues and improve the typical
procedure, particularly for cases where the typical procedure
becomes unsafe and underperforms the logging policy.1

2 Preliminaries
We use x ∈ X to denote a context vector and a ∈ A to de-
note a (discrete) action such as a playlist recommendation in
a music streaming service. Let r ∈ [0, rmax] denote a reward
variable, which is sampled identically and independently from
an unknown conditional distribution p(r|x, a). A decision
making policy is modeled as a distribution over the action
space, i.e., π : X → ∆(A) where ∆(·) is a probability sim-
plex. We can then represent the probability of action a being
taken by policy π given context x as π(a|x).

2.1 Off-Policy Evaluation and Learning
In OPE, we are given logged bandit data D :=
{(xi, ai, ri)}ni=1 consisting of n independent draws from the
logging policy π0. Using this logged dataset, OPE aims to
estimate the generalization performance of a given evaluation
policy πe, which is often different from π0:

V (πe) := E(x,a,r)∼p(x)πe(a|x)p(r|x,a)[r]. (1)

This is the ground-truth performance of the evaluation
policy when deployed in an environment of interest. OPE
uses an estimator V̂ to estimate V (πe) based only on D as
V (πe) ≈ V̂ (πe;D). A typical choice of V̂ is IPS:

V̂IPS(πe;D) :=
1

n

n∑
i=1

πe(ai |xi)

π0(ai |xi)
ri,

where πe(ai|xi)/π0(ai|xi) is called the importance weight.
Under some assumptions for identification such as full sup-
port (πe(a|x) > 0 → π0(a|x) > 0, ∀(x, a)), IPS pro-
vides an unbiased estimate of the generalization policy perfor-
mance, i.e., ED[V̂IPS(πe;D)] = V (πe). Beyond IPS, signifi-
cant efforts have been made to enable a more accurate OPE
from the logged data [Dudı́k et al., 2014; Wang et al., 2017;
Su et al., 2020; Saito et al., 2023].

In OPL, we aim to learn an optimal decision making policy
π∗ := arg max

π
V (π) from the logged data. As in supervised

ML, we cannot directly use the generalization policy perfor-
mance. Instead, we use its estimator as a surrogate:

π̂ = arg max
π∈Π

V̂ (π;D)− λ · R(π),

1Appendix B provides a comprehensive survey of related work.

Algorithm 1 Typical HPO with IPS as a surrogate (Baseline)
Input: A, Θ, T , Dtr, Dval

Output: θ̂
1: π∗ ← π0 , S0 ← ∅
2: for t = 1, 2, . . . , T do
3: θt ← A(θ | St−1) // sample candidate hyperparameters
4: πt ← π̂(· | θt,Dtr) // train a policy (lower-level)
5: if V̂IPS (πt;Dval) > V̂IPS (π

∗;Dval) then
6: θ̂ ← θt, π∗ ← πt // update the solution
7: end if
8: St ← St−1 ∪ {(θt, V̂IPS(πt;Dval))} // store the result
9: end for

where Π is a policy class, which might be a linear
class [Swaminathan and Joachims, 2015a] or deep neural
nets [Joachims et al., 2018]. R(·) regularizes the complexity
of the policy π, and λ(≥ 0) is a hyperparamter that controls
the effect of regularization.

2.2 Hyperparameter Optimization
OPE involves many hyperparameters to be properly tuned
from those defining the policy class Π to the regularization
parameter λ. In a typical HPO procedure for OPL, we first
split the original logged bandit data D into training (Dtr) and
validation (Dval) sets. Then, we wish to solve the following
bi-level optimization:

θ∗ := arg max
θ∈Θ

V
(
π̂(·; θ,Dtr)

)
, (2)

where Θ is a pre-defined hyperparamter search space.
π̂(·; θ,Dtr) is a policy parameterized by a set of hyperparame-
ters θ. The model parameter of π̂(·; θ,Dtr) is trained on the
training set Dtr (lower-level optimization). The problem here
is that the generalization performance of π̂(·; θ,Dtr) is un-
known and needs to be estimated. A feasible HPO procedure
based on an estimated policy performance is:

θ̂(Dval) := arg max
θ∈Θ

V̂
(
π̂(·; θ,Dtr);Dval

)
, (3)

where the generalization performance of π̂(·; θ,Dtr) is es-
timated by an estimator V̂ on the validation set Dval.2 A
common choice of V̂ is an unbiased estimator that satisfies
E[V̂ (π;Dval)] = V (π),∀π ∈ Π such as IPS. Then, one can
apply grid search, random search [Bergstra and Bengio, 2012],
or adaptive methods such as tree-structured Parzen estimator
(TPE) [Bergstra et al., 2011] to solve the higher-level optimiza-
tion in Eq. (3) efficiently. Algorithm 1 describes this typical
HPO procedure for OPL, which starts from the logging policy
π0 as its initial solution and adaptively samples promising hy-
perparameters via an arbitrary HPO algorithm (denoted here
as A) [Tang and Wiens, 2021].

3 Unexpected Failure in HPO for OPL
This section studies the effectiveness of HPO when applied to
OPL from both empirical and theoretical perspectives.

2For brevity of notation, we sometimes use V (θ) and V̂ (θ;D) to
denote the generalization and validation performances of the policy
induced by θ.



Figure 1: Empirical Evidence of Optimistic Bias and Unsafe Behavior in HPO for OPL (w/ TPE). The results are averaged over
25 runs with different seeds and then normalized by V (π0). The shaded regions indicate 95% confidence intervals.

3.1 Empirical Analysis
First, we conduct a synthetic experiment and provide empirical
evidence of surprising failure of HPO in OPL.

Synthetic Data.
Our empirical analysis is based on OpenBanditPipeline
(OBP)3, an open-source toolkit for OPE and OPL, which
includes synthetic data generation modules and a range of
estimators [Saito et al., 2021a]. We synthesize context vectors
x by sampling them from a 10-dimensional standard normal
distribution. We then set |A| = 10, where each action a ∈ A
is characterized by a 10-dimensional representation vector ea.
The reward function µ(x, a) := E[r |x, a] is defined as:

µ(x, a) = σ
(
x⊤Mea + η⊤x x+ η⊤a ea

)
, (4)

where σ(z) := 1/(1 + exp(−z)) is the sigmoid function. M ,
ηx, and ηa are parameter matrices or vectors for defining the
synthetic reward function. These parameters are sampled from
a uniform distribution with range [−1, 1]. After generating the
synthetic reward function, we sample binary rewards from a
Bernoulli distribution with parameter µ(x, a).

We then define the logging policy π0 by applying the soft-
max function to the reward function µ(x, a) as follows.

π0(a |x) =
exp(β0 · µ(x, a))∑

a′∈A exp(β0 · µ(x, a′))
, (5)

where β0 is an inverse temperature parameter to control the
optimality and entropy of the logging policy. A large positive
value of β0 leads to a near-deterministic and near-optimal
logging policy. When β0 = 0, π0 is uniform.

Policy Class and HPO Algorithms.
To train a new policy π from only the logged data, we first
estimate µ(x, a) by a supervised ML method, where the re-
sulting estimator is denoted as µ̂(x, a;Dtr). We then form a
stochastic policy by applying the softmax rule as:

π(a |x; θ,Dtr) =
exp(β · µ̂(x, a;Dtr))∑

a′∈A exp(β · µ̂(x, a′;Dtr))
, (6)

3https://github.com/st-tech/zr-obp

where β is an inverse temperature parameter to define a new
policy. θ is a set of hyperparameters, which consists of β,
supervised ML model to construct µ̂, and the hyperparameters
of µ̂. The hyperparameter search space Θ is summarized in
Table 1 in Appendix E.

As an HPO algorithm, we use TPE [Bergstra et al., 2011],
which is a popular adaptive method in the HPO commu-
nity [Akiba et al., 2019]. TPE has been shown to work well
for HPO of supervised ML, however, whether it also works
for OPL has never been thoroughly investigated.

Observations.
In this synthetic experiment, we set β0 ∈ {0, 3, 20} and
|Dtr| = |Dval| = 1, 000. The number of trials (T in Al-
gorithm 1) for HPO is set to 1,000.

Figure 1 shows the validation performance
(V̂IPS(π;Dval); what HPO algorithm maximizes from
the logged data) and the generalization performance (V (π);
the primary objective of OPL) during the HPO procedure. We
obtain the following key observations in this experiment.

1. Optimistic Bias: For all β0, TPE succeeds in maximizing
the validation performance, monotonically improving the
blue lines. However, there is a substantial gap between
validation and generalization, and the validation perfor-
mance becomes an extremely optimistic proxy of the
generalization performance. For example, when β0 = 3,
TPE does not bring any impact on the generalization per-
formance, although the validation performance is greatly
improved. This result suggests that implementing HPO
is indeed a waste of time and resources for this setting.

2. Unsafe Behavior: When β0 = 20 (where π0 is already
much better than uniform random), TPE outputs a solu-
tion that is significantly worse than the logging policy
with respect to the generalization performance. This is
problematic, as the solution at the final trial seems to
provide a substantial improvement over the logging pol-
icy with respect to the unbiased validation performance
(blue lines). In reality, we have no access to the general-
ization performance (red lines), making it impossible to



detect this performance degradation, possibly deploying
an unsafe policy in the field without even noticing it.

These observations suggest that optimizing an unbiased sur-
rogate objective is not an ideal strategy and is even harmful
in some cases regarding the optimization of the generaliza-
tion performance. Note that we obtain similar results when
random search (RS) is used as an HPO algorithm and DR is
used as an OPE estimator as reported in Appendix E. In par-
ticular, comparing RS with TPE in terms of the generalization
performance, we find that there are no particular differences
between the two algorithms for β0 = 0, 3. Even more sur-
prisingly, when β0 = 20, TPE is outperformed by RS, even if
TPE is better at optimizing the validation performance. These
results further suggest that merely optimizing an unbiased
surrogate objective is not a suitable approach for optimizing
the generalization performance in HPO of OPL.

3.2 Theoretical Analysis
Next, we investigate the mechanism causing the somewhat
surprising issues observed in the previous section.4 First, we
explain the phenomena from a statistical perspective.

Proposition 3.1. Given that V̂ is unbiased, we have the fol-
lowing inequalities.

ED
[
V̂
(
θ̂(D);D

)]
≥ V (θ∗) ≥ ED

[
V
(
θ̂(D)

)]
, (7)

where ED[·] takes expectation over every randomness in the
logged data D, and ED[V̂ (θ̂(D);D)] − ED[V (θ̂(D))] is the
amount of optimistic bias.

Note that, in Eq. (2), V (θ∗) is defined as the best generaliza-
tion performance we could achieve with HPO. Thus, the first
inequality in Eq. (7) suggests that the validation performance
of the HPO solution θ̂(Dval) is better than the best achievable
generalization performance in expectation, suggesting that the
performance estimation of the HPO solution is optimistic in
general. In addition, the second inequality in Eq. (7) implies
that the generalization performance of θ̂(Dval) is worse than
the best achievable generalization performance in expectation,
even though the validation performance of θ̂(Dval) is likely
to be better. As a result, we will often be disappointed with
the performance of the HPO solution θ̂ even with an unbiased
surrogate (validation) objective. Overall, Proposition 3.1 ex-
plains the substantial gap between the blue (E[V̂ (θ̂(Dval))])
and red (E[V (θ̂(Dval))]) lines observed in Figure 1.

Next, we analyze “regret” to understand what causes the
optimistic bias in Proposition 3.1 and how we can deal with
it. For this, we define two variants of regret, which measure
the difference between the validation or generalization perfor-
mances of the optimal hyperparameter and HPO solution.

rgen(T ;A,D) := V (θ∗)− V (θ̂T,A(D)), (8)

rval(T ;A,D) := V̂IPS(θ̂
∗;D)− V̂IPS(θ̂T,A(D);D), (9)

where θ∗ := arg max
θ∈Θ

V (θ) is the optimal hyperparame-

ter with respect to the generalization performance. θ̂∗ =

4Appendix C provides proofs omitted in the main text.

Figure 2: Distributions of Overestimation Bias (β0 = 3)

arg max
θ∈Θ

V̂IPS(θ;D) denotes the optimal hyperparameter with

respect to the validation performance, and θ̂T,A(D) is the so-
lution of Algorithm 1 given budget T and algorithm A. We
also define the overestimation bias for a specific hyperparam-
eter θ as τ(θ;D) = V̂IPS(θ;D)− V (θ). Then, the following
implies that a heavy-tailed distribution of overestimation
bias during HPO can produce an unexpected gap between
the generalization and validation regret.
Proposition 3.2. Given HPO algorithm A, budget T , and
logged data D, the generalization regret can be written as

rgen(T ;A,D) = rval(T ;A,D) + ∆τ(θ̂T,A(D), θ∗;D) + C,
(10)

where ∆τ(θ1, θ2;D) := τ(θ1;D) − τ(θ2;D), and C :=

V̂IPS(θ
∗;D)− V̂IPS(θ̂

∗;D).
Only the first two terms of the RHS in Eq. (10) depend

on the HPO solution θ̂T,A(D), and are thus critical for ana-
lyzing the HPO performance. The first term rval is the vali-
dation regret. Under some mild conditions, we can achieve
no-regret (rval(T ;A,D) = o(1)) with optimization methods
such as GP-UCB [Srinivas et al., 2010], as we can target
the validation performance directly using available data. The
second term ∆τ(θ̂T,A(D), θ∗;D) is the difference in the ex-
tent of overestimation between θ̂T,A(D) and θ∗. When the
extent of overestimation of θ̂T,A(D) is larger than that of
θ∗, ∆τ(θ̂T,A(D), θ∗;D) becomes large. Therefore, Proposi-
tion 3.2 suggests that the overestimation bias of θ̂T,A(D) can
exacerbate the generalization regret of HPO algorithms.
More specifically, if an HPO algorithm is likely to sample
many hyperparameters whose performance is overestimated
(V̂IPS(θ)−V (θ) > 0) and the overestimation bias has a heavy-
tailed distribution, the second term of Eq. (10) tends to become
large, so does the generalization regret rgen. Given this regret
analysis, we investigate the distributions of overestimation
bias observed in the empirical analysis in Figure 2. This figure
implies that TPE more frequently samples hyperparameters
incurring a large overestimation bias than RS. According to
Proposition 3.2, this is why we do not find the advantage of
TPE with respect to the generalization performance. RS has a
worse validation regret than TPE, while overestimation bias of
RS is not very problematic compared to TPE. As a result, RS
performs similarly to or slightly better than TPE in terms of



the generalization performance. In this way, the heavy-tailed
distribution of overestimation bias makes the generalization
regret of HPO algorithms (in particular TPE) worse than its
validation regret, resulting in optimistic bias and possibly un-
safe behavior.

4 How Should We Deal with the Issues?
In this section, we propose two simple corrections, namely (i)
conservative surrogate objective and (ii) adaptive imitation
regularization, to deal with the critical issues in HPO. We
also describe the resulting HPO procedure, which we call
Conservative and Imitation-Regularized HPO (CIR-HPO).

4.1 Conservative Surrogate Objective (CSO)
First, we address the heavy-tailed distribution of overestima-
tion bias (V̂IPS(π)− V (π)) during HPO, as suggested in Fig-
ure 2. Proposition 3.2 implies that the overestimation of the
value of hyperparameters sampled during HPO can exacer-
bate the generalization regret of an HPO algorithm. To deal
with this issue, we introduce conservative surrogate objective,
which penalizes the validation performance of hyperparame-
ters whose performance has a large uncertainty to avoid the
issue of overestimation bias during HPO. Specifically, we pro-
pose to use a high probability lower bound of the generaliza-
tion performance (denoted as V̂−(·)) as an alternative surrogate
objective, which is given as: P

(
V (π) ≥ V̂−(π;D, δ)

)
≥ 1−δ

where δ ∈ (0, 1) specifies a confidence level.
A prevalent strategy to construct V̂−(·) in OPE is to ap-

ply a concentration inequality such as Hoeffding and Bern-
stein [Thomas et al., 2015b; 2015a]. A problem is that these
inequalities are often overly conservative as they make no
assumptions about underlying distribution. Thus, we use an
alternative strategy to construct V̂−(·) based on the Student’s
t-distribution as follows.

V̂ t
−(π;D, δ) := V̂IPS(π;D)− t1−δ,ν

√
Vn(V̂IPS(π;D))

n− 1
,

(11)

where t1−δ,ν is the T-value given confidence level δ and de-
grees of freedom ν.

The upside of Eq. (11) is that it produces a tighter lower
bound than aforementioned concentration inequalities. This is
because Eq. (11) introduces the additional assumption that the
mean of importance weighted rewards (π/π0)r is normally
distributed. This assumption is reasonable with growing data
sizes. However, (π/π0)r often follows a distribution with
heavy upper tails, which may make the assumption invalid in
a small sample setting. Nonetheless, Appendix E empirically
verifies that Eq. (11) is reasonably tight compared with other
popular concentration inequalities.

4.2 Adaptive Imitation Regularization (AIR)
The second technique we propose is adaptive imitation regu-
larization, which tackles the unsafe behavior of the typical pro-
cedure. The issue of unsafe behavior suggests that, if logging
policy π0 is better than uniform random or is near-optimal,
Algorithm 1 can produce a solution whose performance is

Algorithm 2 Conservative and Imitation-Regularized HPO
Input: A, δ, γ, Θ, T , π0, Dtr, Dval

Output: θ̂
1: S0 ← ∅
2: for t = 1, 2, . . . , T do
3: θt ← A(θ | St−1) // sample candidate hyperparameters
4: π̂t ← π̂(· | θt,Dtr) // train a policy (lower-level)
5: πt ← (1− αt) · π̂t + αt · π0 // regularization (Eq. (14))
6: if V̂ t

−(πt;Dval, δ) ≥ V̂ t
−(π

∗;Dval, δ) then
7: θ̂ ← θt, π∗ ← πt // update the solution
8: end if
9: St ← St−1 ∪ {(θt, V̂ t

−(πt;Dval, δ))} // store the result
10: end for

much worse than that of the logging policy. Avoiding this
problem is non-trivial, because we do not have access to the
generalization performance and do not know the optimality
of the logging policy in practice. For example, simply setting
π0 as an initial solution does not solve the issue at all, as sug-
gested in Section 3.1. An instant idea might be to imitate the
logging policy to some extent:

πt(a|x;α, θt,Dtr) = (1− α)π̂(a|x; θt,Dtr) + απ0(a|x),
(12)

where θt is a set of hyperparameters sampled at the t-th trial.
α (∈ [0, 1]) is a regularization parameter, which mixes the
policy induced by θt and π0 to construct a policy to evaluate. A
large value of α makes πt closer to the logging policy, possibly
avoiding the unsafe behavior. However, if the logging policy
is detrimental, we should use a small α so that we can avoid an
unnecessary performance degradation. So, a natural question
to ask here is: how should we set the regularization parameter
α? Again, this problem is non-trivial, as the optimality of the
logging policy is unknown when performing HPO.

To overcome this difficulty in correctly setting α, we pro-
pose adaptively tuning this parameter over the course of HPO.
Based on the previous discussion, we should apply a strong
regularization if π0 performs well, otherwise we should not
imitate π0. A key idea here is that we can reason about the
optimality of the logging policy by comparing it with solutions
sampled during HPO, i.e., {π̂(a|x; θt,Dtr)}Tt=1. If most of
the sampled solutions underperform π0, we can infer that the
logging policy is well-performing. To make a valid compari-
son between the sampled solutions and the logging policy, we
apply a Student’s t-test based on the following T-value.

T (π1, π2) :=
|∆V̂IPS (π1, π2) |√

V̂n(∆V̂IPS (π1, π2))/(n− 1)
.

where ∆V̂IPS (π1, π2) := V̂IPS(π1)− V̂IPS(π2) is the perfor-
mance difference between the two policies estimated by IPS.
Given a null hypothesis (∆V̂IPS (π1, π2) = 0) and a normality
assumption, T (π1, π2) follows a t-distribution with ν degrees
of freedom. We then calculate the optimality score of π0 at



Figure 3: Comparing CIR-HPO (our proposal) and Baseline by their generalization performance. The results are averaged over
25 runs with different seeds and then normalized by V (π0). The shaded regions indicate 95% confidence intervals.

Figure 4: Behavior of adaptive regularization parameter (αt)
of CIR-HPO with varying values of β0 ∈ {−3, 0, 3, 10, 20}.

the t-th trial as follows.

st =


1 (T (π0, πt) ≥ t1−δ/2,ν and ∆V̂IPS(π0, πt) ≥ 0)

−1 (T (π0, πt) ≥ t1−δ/2,ν and ∆V̂IPS(π0, πt) < 0)

0 (otherwise, i.e., T (π0, πt) < t1−δ/2,ν)

(13)

st indicates whether π0 is better or worse than πt in a sig-
nificant level. If π0 is better than πt, then st = 1. Instead,
st = −1 if π0 is tested to be worse. If there is no significant
difference between π0 and πt, the score is zero.

Using the sequence of scores up to the t-th trial, i.e.,
{st′}tt′=1, we define adaptive regularization parameter as:

αt := αinit + (1− αinit) ·
(

t

T

)γ

·
∑t

t′=1 st′

t
(14)

where αinit ∈ [0, 1] is an initial regularization parameter and
γ (> 0) is a scheduling parameter for adaptive regularization.
For example, suppose that st = 1,∀t = 1, 2, . . . , T , meaning
that π0 is always better than πt in a significant level. Then,
following Eq. (14), αT = 1 and the HPO procedure outputs
π0, because it should be near-optimal. On the other hand, if
st = −1,∀t = 1, 2, . . . , T , meaning that π0 is always worse
than πt in a significant level, then αT = 0 and the HPO
procedure does not imitate the logging policy at all, because it
should be a bad policy.

4.3 The CIR-HPO Algorithm
Algorithm 2 describes the CIR-HPO algorithm, which lever-
ages conservative surrogate objective (lines 6 and 9) and adap-
tive imitation regularization (line 5). δ and γ are meta hyper-
parameters. δ controls how conservative we would like to be
during HPO, and γ controls the scheduling of the adaptive
regularization. In Section 5, we show that these configurations
have some impact on the behavior of CIR-HPO, but we also
demonstrate that the default values (δ = 0.1 and γ = 0.01)
work reasonably well in a range of experiment settings. The
other inputs are the same as those of Algorithm 1. Note that
our algorithm is easy to implement with a few additional lines
of code and there is no additional computational overhead
compared to the typical procedure in Algorithm 1.

5 Empirical Evaluation
This section empirically compares Baseline (Algorithm 1) and
CIR-HPO (Algorithm 2), employing the same synthetic data
and policy class as in Section 3.1. Note that we compare CIR-
HPO against only Baseline because there is no other method
proposed for HPO using logged bandit data (comprehensive
summary of related work can be found in Appendix B).

5.1 Baseline vs CIR-HPO
Figure 3 compares the performance of Baseline and CIR-
HPO with varying logging policies (β0 ∈ {0, 3, 20}). First,
when β0 = 0 where the logging policy is uniform random,
both Baseline and CIR-HPO work reasonably well and suc-
ceed in finding a set of hyperparameters that leads to a policy
much better than the logging policy. What is notable for this
setting is that CIR-HPO is inefficient and slow to converge
compared to Baseline due to adaptive imitation regulariza-
tion, even though it reaches far above the black horizontal line
(V (π0)). At the initial stage of HPO, we do not know how
close the logging policy is to the optimal policy. Therefore,
the proposed procedure gradually learns the optimality of the
logging policy, potentially leading to a slower convergence if
the logging policy is far from optimal (such as uniform ran-
dom). Next, when β0 = 3 where the logging policy is better
than uniform random, but is not close to the optimal, both
Baseline and CIR-HPO slightly improve the logging policy.



However, the confidence intervals indicate that CIR-HPO is
much more stable than Baseline. In particular, Baseline is
much more likely to underperform the logging policy, even
though it outperforms the logging policy on average. Finally,
when β0 = 20 where the logging policy is near-optimal, Base-
line outputs a solution that is substantially worse than the
logging policy, even though it starts from the logging policy
as its initial solution. In contrast, CIR-HPO learns that the
logging policy is near-optimal during HPO and strengthens
the imitation regularization adaptively. As a result, it prevents
the solution from being significantly worse than the (already
near-optimal) logging policy, which is compelling, because
we do not know the optimality of the logging policy in ad-
vance. Figure 4 illustrates the behavior of adaptive imitation
regularization, which suggests that it succeeds in controlling
the strength of regularization depending on the optimality of
the logging policy.

Figure 5: Sensitivity of the generalization performance of
CIR-HPO regarding the choice of δ.

Figure 6: Sensitivity of the generalization performance of
CIR-HPO regarding the choice of γ.

5.2 Choice of Meta Hyperparameters
Next, we evaluate the sensitivity of CIR-HPO to the choice
of its meta hyperparameters. Figure 5 shows that the effec-
tiveness of CIR-HPO with different values of δ. The result
demonstrates that there is no significant difference among
the three values, suggesting that we do not have to care too
much about which value to use for δ. In addition, Figure 6
evaluates different values of γ, which controls the scheduling

Figure 7: Ablation study of CIR-HPO (β0 = 20).

of adaptive imitation regularization. This result implies that,
for a sub-optimal logging policy (β0 = 0), the choice of γ
has no significant effect on the behavior of CIR-HPO. For a
near-optimal logging policy (β0 = 20), however, a smaller γ
leads to a faster convergence, although all values achieve the
same level of performance in the final stage.

5.3 Ablation Study
We also conduct an ablation study to evaluate the contribution
of conservative surrogate objective (CSO) and adaptive
imitation regularization (AIR) to the effectiveness of CIR-
HPO. To this end, we compare CIR-HPO to CIR-HPO (w/o
CSO) and CIR-HPO (w/o AIR) in Figure 7. The result
demonstrates that both CSO and AIR clearly contribute to the
performance of CIR-HPO, while AIR has a more appealing
effect (CSO and AIR provide 1.6% and 23.6% improvements,
respectively, in terms of the final generalization performance).

5.4 A Real-World Experiment
In addition to the synthetic experiments, we apply CIR-HPO
to the Open Bandit Dataset [Saito et al., 2021a], a publicly
available logged bandit dataset collected on a large-scale fash-
ion e-commerce platform. The results suggest that CIR-HPO
leads to a better policy compared to the Baseline procedure in
terms of the generalization performance, providing a further ar-
gument regarding its real-world applicability. The experiment
detail and results can be found in Appendix A.

6 Conclusion
This work studies the effectiveness of the typical HPO pro-
cedure in the OPL setup from both empirical and theoretical
perspectives and found that it can fail and even be harmful.
In particular, we investigated two surprising issues, namely
optimistic bias and unsafe behavior, and showed that a heavy-
tailed distribution of overestimation can cause an unexpected
gap between validation and generalization. In response, we
made two extremely simple corrections to the typical HPO
procedure, resulting in the CIR-HPO algorithm, to deal with
the issues. Extensive experiments demonstrated that CIR-HPO
can be advantageous, particularly when the conventional pro-
cedure collapses and causes a significant and undetectable
deterioration in the generalization performance.
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Table 1: Test policy values of the policies tuned by Baseline
and CIR-HPO in the real-world experiment.

IPS DR
Baseline 5.199 ×10−3 5.128 ×10−3

CIR-HPO (ours) 5.214 ×10−3 5.303 ×10−3

A A Real-World Experiment
A.1 Dataset.
To assess the real-world applicability of our CIR-HPO, here
we evaluate it on the Open Bandit Dataset (OBD)5 [Saito et al.,
2021a], a publicly available logged bandit dataset collected on
a large-scale fashion e-commerce platform. We use 100,000
observations that are randomly sub-sampled from the “Men’s”
campaign data of OBD. The dataset contains user contexts x,
fashion items to recommend as action a ∈ Awhere |A| = 240,
and resulting clicks as reward r ∈ {0, 1}.

The dataset consists of two sets of logged bandit data col-
lected by two different policies (uniform random and Thomp-
son sampling) during an A/B test of these policies. We regard
Thompson sampling as a logging policy and perform HPO
of a policy class defined in Section 3.1. We then approxi-
mate the ground-truth performance of the tuned policies on
the test dataset collected by uniform random. Note that we use
the same policy class defined in Section 3.1 and the default
meta-parameters of CIR-HPO described in Section 5. All the
experiments were conducted on MacBook Pro (2.4 GHz Intel
Core i9, 64 GB).

A.2 Result.
Table 1 reports the results (averaged over 5 runs with different
random seeds) of the real-world experiment. We compare
Baseline and CIR-HPO (ours) combined with IPS and DR as
OPE estimators to provide a surrogate objective (i.e., V̂ (θ;D)).
The results suggest that, for both estimators, CIR-HPO out-
performs Baseline in terms of the test policy value. This
observation provides further arguments for the applicability of
our CIR-HPO.

B Related Work
Off-Policy Evaluation and Learning. The basis of our
study lies in OPE, which is interested in accurately estimat-
ing the generalization policy performance from logged bandit
data. This has been one of the most fundamental problems
in contextual bandits and RL, with applications ranging from
recommender systems [Saito and Joachims, 2021; McInerney
et al., 2020; Kiyohara et al., 2022; Saito and Joachims, 2022b;
Saito et al., 2020; Saito, 2020; Saito and Nomura, 2022; Saito
et al., 2021b] to personalized medicine [Tang and Wiens, 2021;
Kallus et al., 2021; Saito and Joachims, 2022a]. The most
common solution in OPE is to use IPS weighting. IPS pro-
vides an unbiased estimate of the policy performance. How-
ever, there is a canonical criticism that IPS often suffers from
a high variance due to a low overlap [Dudı́k et al., 2014;
Wang et al., 2017]. Thus, alternative estimators have been

5https://research.zozo.com/data.html

explored to reduce the variance without introducing large bias.
For example, Self-Normalized IPS (SNIPS) [Swaminathan
and Joachims, 2015b] aims to reduce the variance of IPS as
follows.

V̂SNIPS(πe;D) :=
1∑n

i=1
πe(ai|xi)
π0(ai|xi)

n∑
i=1

πe(ai|xi)

π0(ai|xi)
ri.

This estimator normalizes the IPS estimate by the sum of the
importance weights (

∑n
i=1

πe(ai|xi)
π0(ai|xi)

) to gain stability. Moving
forward, DR leverages a control variate to provide an efficient
OPE. The DR estimator is defined as follows.

V̂DR(πe;D, µ̂) :=
1

n

n∑
i=1

µ̂(xi, πe) +
πe(ai|xi)

π0(ai|xi)
(ri − µ̂(xi, ai)),

where µ̂(x, πe) estimates Eπe
[µ(x, a)]. This estimator is still

unbiased and consistent if either the importance weight or
the reward estimator is true or consistent. In addition, DR is
efficient in that it reaches the lowest achievable asymptotic
variance if the reward estimator is correctly specified. There
have also been much efforts to further improve DR in a fi-
nite sample setting such as Switch [Wang et al., 2017], More
Robust Doubly Robust [Farajtabar et al., 2018], and Shrink-
age [Su et al., 2020].

Instead, OPL is the task of improving the decision mak-
ing policies using only logged bandit data collected from a
logging policy [Swaminathan and Joachims, 2015a]. The
optimal policy maximizes the generalization performance,
i.e., π∗ := arg max

π
V (π). However, this problem is in-

tractable because we cannot know the generalization perfor-
mance. This raises the need for applying an estimator for its
careful approximation, as done in the empirical risk minimiza-
tion of supervised ML. A typical estimator choice for OPL is
IPS [Swaminathan and Joachims, 2015a; Ma et al., 2019;
Joachims et al., 2018] or its variants [Swaminathan and
Joachims, 2015b]. A problem is that the variance issue arises
here again. Thus, research has been centered around adding
regularization to deal with the variance issue during policy
training. The fundamental method is variance regularization,
which penalizes the policy whose variance in the performance
estimation is high [Swaminathan and Joachims, 2015a]. Other
regularization methods include imitation regularization [Ma
et al., 2019] and behavior regularization [Wu et al., 2019;
Kumar et al., 2019]. [Jeunen and Goethals, 2021] explore
the optimistic bias in OPL, and propose a pessimistic reward
modeling for OPL based on a Bayesian uncertainty estima-
tion. Instead, we focus on investigating and alleviating the
optimistic bias in HPO and empirically illustrate the unsafe
behavior, which is specific to our HPO setup.

Off-Policy Selection. Off-Policy Selection (OPS) is a sub-
field of OPE and OPL and is closely related to our HPO setting.
This is the task of identifying the best policy out of a given
finite set of candidate policies using only logged bandit data.
We can view this selection problem as a special case of OPL,
where the policy class Π is finite. [Kuzborskij et al., 2021]
study OPS in the contextual bandit setting. They develop a con-
fident OPS procedure, which is based on an Efron-Stein high



probability lower bound of the policy performance derived
from SNIPS. [Yang et al., 2020] study OPS in RL and propose
BayesDICE for estimating the brief over the performance of
the candidate policies, which is useful for the selection task.
[Doroudi et al., 2018] theoretically characterize a failure of
IPS in OPS. Specifically, [Doroudi et al., 2018] show that
naively applying IPS to OPS can result in an unfair selection
in the sense that the procedure can select the worst of the two
candidate policies more often than not. [Paine et al., 2020]
and [Fu et al., 2020] conduct empirical studies on OPS of RL
polices for several benchmark control tasks. They identify
Fitted Q Evaluation as a useful strategy for OPS in RL. [Tang
and Wiens, 2021] also provide an empirical study on OPS of
RL policies and propose to combine multiple OPE estimators
for an accurate and scalable OPS.

Although these studies on OPS are closely related, our con-
tributions are unique in several ways. First, we focus on HPO,
not OPS, which adaptively finds better hyperparameter solu-
tions given a certain budget. By paying attention to HPO,
our empirical analysis succeeded in finding that the TPE algo-
rithm, a popular adaptive method in HPO, cannot improve the
generalization performance of OPL. This is our unique finding,
not captured by previous studies targeting only OPS. Second,
we provide a theoretical analysis about the optimistic bias and
the gap in generalization and validation regret, explaining the
empirical observations. Although [Paine et al., 2020] point out
the overestimation bias in the context of OPS, they provide no
theoretical explanation. Finally, we propose CIR-HPO based
on our empirical observations and analysis. This procedure is
specific to the adaptive optimization process and is non-trivial
given any existing studies on OPS.

Hyperparameter Optimization (HPO). HPO is a critical
element for the success of a range of machine learning al-
gorithms and tasks [Feurer and Hutter, 2019]. For instance,
hyperparameter configurations can entirely change the per-
formance of deep neural networks [Dacrema et al., 2019;
Henderson et al., 2018; Lucic et al., 2018]. A typical for-
mulation regards HPO as a black-box optimization problem,
where the input is a set of hyperparameters, and the output is
a validation performance (an accessible proxy of the general-
ization performance). Among many black-box optimization
methods, Bayesian optimization (BO) [Brochu et al., 2010;
Shahriari et al., 2015; Frazier, 2018], such as Gaussian process
bandit algorithms [Srinivas et al., 2010] and tree-structured
Parzen estimator (TPE) [Bergstra et al., 2011] have gained
particular attention. These methods sequentially optimize the
hyperparameters of a prediction model by leveraging the pre-
vious evaluation results to sample the next set of hyperparame-
ters to evaluate. More specifically, previous evaluation results
are used to train a surrogate to model the relationship between
hyperparameters and the resulting prediction accuracy. Then,
the algorithms balance the exploration and exploitation based
on an acquisition function, such as expected improvement and
upper confidence bound. Because of the sample efficiency,
BO demonstrates a state-of-the-art performance with a limited
budget [Turner et al., 2021]. It should be noted that, while
this study focuses on BO, our discussion can be applied to
other optimization methods such as CMA-ES [Hansen, 2016;

Nomura and Shibata, 2024], whose efficiency is verified in
multiple HPO tasks [Loshchilov and Hutter, 2016; Nomura et
al., 2021].

A critical convention in HPO research is to evaluate the
performance and efficiency of algorithms based solely on the
validation performance. This implies that there is an implicit
and often neglected assumption that optimizing the validation
performance is a reasonable strategy for optimizing the gen-
eralization performance (primary objective). However, it is
unclear whether optimizing the validation performance really
improves the generalization performance. In fact, Section 3
sheds light on the fact that ignoring this assumption in OPL
can lead to an unexpected failure and a substantial validation-
generalization gap. Our theoretical and empirical illustrations
might also contribute to a broader HPO community, as there
are few studies verifying whether naively setting the validation
performance as a surrogate objective is reasonable, given the
goal of optimizing the generalization performance.

C Omitted Proofs
This section provides proofs omitted in the main text.

C.1 Proof of Proposition 3.1
Proof. Given that θ∗ and θ̂ are defined in Eq. (2) and Eq. (3),
we have that

E
[
V̂ (π̂(· | ·, θ̂,Dtr);Dval)

]
≥ E

[
V̂ (π̂(· | ·, θ∗,Dtr);Dval)

]
= V (π̂(· | ·, θ∗,Dtr)) ,

where the last equation follows, as θ∗ does not depend on
Dval. Similarly, the right inequality of Eq. (7) comes from
the fact that θ∗ is optimal in terms of the true generalization
policy performance.

C.2 Proof of Proposition 3.2
Proof. Our derivation is inspired by the regret analysis pro-
vided in [Nomura and Saito, 2021]. Given the notations intro-
duced in Section 3.2, it follows that

rgen(T ;A,D)
= V (θ∗)− V (θ̂T,A(D))
= V (θ∗)− V̂IPS(θ

∗;D)︸ ︷︷ ︸
=−τ(θ∗;D)

+V̂IPS(θ
∗;D)− V (θ̂T,A(D))

= −τ(θ∗;D) + (−V (θ̂T,A(D)) + V̂IPS(θ̂T,A(D);D))︸ ︷︷ ︸
=τ(θ̂T,A(D);D)

− V̂IPS(θ̂T,A(D);D) + V̂IPS(θ
∗;D)

= ∆τ(θ̂T,A(D), θ∗) + (V̂IPS(θ̂
∗;D)− V̂IPS(θ̂T,A(D);D))︸ ︷︷ ︸

=rval(T ;A,D)

+ (V̂IPS(θ
∗;D)− V̂IPS(θ̂

∗;D))︸ ︷︷ ︸
=C

= rval(T ;A,D) + ∆τ(θ̂T,A(D), θ∗;D) + C.



D Additional Theoretical Result
We suppose V̂ (θ) has the following form:

V̂ (θ) =
1

n

n∑
i=1

v(ai, xi; θ).

Note that this form is general and encompasses common esti-
mators. For example, we can obtain IPS estimator by setting
v(ai, xi; θ) = 1

n

∑n
i=1

πe(ai|xi;θ)
π0(ai|xi)

ri. The following inequal-

ity suggests that the optimistic bias V̂
(
θ̂(D);D

)
− V (θ∗)

decreases at the order O (1/
√
n) as the data increases.

Proposition D.1. Suppose |Θ| <∞ and 0 ≤ v(a, x, θ) ≤ 1
for all a ∈ A, x ∈ X , θ ∈ Θ. For δ ∈ (0, 1), the following
inequality holds with probability as least 1− δ:

V̂
(
θ̂(D);D

)
− V (θ∗) ≤

√
1

2n
log
|Θ|
δ
∈ O

(
1√
n

)
.

Proof. We first decompose the optimistic bias as

V̂
(
θ̂(D);D

)
− V (θ∗)

= V̂
(
θ̂(D);D

)
− V (θ̂(D)) + V (θ̂(D))− V (θ∗)︸ ︷︷ ︸

≤0

≤ V̂
(
θ̂(D);D

)
− V (θ̂(D)).

Hence, for ϵ > 0,

P
(
V̂
(
θ̂(D);D

)
− V (θ∗) ≥ ϵ

)
≤ P

(
V̂
(
θ̂(D);D

)
− V (θ̂(D)) ≥ ϵ

)
≤ P

(⋃
θ∈Θ

{
V̂
(
θ(D);D

)
− V (θ(D)) ≥ ϵ

})
≤
∑
θ∈Θ

P
(
V̂
(
θ(D);D

)
− V (θ(D)) ≥ ϵ

)
≤ |Θ|e−2nϵ2 .

We used the union bound and Hoeffding’s inequality6. Putting
the RHS as δ and solving it for ϵ completes the proof.

E Supplemental Simulations
This section empirically evaluates the confidence lower bound
of OPE based on concentration inequalities (Hoeffding and
Bernstein) and a Student’s t-test. We follow Section 3 to gen-
erate synthetic bandit data. We vary the value of β0 within the
range of {0, 3, 20}, and the number of validation data |Dval|
within the range of {400, 800, 1600, 3200, 6400, 12800}. We
also follow Section 3 to train the evaluation policy πe. Specif-
ically, we first train µ̂ using logistic regression and form a
stochastic policy based on Eq. (6) with β = 10.

We use IPS and estimate a high probability lower bound
of V (πe) based on Hoeffding, Bernstein, and t-Test. Given a

6By replacing Hoeffding’s inequality with Chebyshev’s inequality,
we can obtain a weaker result even if the boundedness of v(a, x, θ)
is not assumed.

confidence level δ ∈ (0, 1), the estimated lower bounds are
given as V̂IPS(πe;Dval)− f(δ,Dval) where

Hoeffding :f(δ,Dval) = wmax

√
2 log(2/δ)

n
,

Bernstein :f(δ,Dval) =

√
2 log(2/δ)V̂(V̂IPS(πe;Dval))

n− 1

+
7wmax log(2/δ)

3(n− 1)
,

t-Test :f(δ,Dval) = t1−δ,ν

√
V̂(V̂IPS(πe;Dval))

n− 1
.

Note that n = |Dval| and wmax :=
sup(x,a)∈X×A πe(a|x)/πb(a|x). t1−δ,ν is the 100(1 − δ)
percentile of the Student’s t distribution with ν degrees of
freedom. The lower bound given by the t-test is based on the
assumption that (πe(a|x)/π0(a|x))r is normally distributed.

Figure 10 shows the estimated lower bounds with varying
β and sample size, and with a fixed δ = 0.05. The black
horizontal line represents the ground-truth policy value V (πe).
We observe that the lower bound given by t-Test is the tightest,
while those by Hoeffding and Bernstein are invisible when
β0 = 20, as they are too loose. Bernstein is always tighter than
Hoeffding, but t-Test is even better, particularly when β =
3, 20 where the logging policy is near-deterministic (wmax is
large).

Next, Figure 11 shows how frequently the estimated lower
bounds fail to lower bound V (πe). Here, we say that a lower
bound fails, if V̂IPS(πe;Dval) − f(δ,Dval) ≥ V (πe). The
black horizontal line represents the allowed error rate δ. We
observe that, in all scenarios, the bounds given by Hoeffding
and Bernstein have an error rate of 0, even if they are allowed
to produce an error rate of δ, meaning that these lower bounds
are overly conservative. In contrast, the lower bound given
by t-Test makes some errors, but the error rate is around δ.
Although the normality assumption might fail in OPE with
small sample sizes, we empirically verify that t-Test produces
a lower bound tighter than those of Hoeffding and Bernstein,
and its error rate is around the allowed value.



Figure 8: Empirical Evidence of Optimistic Bias and Unsafe Behavior in HPO for OPL (w/ Random Search and the IPS
estimator). The results are averaged over 25 runs with different seeds and then normalized by V (π0). The shaded regions
indicate 95% confidence intervals.

Figure 9: Empirical Evidence of Optimistic Bias and Unsafe Behavior in HPO for OPL (w/ TPE and the DR estimator). The
results are averaged over 25 runs with different seeds and then normalized by V (π0). The shaded regions indicate 95% confidence
intervals.

β0 = 0 β0 = 3 β0 = 20

Figure 10: High Probability Lower Bound



β0 = 0 β0 = 3 β0 = 20

Figure 11: Empirical Error Rate

Table 2: Hyperparameter search space (Θ)
Hyperparameters Search Spaces
β [0.01, 100]

µ̂ {‘LR’, ‘RF’}

Machine Learning Models Search Spaces

Logistic Regression (LR)
C ∈ [10−3, 103]

l1 ratio ∈ {0.1, 0.2, . . . , 0.9}

Random Forest (RF)
max depth ∈ {2, 3, . . . , 32}
min samples split ∈ {2, 3, . . . , 32}
max samples ∈ {0.1, 0.2, . . . , 0.9}

Note: The names of the hyperparameters correspond to those specified by the scikit-learn package. For other hyperparameters, we use
‘sklearn.ensemble.RandomForectClassifier(n estimators=10)’ and ‘sklearn.linear model.LogisticRegression(max iter=1000,
penalty=”elasticnet”, solver=”saga”)’.

Table 3: Generalization performance and optimality of π0 with varying β0

β0 = −3 β0 = 0 β0 = 3 β0 = 10 β0 = 20

V (π0) 0.412 0.501 0.580 0.677 0.719
V (π0)/V (π∗) 0.554 0.673 0.831 0.910 0.966

Note: V (π∗) is the best achievable performance in our data generating process. V (π0)/V (π∗) indicates the optimality of logging policy π0.


