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Disorder, traditionally believed to hinder the propagation of waves. has recently been shown to prompt
the occurrence of topological phase transitions. For example, when disorder strength continuously increases
and surpasses certain critical value, a phase transition from topologically trivial to nontrivial insulating phases
occurs. However, in the parameter domain of the nontrivial phase, whether there exists a finer phase diagram that
can be further classified by different disorder strengths is still unclear. Here we present a successive topological
phase transition driven by the disorder strength in a higher-order topological insulator with long-range couplings.
As the strength of the disorder gradually increases, the real-space topological invariant of the system undergoes
a consecutive change from 0 to 4, accompanied by the stepped increase in the number of boundary-localized
corner states. Our work opens an avenue for utilizing disorder to induce phase transitions among different
higher-order topological insulators.

Introduction.— Disorder, widely existed in solid-state ma-
terials, plays a pivotal role in the occurrence of many quan-
tum phenomena such as the branch flow of waves [1–3] and
the Anderson localization (AL) [4–6]. Concretely, when AL
occurs, the diffusive motion of electrons in solids is broken
down by disorders, leading to the localization of electronic
wavefunctions [7]. The AL is not unique in electronic ma-
terials but has also been observed in many classical waves
such as photonics [8, 9] and acoustics [10, 11]. Interestingly,
waves may behave differently to disorder strengths in differ-
ent dimensions [12]. For example, in one dimension, an ar-
bitrary weak disorder can trigger the occurrence of AL [7]
while AL can only happen with a strong disorder in higher
dimensions [12]. The study of the interplay between disor-
der and waves has significantly deepened our understanding
of condensed matter physics and stimulated the development
of many other physical branches such as high-temperature su-
perconductors [13] and advanced lasering technology [14].

In the meantime, topological phases of matter have been
extensively studied in the past few decades, well-known for
their unique robustness against disorders [15–18]. Even with
topological bandgap protections, under sufficiently strong dis-
orders, the relevant topological phases can be broken and all
states are localized [19]. However, counterintuitively, a re-
verse transition may occur as an increasing weak disorder can
drive a phase transition from a topologically trivial phase to a
non-trivial phase, denoted as topological Anderson insulators
(TAIs) [20, 21]. This phenomenon has been widely studied
in one-dimensional (1D) systems [22–27] and has lately been
proved in many wave platforms, such as photonics [28–30],
acoustics [22] and cold atomic wires [23]. Recently, TAIs
have been found in two dimensions, for example, Shunqing
Shen et al [31], prove that in two dimensions, disorder can
drive a higher-order topological phase (HOTP) transition from
a trivial phase to a quantized quadrupole Anderson insula-
tor [32, 33]. As ensured by the higher-order bulk-boundary
correspondence, under the open boundary condition, waves
are found to be localized at 0D corners. HOTPs have recently
been discovered as a family of topological phases that pos-

sess lower-dimensional boundary states [34–36]. However, it
is still unclear whether such nontrivial HOTPs can be further
classified by different disorder strengths and whether certain
disorders can induce more corner states at one corner struc-
ture. Answering these questions will not only benefit to enrich
the family of disordered HOTPs but also promote the poten-
tial application of lower-dimensional disordered topological
devices.

In this work, we present a successive topological phase
transition as the disorder increases continuously in a 2D
HOTP. By introducing long-range hopping terms and four
different intracell hopping terms between lattice sites in the
2D Benalcazar-Bernevig-Hughes (BBH) model [34], we con-
struct the chiral symmetric higher-order topological Anderson
insulators (HOTAIs) with sublattices that respond differently
to the disorder strength. When disorders are introduced ho-
mogeneously in certain hopping terms of the lattice, the criti-
cal values for the HOTAI phase transition are distinct for dif-
ferent sublattices. Therefore, when such homogeneous dis-
order strength in the lattice continuously increases, the topo-
logical phase transition of each sublattice consecutively oc-
curs. We prove this successive topological phase transition by
directly calculating the real-space topological invariants and
the demonstration of higher-order bulk-boundary correspon-
dence. Our results uncover the diverse topologically nontriv-
ial phases induced by disorders and provide a flexible way to
control the number of topologically protected corner states in
one corner structure.

Results.— We start by considering a tight-binding model
with chiral symmetry as shown in Fig. 1(a). The lattices are
parted into two sets of sublattices (A, C and B, D) [see Fig.
1(b)]. The Hamiltonian of this model is as following [37]:

H =

[
0 h
h† 0

]
, (1)

Here chiral symmetry is manifested as ΠHΠ−1 =−H, where

Π =

[
I 0
0 −I

]
is the chiral operator and I is the identity ma-
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trix. In the momentum space h can be expressed as

h(kx,ky) =


β1 κ12 κ13 0
κ12 β2 0 κ24
κ13 0 β3 κ34
0 κ24 κ34 β4

 (2)

with β j =

[
−vx j −ux je−2ikx vy +uye−2iky

vy +uye2iky vx j +ux je2ikx

]
( j = 1,2,3,4),

κ12 = κ34 =

[
wxe−ikx 0

0 wxeikx

]
and κ13 = κ24 =[

0 wye−iky

wye−iky 0

]
. Here vx j (vy) is the intracell hop-

ping, wx (wy) is the intercell hopping, ux (uy) is the
long-range hopping, and kx (ky) is the wave vector along
x (y) direction. Under the structure of H described
above, the eigenstates can be expressed as combina-
tions of two sublattices: |ψn⟩ = (1/

√
2)
[
ψAC

n ,ψBD
n

]T ,
where ψAC

n = [ψA1
n ,ψC1

n ,ψA2
n ,ψC2

n , . . .]T is normalized
states that exist only in the A and C subspaces, and
ψBD

n = [ψB1
n ,ψD1

n ,ψB2
n ,ψD2

n , . . .]T is normalized states that
exist only in the B and D subspaces. If the long-range
hoppings are zero and all the intracell (intercell) hoppings
are the same as each other. Then this tight-binding model is
the well-known BBH model in which a quantized quadrupole
insulating phase can emerge when the intracell hopping
is smaller than the intercell hopping [34]. When disorder
is introduced in the BBH model, a phase transition from
trivial to higher-order topological phases is presented with a
deformation of the phase diagram from the clean limit which
is nontrivial in the sense that the topological phase regime
can expand due to disorder in certain parameters space [21].
We here emphasize that the disorder-induced HOTPs in BBH
model is in Z2 class.

To investigate whether the disorder can induce more diverse
nontrivial HOTPs, we here introduce non-zero long-range
hopping terms. Moreover, four different vx j, j = 1,2,3,4 are
chosen to further construct four sublattices in the Hamilto-
nian(see Fig. 1(b)). When disorder is introduced homoge-
neously on the couplings vx j, these four sublattices respond
differently to the same disorder strengths and the successive
topological phase transition occurs. To accurately character-
ize such phase transition, We need to construct a real-space
topological invariant as [38]

Nxy =
1

2πi
Trlog

(
Q̄AC

xy Q̄BD†
xy

)
(3)

where Q̄S
xy = U†

S QS
xyUS for S = AC or BD. US can be ob-

tained through the singular value decomposition of h by
h = UACΣU†

BD with US =
[
ψS

1 ,ψ
S
2 , . . . ,ψ

S
N
]

(S = AC or BD)
and Σ is a diagonal matrix containing the singular values.
QS

xy is the sublattice multipole moment operators defined as

QS
xy = ∑R,α∈S |R,α⟩exp

(
−i 2πxy

LxLy

)
⟨R,α|, where Lx (Ly) is the

number of unit cells along x (y) direction, R=(x,y) represents

FIG. 1. Schematic depicting the tight-binding model used.
The blue, red and orange line denote the intracell, intercell
and long-range hopping terms, respectively. The dashed lines
represent hopping terms with negative signs such that each
plaquette has a uniform flux of π . Not all long-range hop-
pings are shown for clarity. (b) Enlarged local image of Fig.
1(a) to show the difference of the hopping terms. The sub-
lattices with opposite chiral charge are distinguished by green
and yellow underpaintings. (c) The topological invariant Nxy
versus disorder. The depth of color represents the density of
points. The light gray, blue and red regions denote the trivial,
successive HOTAI and AL phases, respectively. (d) The den-
sity of points versus disorder. The arrow represents the value
of Nxy at each peak.

the position coordinates of each unit cell, |R,α⟩ = c†
R,α |0⟩,

and c†
R,α creates an electron at sublattice α of unit cell R.

With a well-defined real-space topological invariant Nxy, we
next introduce disorder into the model presented in Fig. 1(a)
and investigate the phase transition of the system. The disor-
der is present on the intracell hopping terms along x direction:
vx j = v̄x j +W with the random function W distributed uni-
formly within the interval [−Wmax,Wmax] without correlation.
Here we choose v̄x1 = 1.01, v̄x2 = 1.09, v̄x3 = 1.13, v̄x4 = 1.23,
vy = 0.75, wx = wy = 0.1, ux = uy = 1, Lx = 150 and Ly = 25.
The calculated Nxy under increased disorder strength Wmax is
shown in Fig. 1(c). When the disorder is weak, Nxy = 0 and
the system is in topologically trivial phase. As the disorder
strength increases, Nxy stepwise increases from 0 to 4, repre-
senting successive phase transitions. When Wmax further in-
creases, Nxy is no longer quantized as excessive disorder dis-
rupts the effective hopping between unit cells and the system
transit to AL phase. In the HOTAI phase, few points are scat-
tered with Nxy being not integers, which is caused by the in-
sufficient size used in the computational model and resulting
in numerical calculation errors. As limited by the finite-size
lattice and the parameters, the phase transition does not occur
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FIG. 2. (a)-(d) Energy spectrum of H and (e)-(h) DOS at a
certain open boundary with Wmax = (a, e) 1.72, (b, f) 2.29,
(c, g) 2.72 and (d, h) 3.41. The serial number of each state is
represented by n. The blue dash ellipses circle the point with
zero energy state in (a)-(d). The number of zero energy state
is shown by the arrows in (e)-(h).

in a cliff-like manner. For example, during the process as Nxy
changing from 0 to 1, it will repeatedly take the two values.
As Wmax increases, Nxy will have a higher probability of tak-
ing the value of 1, while the probability of taking the value
of 0 will decrease. To demonstrate the phase transition more
clearly, we calculated the density of points with the same Nxy
within the range from −0.2 to 0.2 near a certain Wmax (due to
calculation errors, Nxy are considered to be the same if the dif-
ference between them is small than 0.2). The results presented
in Fig. 1(d) show four obvious peaks in the topological non-
trivial phase at Wmax = 1.72, 2.29, 2.72 and 3.41, with Nxy =
1, 2, 3 and 4, respectively (the interval between the values of
Wmax is 0.01, so the maximum density is 40). The peak that
occurs when Wmax continues to increase is caused by AL and
Nxy tends to be 0.

The above phase transition in HOTAI is not only proved
by the topological invariant but also can be revealed by the
higher-order bulk-boundary correspondence. Specifically, the
quantized Nxy strictly equals the number of corner states at
each corner of the lattice under open boundary conditions.
The energy E of the HOTAI described by Eq. (1) at the
four peaks in Fig.1 (d) is shown in Fig. 2(a)-2(d). The
HOTAI has 4Nxy states with energy near zero (the energy of
the corner states is not strictly equal to zero because of the
finte size effect). Because of the chiral symmetry, the en-
ergy spectrum is symmetric about E = 0. Specifically, ev-
ery eigenstate |ψn⟩ with energy εn has a chiral partner state
Π |ψn⟩ = (1/

√
2)
[
ψAC

n ,−ψBD
n

]T that with opposite energy
−εn. The density of states (DOSs) are shown in Fig. 2(e)-2(h),

FIG. 3. (a)-(d) The corner weight of eigenstates near the zero-
energy for Wmax = (a) 1.72, (b) 2.29, (c) 2.72 and (d) 3.41.
(e)-(h) The field distribution |ψn|2 of the state marked by red
points in Fig. 3(a)-3(d).

in which stepwise increases narrow peaks can be observed at
E = 0 as Nxy increases from 1 to 4. To prove that these zero
energy states are corner-localized states, we define the corner
weight as

wcorner = ∑
xc,yc

∑
x,y

|ψn(x,y)|
2 exp

[
−∆x2 +ρ∆y2

ξ

]
(4)

where ∆x = x− xc, ∆y = y− yc and (xc,yc) represent the po-
sitions of the four corners: (1,1), (Lx,1), (1,Ly) and (Lx,Ly).
ξ = 0.001(Lx

2 + Ly
2) is the decay length and ρ = (Lx/Ly)

2

is used to balance the size difference between x and y direc-
tions. A large wcorner means the field of the state tends to be
distributed at the four corners. Fig. 3(a)-3(d) show wcorner of
the zero-energy states, indicating that they are all localized at
the corner. The distribution of the zero-energy states shown
in Fig. 3(e)-3(h) also displays the corner-localized character-
istics.

To prove that the four sublattices with different vx j indeed
respond differently to the disorder. Here we present the phase
diagram of the lattice with all vx j taking the same value. For
example if we set vx j = v̄x1 +W , the successive HOTAI phase
transition disappear and the corresponding H represents a Z2-
class HOTAI with Nxy being either 0 or 4 as the phase dia-
gram shown in Fig. 3(a). If vx j is changed to vx j = v̄x j′ +W
( j′ = 2,3,4), the critical value of the topological phase transi-
tion point is shifted and a larger disorder is required to drive
the phase transition, as shown in Fig. 3(b)-3(d). Therefore,
when vx j take different values within a unit cell, disorder will
drive discrete regions with individual vx j to undergo topolog-
ical phase transitions gradually as shown in Fig. 4(e). This
character is finally reflected in the successive phase transition
of the entire model.

Discussion.—In conclusion, we here show a successive
topological phase transition driven by disorder in HOTI which
unveils the connection between disorder strength and diverse
non-trivial topological phases. Although we take BBH model
as an example, such phase transition phenomenon is ex-
pected to widely exist in many other topological insulators
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FIG. 4. (a)-(d) Phase diagrams of disordered QTI, in which
Nxy is calculated as a function of v̄x j and Wmax. All vx j for
j = 1,2,3,4 is chosen to be the same as (a) v̄x1 +W , (b) v̄x2 +
W , (c) v̄x3 +W and (d) v̄x4 +W , respectively. The red lines
capture the phase transition at v̄x j = 1. (e) Nxy versus Wmax
along the red line for the above four values taken by vx j. The
light blue (or orange, green, purple) region denote 1 (or 2, 3,
4) Nxy of the four situations can take the value of 4.

such as Su-Schrieffer-Heeger and Harper-Hofstadter-Hatsugai
model [39–41]. Besides, our proposed theoretical models can
be readily realized in various experimental platforms includ-
ing acoustics [42], electrical circuits [43], photonics [44, 45]
where the long-range couplings and disorders can be intro-
duced straightforwardly. Moreover, it is well known that the
influence of disorders on waves behavior significantly differ-
ent in difference dimensions and in non-Hermitian systems,
we also expect further exploration of such successive topolog-
ical phase transition driven by disorder in higher-dimensional
systems such as the 3D quantized octupole insulator [46], in
non-Hermitian lattices [25, 47, 48] and in those with synthetic
dimensions [49–52].
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