
ar
X

iv
:2

40
4.

15
09

3v
1 

 [
cs

.S
E

] 
 2

3 
A

pr
 2

02
4

WHO’S ACTUALLY BEING STUDIED? A CALL FOR POPULATION

ANALYSIS IN SOFTWARE ENGINEERING RESEARCH

Jefferson Seide Molléri
Kristiania University College

Kirkegata 24-26, Oslo - NO, 0153
jefferson.molleri@gmail.com

ABSTRACT

Population analysis is crucial for ensuring that empirical software engineering (ESE) research is
representative and its findings are valid. Yet, there is a persistent gap between sampling processes
and the holistic examination of populations, which this position paper addresses. We explore the
challenges ranging from analysing populations of individual software engineers to organizations
and projects. We discuss the interplay between generalizability and transferability and advocate for
appropriate population frames. We also present a compelling case for improved population analysis
aiming to enhance the empirical rigor and external validity of ESE research.

Keywords Empirical research · population analysis · sampling · generalizability · representativeness

1 Introduction

In software engineering (SE) research, the practice of sampling is well-established, with many guidelines and experi-
ence reports for selecting representative subsets from diverse populations, e.g. [1, 2, 3]. Researchers rely on sampling
techniques, such as stratified and random sampling, to ensure their findings are representative of broader populations.
However, without a proper characterization of the given population, the question highlighted in the title of this article
- ’Who’s actually being studied?’ is left unaddressed, casting doubt on the representativeness of our findings. This
position papers is driven by the need to bridge the current sampling practices with an comprehensive analysis of target
populations in ESE research.

Population is defined as the complete set of entities that a researcher aims to study or understand [4]. Note that this
is often misconceived as overly representative, and ideally it should be refined by the objective of the research. For
instance, a research investigating the role of the Scrum Master is representative to software projects implementing the
SCRUM methodology, not to all existing software projects. This concept is here referred as the ’target population,’
which denotes a specific set of entities that the research is intended to generalize its conclusions to.

It is also vital to distinguish between generalizable and transferable results. Generalization concerns how findings
apply to the target population, whereas transferability is about the relevance in comparable settings beyond that specific
population. For instance, the findings of a study focused on Java projects could be generalized to all Java projects,
and they might also be transferable to similar projects in other programming languages. Both generalizability and
transferability are essential concepts for evolving SE research.

Recently, empirical studies investigating issues related to practitioners’ behavior and characteristics of software
projects using GitHub became common. These studies (e.g. [5, 6]) often state that is not possible to generalize
the findings outside the context of the platform. However, they sometimes fail to generalize even within the GitHub
environment due to insufficient population analysis. If the population is properly described, it is left to the reader to
determine the applicability of these findings to their own practice.

Various methodologies incorporate sampling and population analysis. For instance, experiments require random as-
signment to ensure representative population characteristics among experimental groups. Surveys gather data from
a broader population, depending on sampling frames to ensure representativeness. Case studies employ purposive

http://arxiv.org/abs/2404.15093v1


Who’s actually being Studied? A Call for Population Analysis in Software Engineering Research

sampling to select cases relevant to a targeted population. These methodologies are instructed by specific guidelines,
such as [7, 2, 8], emphasizing the importance of defining an suitable population frame and sampling strategy.

2 Challenges and Considerations

This section examines four distinct population types common in SE research: individual software engineers, organiza-
tions, software projects, and software artifacts. Each category presents unique challenges in terms of data availability,
definition, and representativeness.

2.1 Population Analysis for Individuals

Estimating the number of software engineers is challenging due to the lack of a comprehensive census, although
estimates [9, 10] are available. It’s important to note that while these figures are crucial, the calculation of a minimum
sample size for sufficient statistical power in research depends on more than just population size. Factors such as the
effect size, which is the magnitude of the outcome being measured, and the significance level, which is the criterion
for statistical significance are also vital [11]. Additionally, information on average salaries and vacancies from work-
related organizations (such as LinkedIn and Glassdoor) may help refining these estimations. They serve as indicators
of demand and supply and help in establishing correlations with industry growth trends.

In addition to the population size, we lack understanding about the professionals’ experiences and competencies. A
notable study comparing novice software developers with students [12] found just minor differences in their perfor-
mance when applying a technique for the first time. By analysing student data in this context, we are able to project a
future population frame of novice software developers, offering insights for understanding the evolving landscape of
SE expertise.

It is also important to reconsider how we distinguish between ‘professionals’ and ‘students.’ The traditional view of
these as distinct groups is misleading, with many individuals embodying both categories, such as Master’s students
working at software companies or open-source projects. This calls for a more nuanced analysis of population char-
acteristics, moving beyond the simplistic classification to a more diverse landscape of SE expertise. This approach
would help addressing the challenge of effectively measuring experiences and competencies specific to different roles
in the field.

Another challenge arises when investigating the preferences in development practices, programming languages, and
coding standards, as there are limited information available for accurately profiling the target population. Annual
surveys from digital communities such as GitHub1 and StackOverflow2 provide demographic data. However, these
surveys are constrained by community boundaries and self-selection bias, which may underrepresent the broader
population of software developers.

The success of sampling and stratification techniques are severely limited by difficulties in accurately characterizing
the population. While we assume diversity among software developers, we cannot substantiate this beyond specific
contexts. The broader population, which is not easily identifiable, poses additional challenges. Nonetheless, it re-
mains crucial to attempt defining the broader population, including its hidden segments, to ensure transferability, and
potentially generalizability, of our findings.

2.2 Population Analysis for Organizations

Analysing organizations, while similar to individuals, relies on estimating numbers of entities within the public and
private sectors. National and regional surveys3 offer some data categorized by industrial sectors. We can use such
reports to draw estimates for economically similar contexts. Note that global estimates are still challenging, as many
less developed countries do not report such numbers.

In addition to this, the definition of an ’organization’ in the context is often ambiguous. Many non-software companies
have internal units or departments dedicated to develop and maintain software systems, like those in the automotive
industry. These units are not counted within the software development sector in standard reports. Estimating the
number of software development organizations within these companies is complex, still some data are available.

Another challenge arises in the study of software development teams. The composition and size of software teams
could differ significantly, especially considering cross-functional teams and shared responsibilities. In such cases,

1https://octoverse.github.com/
2https://survey.stackoverflow.co/2023/
3See e.g. https://economy-finance.ec.europa.eu/economic-forecast-and-surveys/business-and-consumer-surveys_en

2

https://octoverse.github.com/
https://survey.stackoverflow.co/2023/
https://economy-finance.ec.europa.eu/economic-forecast-and-surveys/business-and-consumer-surveys_en


Who’s actually being Studied? A Call for Population Analysis in Software Engineering Research

characterizing the target population should focus on aspects such as culture, structure, and processes, to facilitate
relevant comparisons.

Organizational population analysis is needed for industry segmentation and meaningful cross-company comparisons.
Rather than focusing on numerical estimates, it is suggested to describe the contextual factors that helps us to under-
stand the circumstances in which the phenomenon of investigation applies [13].

2.3 Population Analysis for Software Projects

Many software engineering studies focus on the characteristics of software projects. While these studies often using
probabilistic sampling strategies aiming for representativeness and the ability to generalize conclusions, there is a
critical aspect that needs attention: diversity. Accurate generalization depends not only on the sample size, but on a
comprehensive understanding of the entire range of characteristics and variations present within the target population.

In reporting project characteristics, researchers must decide which aspects are key for drawing meaningful conclusions.
This includes, but is not limited to, (1) project size, (2) project complexity, (3) development process, (4) project
duration, (5) technologies adopted, (6) application area, (7) success metrics, (8) dependencies, and (9) versioning. It’s
vital that the chosen metrics are standardized and relevant to the target audience.

Data on open-source projects is readily accessible, and often these projects share many characteristics with proprietary
ones. However, basing findings solely on open-source or proprietary projects severely restrict the reflection of diversity
in software projects. It is challenging to discuss representative results without a comprehensive analysis of the entire
project population and its characteristics.

2.4 Population Analysis for Software Artifacts

Many software engineering studies focus on the technical aspects, such as architectural and code quality, compliance
with standards, system performance, security, usability, and other software metrics. When investigating a specific soft-
ware project or portfolio within a given organization as population, selecting a representative sample is both achievable
and advisable. Yet, finding from such a narrowed study typically have limited transferability to external contexts. To
ensure that the results have meaningful implications, a precise description of the studied population’s characteristics
is required.

The study’s goals or the phenomenon under investigation also guide the population analysis. Take the evaluation
of development and operations (DevOps) practices, for example. A researcher would analyse the so-called DORA
metrics: deployment frequency, lead time for changes, mean time to recovery, and change failure rate. To accurately
characterize this population, the researcher must outline the overall distribution of such metrics, making sure that any
sampling (or comparative case) aligns with the distribution, thereby avoiding any biases of misrepresentation.

3 Case for Improved Population Analysis

To effectively address the population analysis challenges outlined in this paper, we propose a set of practices. These
recommendations are not sequential steps, but rather good practices to adapt to your research’s specific needs. Re-
sources like Baltes and Ralph [1], Kitchenham et al. [3], and Nagappan et al. [14] offer additional guidelines on
designing empirical studies, including aspects of population analysis.

1. Establish population definitions and boundaries: A first step to identifying a population frame is a clear de-
scription of who or what constitutes the population in the study. This involves determining whether the focus is on
individuals, organizations, projects, or artifacts. It is crucial to establish a targeted population by setting boundaries
for these definitions, e.g. software developers in mobile application projects. The boundaries ensure they are directly
aligned with the specific objectives of the research. It’s also important to acknowledge that the analysis represents a
snapshot of the population at a specific moment in time.

2. Identify existing population datasets: Based on the population description, we can identify existing databases,
such as government statistics, industry analyses, and social media platforms. Utilize data mining techniques to leverage
datasets from professional networks like GitHub, Stack Overflow, or LinkedIn, ensuring that the data aligns with the
established boundaries of the target population. Note that social media may offer a skewed view, representing only the
behaviors and preferences of self-selected individuals, thus not offering a fully representative sample. Collaborations
with industry partners can grant access to more specific datasets, enriching the diversity of the data.

3. Expanding and diversifying population datasets: To create a comprehensive population frame, relying on a
single data source is often insufficient. Researchers may combine data from various sources, which involves compiling

3



Who’s actually being Studied? A Call for Population Analysis in Software Engineering Research

and analyzing information from multiple relevant databases. Utilizing data mining and multivariate analysis helps in
understanding the relationships among variables across databases.

4. Cross-referencing and dataset validation: Mind that the information provided by these sources might conflict
and need cross-validation. For instance, two demographic studies [10, 9] estimated the overall population of software
developers in 2023 to be 27.7 million and 26.3 million, respectively. The discrepancies in the estimates are likely
linked to how one defines ’software developer’ and whether this data is collected on individual or organizational level.
To address these inconsistencies, validation with experts is advised. This allows researchers to investigate factors
causing variations in estimates.

5. Advanced sampling techniques: When a target population is hard to pinpoint, researchers may start with a small
sampling and use those to refer others, i.e. snowballing sampling. While this technique may not be ideal for capturing
broad populations, it is highly effective for exploring specific niches or subsets, such as ’tech leaders in SCRUM
teams.’ Snowballing is often time-consuming and demands rigorous assessment of data quality and performance, e.g.
by means of bootstrap methods assessing stability and variability of estimates from smaller samples.

In the case of heterogeneous populations, stratification and weighting ensure all subgroups are proportionately repre-
sented. By apply demographic and geographic filters, researchers can extract subgroups (strata) within our population
that could be compared against broad population estimates. This approach helps evaluating the representativeness of
subgroups and understanding how demographic and geographic factors influence the target population.

6. Reporting and documenting the population: A final step in population analysis is thorough reporting the pop-
ulation frame. This includes, but is not limited to, the size of the population (and subgroups), their expertise, the
complexity of the projects, the preferred methods and tools. Some quantitative characteristics may be expressed in
absolute numbers such as the size or number of entities in the population. Others require descriptive statistics (mean,
range, standard deviation, etc.) to convey demographic, geographic and temporal aspects. Qualitative characteristics,
such as skills, competencies, culture, beliefs and attitudes require a narrative description.

4 Conclusion

Software engineering research strives for rigorous application of research methodologies to draw meaningful insights,
yet the unique characteristics of the target population often remain unexplored. This paper has highlighted the chal-
lenges in identifying populations. A recurring theme is defining a representative sample that reflects the diversity of
a target population. We have also highlighted the risk of non-generalizable results and the limited transferability of
findings. The path forward requires that us, ESE researchers, employ robust statistics and methodological guidelines
to ensure that the populations we study are accurately depicted in our studies.

References

[1] Sebastian Baltes and Paul Ralph. Sampling in software engineering research: A critical review and guidelines.
Empirical Software Engineering, 27(4):94, 2022.

[2] Rafael Maiani de Mello, Pedro Corrêa Da Silva, and Guilherme Horta Travassos. Investigating probabilistic
sampling approaches for large-scale surveys in software engineering. Journal of Software Engineering Research
and Development, 3(1):1–26, 2015.

[3] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones, David C. Hoaglin, Khaled
El Emam, and Jarrett Rosenberg. Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on software engineering, 28(8):721–734, 2002.

[4] Neil J Salkind. Encyclopedia of research design, volume 1. sage, 2010.

[5] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques Klein, and Yves Le Traon.
Got issues? who cares about it? a large scale investigation of issue trackers from github. In 2013 IEEE 24th
international symposium on software reliability engineering (ISSRE), pages 188–197. IEEE, 2013.

[6] Saya Onoue, Hideaki Hata, and Ken-ichi Matsumoto. A study of the characteristics of developers’ activities
in github. In 2013 20th Asia-Pacific Software Engineering Conference (APSEC), volume 2, pages 7–12. IEEE,
2013.

[7] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

[8] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study research in software engineering:
Guidelines and examples. John Wiley & Sons, 2012.

4



Who’s actually being Studied? A Call for Population Analysis in Software Engineering Research

[9] Evans Data Corporation. Worldwide developer population and demographic study 23.2.

[10] Statista. Global developer population 2024.

[11] Tore Dybå, Vigdis By Kampenes, and Dag IK Sjøberg. A systematic review of statistical power in software
engineering experiments. Information and Software Technology, 48(8):745–755, 2006.

[12] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students representatives of professionals in software
engineering experiments? In 2015 IEEE/ACM 37th IEEE international conference on software engineering,
volume 1, pages 666–676. IEEE, 2015.

[13] Kai Petersen and Claes Wohlin. Context in industrial software engineering research. In 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages 401–404. IEEE, 2009.

[14] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in software engineering research. In
Proceedings of the 2013 9th joint meeting on foundations of software engineering, pages 466–476, 2013.

5


	Introduction
	Challenges and Considerations
	Population Analysis for Individuals
	Population Analysis for Organizations
	Population Analysis for Software Projects
	Population Analysis for Software Artifacts

	Case for Improved Population Analysis
	Conclusion

