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Uncertainty Quantification of Data-Driven
Output Predictors in the Output Error Setting

Farzan Kaviani, Ivan Markovsky, and Hamid R. Ossareh

Abstract—We revisit the problem of predicting the output of an
LTI system directly using offline input-output data (and without the
use of a parametric model) in the behavioral setting. Existing works
calculate the output predictions by projecting the recent samples
of the input and output signals onto the column span of a Hankel
matrix consisting of the offline input-output data. However, if the
offline data is corrupted by noise, the output prediction is no longer
exact. While some prior works propose mitigating noisy data through
matrix low-ranking approximation heuristics, such as truncated
singular value decomposition, the ensuing prediction accuracy remains
unquantified. This paper fills these gaps by introducing two upper
bounds on the prediction error under the condition that the noise is
sufficiently small relative to the offline data’s magnitude. The first
bound pertains to prediction using the raw offline data directly, while
the second one applies to the case of low-ranking approximation
heuristic. Notably, the bounds do not require the ground truth about
the system output, relying solely on noisy measurements with a known
noise level and system order. Extensive numerical simulations show
that both bounds decrease monotonically (and linearly) as a function
of the noise level. Furthermore, our results demonstrate that applying
the de-noising heuristic in the output error setup does not generally
lead to a better prediction accuracy as compared to using raw data
directly, nor a smaller upper bound on the prediction error. However,
it allows for a more general upper bound, as the first upper bound
requires a specific condition on the partitioning of the Hankel matrix.

Index Terms—Uncertainty quantification, Data-driven control,
output prediction error bounds, truncated singular value
decomposition de-noising

I. INTRODUCTION

In recent years, there has been a growing research interest in
data-driven methods for simulation and control [1]. One particularly
notable framework is based on behavioral systems theory (see [1],
[2]), which, thanks to the so-called fundamental lemma [1], [3], [4],
allows for predictions of the output based on offline input-output
data. In [5], these predictors are used to simulate the response of
LTI systems, and in [6], they are used to formulate what is known
as the subspace predictive controller. In a similar vein, [7] used
these predictors to formulate an optimal control problem known
as the Data Enabled Predictive Control (DeePC). Applications of
DeePC are reported in [2].

Of practical interest is the situation where the offline data
is corrupted by noise, which renders the output predictions
inaccurate. To handle noise in the offline data, DeePC and similar
optimal control approaches implement regularizations within the
optimization process to enhance its robustness to noise. Another
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approach to handle noise, as employed, for example, in [8],
involves de-noising heuristics such as the Truncated Singular Value
Decomposition (TSVD) of the underlying data matrix [1], [9], [10].
While TSVD has been employed for de-noising in these references,
[8], [11], [12] showed that the effectiveness of TSVD is not universal
and may vary depending on the specific setting and implementation.

Given the successes of these data-driven predictors in research
and practical settings, there is interest in the community to formally
quantify the prediction accuracy of these predictors. In [13],
confidence regions for data-driven prediction algorithms under
the assumption of zero-mean Gaussian noise were proposed. Yet,
the proposed confidence regions required either parameters from
the underlying state-space model or the noise-free output initial
conditions, hindering their practical application in scenarios where
these elements are unknown. Thus, to the best of our knowledge,
the problem of uncertainty quantification of these output predictors
is still largely open. Furthermore, there is no work that formally
compares the prediction performance of the output predictors
obtained from raw data as compared to those obtained from the
de-noising heuristic based on TSVD.

To fill the above gap, this paper first introduces two upper bounds
on the output prediction error in the case of inexact data. The first
upper bound is on the output prediction error when the offline data
is used directly to predict the output. The second bound applies to
the case when the TSVD method is utilized to preprocess the data
before calculating the output prediction. In either case, we assume
the noise is present only on the output data and not on the input
data, as is commonly assumed in control systems literature. In other
words, our examinations take place in the output error (OE) setting.
We model the output noise as a set-bounded signal with a known
worst-case magnitude (as opposed to modeling it as a Gaussian
noise as is done in [13]). The upper bounds rely solely on the offline
noisy data and the known noise level, which allows us to apply
these bounds in a practical setting when the noise-free ground-truth
data is not available. However, as we show, the derived bounds
are only applicable to situations where the noise is “sufficiently
small” as compared to the underlying signal, as characterized by the
minimum singular value of the Hankel data matrix comprised of
offline noisy input-output data. The bounds can be used in control
applications, for example by robustifying data-driven control
algorithms such as DeePC against worst-case prediction errors.

To compare the effectiveness of these bounds and assess whether
the TSVD method improves prediction accuracy in the OE setup,
comprehensive numerical simulations are conducted. The results
show that both upper bounds are relatively small (and thus effective)
when the noise level is sufficiently small. Specifically, they are
shown to be monotonically (and linearly) decreasing as a function
of the noise level. Furthermore, the results indicate that applying
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the de-noising heuristic in the output error setup does not generally
lead to a better prediction accuracy as compared to using raw data
directly, nor a smaller upper bound on the prediction error. However,
it does enable a more general upper bound on the output prediction
error, as the first upper bound relies on a specific condition related
to the partitioning of the Hankel data matrix.

The paper is organized as follows. The problem statement is
provided in Section II. The main results are reported in Section III.
Numerical illustrations are provided in Section IV. Conclusions
and future work are reported in Section V.

The notation throughout this paper is as follows. The sets Z+,
R, Rn, and Rn×n denote the set of non-negative integers, real
numbers, n-dimensional vectors of real numbers, and n × n
matrices with real entries, respectively. Unless otherwise stated,
we use the variable t ∈ Z+ to denote the discrete time index.
For a sequence of matrices X1, . . . ,Xn with the same number of
columns, we denote [X⊤

1 , . . . ,X⊤
n ]⊤ by col(X1, . . . ,Xn). The

vectors 1 and 0 denote vectors of all ones and all zeros, respectively,
where the dimensionality is inferred from the context. For a signal
u(t) ∈ Rm, t = 0, . . . , T − 1, we use boldface to denote the signal
as a vector of vectors, i.e., u = col(u(0), u(1), . . . , u(T − 1)).

II. PROBLEM FORMULATION

Consider an n-th order causal LTI system with input vector
u(t) ∈ Rm and output vector y(t) ∈ Rp. Suppose a parametric
(e.g., state-space or transfer function) model for the system is not
available, but we have collected finite-length, noise-free input-output
data, stored in vectors ud(t) and yd(t), where t = 0, . . . ,L − 1
and subscript d refers to “data”. Using this data, we construct the
Hankel matrix of order T ∈ Z+, denoted by H, whose columns
consist of length-T input and output sub-trajectories:

H =

[
Hu

Hy

]
∈ R(m+p)T×M (1)

where M = L− T + 1 is the number of columns, and

Hu =


ud(0) ud(1) · · · ud(L− T)

...
...

. . .
...

ud(T − 1) ud(T) · · · ud(L− 1)

 ,

Hy =

 yd(0) yd(1) · · · yd(L− T)
...

...
. . .

...
yd(T − 1) yd(T) · · · yd(L− 1)

 .
If the Hankel matrix satisfies the generalized persistency of

excitation condition [14], namely

rank(H) = mT + n, (2)

then any length-T trajectory col(u,y) ∈ R(m+p)T will belong to
the column space of H. For later use, we introduce the following
notation:

r ≜ mT + n. (3)

Said differently, if (2) is met, there must exist a (non-unique) vector
g, such that

Hg =

[
u
y

]
(4)

for any T -samples long trajectory col(u,y) of the system. This
idea has been used in the literature for the purpose of data-driven
simulation and prediction [5]. This is done by partitioning the output
trajectory, y, into two parts, one of length Tp ≥ 1 that serves to im-
plicitly fix the initial condition, and of length Tf ≥ 1 that serves as
the predicted output: y = col(yini,ypred) where yini ∈ RpTp and
ypred ∈ RpTf , and Tp + Tf = T . Similarly, partition the input as
u = col(uini,upred), and accordingly the Hankel matrix as Hu =
col(Up,Uf) and Hy = col(Yp, Yf). We can then express (4) as:

Up

Uf

Yp
Yf

g =


uini

upred

yini

ypred

 (5)

As discussed in [1], if col(uini,yini) is a valid length-Tp trajectory
of the system and Tp ≥ ℓ, where ℓ is the lag or observability index
of the system, one can uniquely solve for the latent initial condition
and, thus, uniquely compute ypred. That being said, the vector
g is generally not uniquely determined. To solve for ypred, the
minimum-norm solution to g is often employed:

g∗ =

 Up

Uf

Yp

† uini

upred

yini

 (6)

and so ypred = Yfg
∗ or, equivalently,

ypred = Yf

 Up

Uf

Yp

† uini

upred

yini

 (7)

In many practical situations, while the inputs are exact, the output
measurements are corrupted by noise and therefore are not exact1.
We model the measured output as the clean output plus additive
noise:

ym(t) = y(t) + n(t), (8)

where n(t) is random and, thus, unknown, but it is magnitude-
bounded. That is, there exists a known N ∈ R such that:

∥n(t)∥ ≤ N,∀t (9)

The noise degrades the accuracy of the data-driven predictor in
(7) for two reasons: i) the noise perturbs every element of the
initial output vector, yini, and ii) the noise affects the offline data,
yd(t), and thus perturbs every element of Yp and Yf . Applying the
approach described above to the perturbed matrices gives rise to
the following predicted output:

ỹpred = (Yf +∆2)

 Up

Uf

Yp +∆1

† uini

upred

yini + δ

 , (10)

where δ ∈ RpTp , ∆1 ∈ RpTp×M , and ∆2 ∈ RpTf×M are
unknown vector and matrices whose every element is bounded in
magnitude by N .

As mentioned in the introduction, to mitigate the effects of noise,
the Hankel matrix is sometimes pre-processed first using a low-rank
heuristic to enforce condition (2). This is done using the truncated

1In some situations, the inputs may be corrupted by noise as well, see for example
[15]. Although the result in this paper can be easily extended to these situations, we
will not consider them here for brevity.
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singular value decomposition (TSVD) method [16, Definition 4].
Specifically, the rank-r (with r defined in (3)) TSVD of H is given
by:

Ĥ = ÛΣ̂V̂ ⊺ =


Ûp

Ûf

Ŷp
Ŷf

 ,
where Û ∈ R(m+p)T×r and V̂ ∈ RM×r are unitary matrices
and Σ̂ ∈ Rr×r is a diagonal matrix containing the first r singular
values of H. We could now employ (7) to predict the output using
sub-blocks derived from Ĥ:

ŷpred = Ŷf

Ûp

Ûf

Ŷp

† uini

upred

yini + δ

 (11)

We are ready to formally state the main problem addressed in this
paper. Consider an m-input LTI system of known order n and lag
ℓ, integers Tp and Tf that satisfy Tp ≥ ℓ and Tf ≥ 1, and offline
data ud(t) and yd(t), t = 0, . . . ,L− 1, that satisfy condition (2)
with T = Tf + Tp. Suppose we know ud(t) exactly but not yd(t).
Instead, we have collected a noise-corrupted version of the output
as described by Eq. (8)–(9) with a known bound N . The problem is
to find upper bounds on estimation errors ∥ỹpred − ypred∥2 and
∥ŷpred − ypred∥2, where ypred, ỹpred, and ŷpred are defined in
(7), (10), and (11).

Remark 1. Disturbances and nonlinear effects may also be
handled by (8), (9). This requires modeling the impact of these
disturbances and nonlinearities as a magnitude-bounded noise on
the output so that the framework can be applied.

Remark 2. While the Hankel matrix structure in (1) is commonly
used in the literature, it is not the only matrix structure that can
be used for the purpose of data-driven prediction. Other possible
structures are the Page matrix or the trajectory matrix, see [1]. The
results of this paper are applicable to these structures as well.

III. MAIN RESULTS

A. Preliminaries

We begin by introducing the following notation to simplify the
presentation:

H1 =

 Up

Uf

Yp

 , H̃1 =

 Up

Uf

Yp +∆1

 , Ĥ1 =

 Ûp

Ûf

Ŷp

 ,
Ỹf = Yf +∆2, h =

 uini

upred

yini

 , h̃ =

 uini

upred

yini + δ


With this notation, ypred in (7), ỹpred in (10), and ŷpred in (11)
can be expressed as:

ypred = YfH
†
1h, ỹpred = ỸfH̃

†
1h̃, ŷpred = ŶfĤ

†
1h̃

For a rank-k matrix, A, with non-zero singular values σi(A) for
i = 1, . . . , k, we denote:

σmin(A) ≜ min{σ1(A), . . . , σk(A)},
σmax(A) ≜ max{σ1(A), . . . , σk(A)}.

Additionally, for k ≥ r, with r defined in (3), we define:

δSN(A) ≜ σr(A)−
√
pTpMN

σsq(A) ≜ max

{(
1

δSN(A)

)2

,

(
1

σmin(A)

)2
}

(12)

which will be used in the following subsections.
We now present two lemmas, one that pertains to bounds on our

perturbation matrices, and another that establishes the rank of H1.

Lemma 1. The perturbation matrices satisfy:

∥δ∥2 ≤
√
pTpN

∥∆1∥F ≤
√
pTpMN

∥∆2∥F ≤
√
pTfMN

Proof. See the Appendix.

The above lemma allows us to assess and quantify the effects
of perturbation by bounding the noise through known elements.

Lemma 2. Let rank condition (2) be satisfied. Then we have that
rank(H1) = rank(H) = r.

Proof. See the appendix.

In the next subsections, we leverage the above lemmas to provide
upper bounds on the prediction errors defined earlier.

B. Upper bound on ∥ỹpred − ypred∥2
The following theorem provides an upper bound on the prediction

error ∥ỹpred−ypred∥2, i.e., when the output prediction is calculated
using the noisy offline data directly without any preprocessing.

Theorem 1. Suppose δSN(H̃1) > 0. Then:

∥ỹpred − ypred∥2 ≤
√
2σsq(H̃1)

√
pTpMN

×
(
∥Ỹf∥F +

√
pTfMN

)(
∥h̃∥2 +

√
pTpN

)
+ ∥H̃†

1∥F
√
pTpN

(
∥Ỹf∥F +

√
pTfMN

)
+
√
pTfMN∥H̃†

1h̃∥F (13)

Proof. See the Appendix.

Theorem 1 is practical in the sense that the upper bound relies
solely on known elements and not on the ground truth about the
system model or the underlying noise-free output, which may be
unknown, making the bound applicable to any dataset that satisfies
the δSN(H̃1) > 0 condition, which can also be verified using known
elements. Of course, the system order, n, and noise level, N , are
assumed to be known. See Remark 3 below for a discussion.

As it turns out, the terms ∥H̃†
1∥F and σsq(H̃1) in (13) may grow

unbounded as N tends to 0 (i.e., small noise level), rendering the
bound too loose to be useful in practice. We now investigate condi-
tions under which this unbounded growth occurs and how it might
be avoided. Our analysis relies on the rank of the matrices H1 and
H̃1. Let the rank of H̃1 be denoted by k, i.e., σmin(H̃1) = σk(H̃1).
Recall from Lemma 2 that rank(H1) = r, which we know almost
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surely satisfies r ≤ k. We thus consider two cases: r < k and
r = k. If r < k, we have that σk(H1) = 0, and so we get:

|σk(H̃1)− σk(H1)| ≤ ∥∆1∥2 ⇒ σmin(H̃1) ≤ ∥∆1∥2 ≤ ∥∆1∥F

⇒ 1

σmin(H̃1)
= σmax(H̃

†
1) ≥

1

∥∆1∥F
, (14)

where the first line is obtained using Weyl’s inequality [16,
Proposition 1]. Eq. (14) reveals an issue, which was also alluded to
in [17], namely a small ∥∆1∥F can lead to a large value of σmax(H̃

†
1)

and, in turn, a large value for ∥H̃†
1∥F (this follows from the fact that

∥H̃†
1∥2F =

∑
σ2
i ). To see the impact of large ∥H̃†

1∥2F on our upper
bound, we further simplify (14) using Lemma 1, which results in:

∥H̃†
1∥F ≥ 1

N
√
pTpM

Using this expression, we can lower bound σsq(H̃1) as well:

σsq(H̃1) ≥

(
1

N
√
pTpM

)2

Now, if N is sufficiently small, the offline data dominates the
perturbation to the extent that we can render ∥∆2∥F and ∥δ∥2
negligible in comparison to ∥Ỹf∥F and ∥h̃∥2. Of course, this
requires ∥Yf∥F and ∥h∥2 to be non-zero. In such a situation, the
right hand side of (13) is larger than:

√
2√

pTpMN
∥Ỹf∥F∥h̃∥2

which diverges as N tends to 0, implying that the right hand side
of (13) diverges. Thus, if r < k and the noise is small, our upper
bound may be too loose to be useful. We can use TSVD to mitigate
this problem, as discussed in the next subsection.

In the second case, where k = r, the bound in (14) is no longer
applicable and so the unbounded growth of ∥H̃1∥† caused by small
∥∆1∥F may be avoided. Even though we do not have a proof of
this statement, as we show in Section IV, this is indeed the case
for all the randomly-generated systems that we considered.

The condition δSN(H̃1) > 0 can be viewed as a proxy for signal to
noise characteristics of the offline data (ergo the subscript SN where
S stands for signal and N for noise). In particular, this condition will
be satisfied if the noise level, N , is sufficiently small as compared
to the underlying noise-free data. We show in Section IV that the
bound (i.e., the right hand side) in Theorem 1 is small if δSN(H̃1)
is sufficiently large and the rank condition k = r is satisfied.

We reconsider the situation where N is sufficiently small, this
time for the case of k = r. As before, the offline data dominates
the perturbation, but now (13) can be simplified as follows:

∥ỹf − yf∥2 ≤ N
(
∥Ỹf∥

√
2σsq(H̃1)

√
pTpM

+∥h̃∥2 + ∥Ỹf∥F∥H̃†
1∥F

√
Tp +

√
pTfM +∥H̃†

1h̃∥F
)

(15)

that is, the bound is linear in N . This implies the noise level’s
strong and direct influence on the presented bound. We will further
examine this observation in the numerical section. It is important to
mention that this linear behavior requires the rank condition k = r
to be satisfied.

Remark 3. Theorem 1 utilizes the r-th singular value of H̃1,
which necessitates knowledge of the system order n, see Eq. (3).

In instances where n is not available, an upper bound on r could
be employed as a substitute. The same argument can be made
regarding the lag ℓ, since ℓ ≤ n for any system.

C. Upper bound on ∥ŷpred − ypred∥2
Next, we will find an upper bound on the prediction error,

∥ŷpred − ypred∥2, i.e., when the output prediction is calculated
using the rank-r TSVD of the Hankel matrix.

Theorem 2. Suppose δSN(Ĥ1) > 0. Then:

∥ŷpred − ypred∥2 ≤
√
2
(
∥Ỹf∥F +

√
pTfMN

)
(

1

δSN(Ĥ1)

)2 (
∥Ĥ1 − H̃1∥F +

√
pTpMN

)
(
∥h̃∥2 +

√
pTpN

)
+ ∥Ĥ†

1∥F (∥h̃∥2 +
√
pTpN)(

∥Ŷf − Ỹf∥F +
√
pTfMN

)
+ ∥ŶfĤ†

1∥F
√
pTpN (16)

Proof. See the Appendix.

Similar to Theorem 1, this theorem also relies solely on known
elements, i.e., offline noisy data, system order n, and noise level
N , and is applicable to any data that satisfies the δSN(Ĥ1) > 0
condition. Like the previous theorem δSN(Ĥ1) captures the noise
characteristics of the dataset and as demonstrated in Section IV, the
bound is small when δSN(Ĥ1) is sufficiently large. Furthermore,
this bound does not exhibit the unbounded growth discussed in Eq.
(14), so it is more broadly applicable.

Following the same logic as before, if N is sufficiently small,
we can simplify the right-hand side of (16) as follows. Firstly, the
terms ∥Ỹf∥F and ∥h̃∥2 are non-zero and dominate ∥∆2∥F and
∥δ∥2. Secondly, using [16, Theorem 3], we have that:

∥Ĥ1 − H̃1∥F ≤ ∥∆1∥F
(
2(1 +

√
2)min

{
2∥∆1∥F
σr(H1)

,1

}
+ 1

)
and, from Lemma 1, we know that ∥∆1∥F ≤

√
pTpMN .

Combining these facts, the right-hand side of (16) becomes:

∥ŷpred − ypred∥2 ≤ N

(
√
2∥Ỹf∥F

(
1

δSN(Ĥ1)

)2√
pTpM(

2(1 +
√
2)min

{
2∥∆1∥F
σr(H1)

,1

}
+ 2

)
∥h̃∥2 + ∥Ĥ†

1∥F∥h̃∥2√
TfM

(
2(1 +

√
2)min

{
2∥∆2∥F
σr(Yf)

,1

}
+ 2

)
+ ∥ŶfĤ†

1∥F
√
Tp

)
(17)

The right-hand side of this new inequality is linear in N which
shows the clear impact of noise level on the presented upper bound.
We will explore this further in the next section.

It is worth mentioning that, the observations made on the
tightness of this bound with respect to the values of δSN(Ĥ1) and N
hold true without imposing the restrictive rank conditions required
for Theorem 1, namely r < k.

Remark 4. The upper bounds presented in Theorem 1 and Theo-
rem 2 can be easily extended to the errors-in-variables (EIV) setting,
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i.e., when both the inputs and outputs are corrupted by noise. In this
setting, if we model the input noise similarly to the output noise (8),
(9), where the noise on each input is also bounded in magnitude by
N , we obtain the following modifications. For Theorem 1, we can
show that if σr(H̃1)−

√
(pTp +mT)MN > 0, then we have:

∥ỹpred − ypred∥2 ≤
√
2
(
∥h̃∥2 +

√
pTp +mTN

)
max


(

1

σr(H̃1)−
√
(pTp +mT)MN

)2

,

(
1

σmin(H̃1)

)2


×
(
∥Ỹf∥F +

√
pTfMN

)√
(pTp +mT)MN

+ ∥H̃†
1∥F

√
pTp +mTN

(
∥Ỹf∥F +

√
pTfMN

)
+
√
pTfMN∥H̃†

1h̃∥F

For Theorem 2, we can show that if σr(Ĥ1) −√
(pTp +mT)MN > 0, then we have that:

∥ŷpred − ypred∥2 ≤
√
2
(
∥Ỹf∥F +

√
pTfMN

)
(

1

σr(Ĥ1)−
√
(pTp +mT)MN

)2 (
∥h̃∥2 +

√
pTp +mTN

)
(
∥Ĥ1 − H̃1∥F +

√
(pTp +mT)MN

)
+ ∥Ĥ†

1∥F

(∥h̃∥2 +
√
pTp +mTN)

(
∥Ŷf − Ỹf∥F +

√
pTfMN

)
+ ∥ŶfĤ†

1∥F
√
pTp +mTN

Remark 5. If σr(H1) is known, we can replace σsq(H̃1)

with max

{(
1

σr(H1)

)2
,
(

1
σmin(H̃1)

)2}
and

(
1

δSN(Ĥ1)

)2
with

max

{(
1

σr(H1)

)2
,
(

1
σmin(Ĥ1)

)2}
in Theorem 1 and Theorem 2,

respectively. This results in smaller bounds in (13) and (16), and
eliminates the requirement for a positive δSN . However, knowing
σr(H1) requires knowledge on the noise-free offline data so it may
not be practical if such information is unavailable.

IV. ANALYSIS OF THE BOUNDS

In this section, we provide numerical illustrations of the tightness
(i.e., smallness) of the upper bounds established in the previous
section and the effects of the TSVD method on prediction accuracy.
We explore different noise scenarios and pinpoint the conditions that
result in a small bound. For this analysis, we introduce the notion
of the “relative gap”, which measures the percentage difference
between the left-hand side and the right-hand side of (13) and (28)
normalized by the output magnitude:

Relative Gap =
Right-hand side − Left-hand side

∥ypred∥2
× 100

A small relative gap means that the bounds are relatively tight, and
thus the bounds can be viewed as reasonable approximations of the
true prediction error. On the other hand, a large relative gap means
that the bounds are too loose to be useful in practice.

We use Monte Carlo experiments of randomly-generated first-
and second-order systems, where we evaluate the effectiveness of
the TSVD method on prediction accuracy, the general performance

Fig. 1. Comparison of normalized prediction errors using raw offline data and
low-rank approximation of offline data

and applicability of the upper bounds, the effects of noise on their
tightness, and the conditions where these effects are small.

Each Monte Carlo study comprises of 1,000 randomly-generated
stable systems. While the process for generating most of the
parameters for these systems is identical (as described below) the
experiments differ in the way conditions on Tp and δSN are enforced.

Random systems: The random systems are n-th order stable
discrete-time systems with p outputs and m inputs and are generated
using the drss command in MATLAB R2020a. Parameters n, p,
m, and Tf are all drawn from discrete uniform distributions, where
n ∈ {1,2}, Tf ∈ {1,2,3}, and p,m are chosen between 1 and n.
The horizon Tp will be discussed later. For each random system,
we simulate the system’s response to an input signal with elements
uniformly distributed between −1 and 1. Using this approach, we
collect 100 timesteps of input and output offline data (L = 100).
Since the offline data is randomly generated, it is guaranteed to
satisfy condition (2). As for the online data, the elements of uini and
upred, as well as the latent initial state xini, are generated randomly
from the uniform distribution between −1 and 1. We then use
uini and xini to calculate yini. As for the output noise, we use 50
logarithmically-spaced points between decades 10−8 and 10−3 as
our noise levels. For each noise level, we corrupt the output data with
100 different random noise realizations. Each noise element will be
a uniformly-distributed random number in the interval (−N,N). In
total, we have 1,000 different random systems with 5,000 different
noise scenarios for each system.

TSVD prediction accuracy: We first study the effects of the
TSVD method itself on the prediction accuracy. To this end, we
generate 1,000 systems as described above with Tp chosen randomly
between 1 and 3 for each system. There are no restrictions on δSN
for this study. We record ∥ỹpred−ypred∥2 and ∥ŷpred−ypred∥2
(i.e., the left hand sides in (13) and (16)) in each scenario, and plot
them against each other. The results are presented in Fig. 1, with a
45-degree line for better visual comparison. A logarithmic scale is
used for both axes. The study reveals that the normalized prediction
error remained low for most of the analyzed scenarios, especially
when δSN had a sufficiently large value. While the TSVD method
improved predictions in 52% of the scenarios, there were instances
where it led to poorer predictions. Therefore, we conclude that it
cannot be used generically to mitigate noise in OE settings.

Remark 6. We acknowledge that the application of unstructured
rank-r approximation (11) may not be appropriate for the OE setup
(9) because this approach inherently assumes that all elements of
the Hankel matrix (i.e., both the inputs and outputs) are perturbed,
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Fig. 2. Comparison of the relative gaps obtained from Theorem 1 and Theorem 2.

Fig. 3. Average upper bound values at each noise level plotted against the noise
level N .

which is not the case in our scenario. For the OE setup, the General-
ized Low Rank Approximation (GLRA) [18] can be considered as a
more suitable de-noising heuristic. This is a topic for future research.

Comparison of the upper bounds: Next, we generate 1,000
random systems as described above, but choose Tp such that
rank(H̃1) = r. Although this condition is only required for the
first bound, we enforce it for the second bound as well to allow
for a fair comparison between the two bounds. Note that, for the
condition rank(H̃1) = r to hold, we must have have that

Tp =
n

p
.

To show this, notice that H̃1 has mT + pTp rows. We know that
Ỹp is almost surely full row rank due to the measurement noise, i.e.,
rank(Ỹp) = pTp. Thus, if Hu is also full row rank, which is the
case for our simulations due to the offline input being randomly
generated, then H̃1 is almost surely full row rank as well, which
implies that it must have r rows. Therefore, we have that r =
mT + pTp, which coupled with condition (2), implies that Tp = n

p .
As discussed previously, by setting Tp = n

p , we may prevent the
unbounded growth described in (14). In addition to ensuring that
Tp = n

p , we ensure that δSN > 0 for both H̃1 and Ĥ1 as required
by Theorems 1 and 2.

The recorded relative gaps are plotted against each other in Fig. 2,
with a 45-degree line for better visual comparison. Additionally, the
average recorded upper bound values at each noise level for both
theorems are plotted against the noise level N in Fig. 3 to illustrate
the impact of this value on our upper bounds. A logarithmic scale
is used for both axes in both figures. The results illustrated in
Fig. 2 show that the first upper bound outperformed the second

Fig. 4. Box plots illustrating the median, 25th, and 75th percentiles (box edges) of
relative gap values for both theorems under the influence of the δSN > 0.6 condition.
Whiskers extend to the most extreme non-outlier data points, and outliers are plotted
individually with ‘+’ symbols. The top and bottom subplots depict the relative gap
values for the first and second upper bounds, respectively.

one in most simulations. However, this advantage depended on
whether or not Tp = n/p, as the relative gap would have had large
values for the first bound if this condition was not met (since the
considered noise levels are relatively small). Regardless, there were
cases where both upper bounds demonstrated large relative gaps,
which occurred when N is large. Further, as depicted in Fig. 3,
the plots for both upper bounds exhibit a slope of approximately
1, indicating an almost linear relationship between the noise level
N and the bounds, which is an observation that is consistent with
those made based on inequalities (15) and (17).

Enforcing a lower bound on δSN: One of the major reasons for
the large gaps mentioned above was the value of δSN being small and
close to zero, which resulted in large values for both upper bounds.
Therefore, we repeated the simulations, this time enforcing that
δSN was above 0.6 for H̃1 and Ĥ1 for the first and second bound,
respectively. Additionally, now that we are studying the bounds
individually and not against each other, we no longer enforced the
Tp = n/p condition for the second bound. In these simulations,
we recorded the highest relative gaps (worst-case) in each noise
level and plotted a box plot (Fig. 4) to visualize the performance
of the bounds for all systems in the worst-case scenarios. We use
a logarithmic scale for both axes to provide clearer visualization.
The plots reveal the high accuracy of both upper bounds under the
specified δSN condition, with median and average values remaining
below 10% and 25%, for the first theorem and below 15% and 50%
for the second one, across all noise levels. It is clear that imposing a
minimum δSN threshold across the datasets significantly enhances
the tightness of these bounds. Even in instances where large relative
gaps were observed, they remained notably smaller compared to
those occurring without the δSN condition. Overall, the first theorem
performed better in the presence of the δSN condition, while the
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second theorem had the advantage of not requiring any restrictions
on the value of Tp.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced two novel upper bounds on output predic-
tion error, one for direct prediction from raw offline data and another
for prediction using the low-rank approximation of the offline data.
These upper bounds leverage offline system data and a known noise
level denoted as N to bound the error. The results are validated
with a series of Monte Carlo simulations. We demonstrated the
effectiveness and precision of our bounds and identified the optimal
setting for a close bound. The first bound offers slightly higher accu-
racy, while the second bound is more versatile and does not impose
constraints on the construction of the Hankel matrix. Further, We ex-
amined the TSVD method’s applicability in mitigating noise effects
in output prediction, highlighting its limitations due to inconsistent
performance in the OE setup. Future work will study how the the-
orems can enhance the data-driven methods based on the behavioral
approach to systems theory and improve their performance in data-
driven control and simulation when dealing with inexact offline data.
Finally, we will investigate the application of GLRA in the OE setup.

VI. APPENDIX

A. Proof of Lemma 1

The matrices δ, ∆1, and ∆2 have pTp, pTpM , and pTfM
entries, respectively. By leveraging the definition of the 2-norm and
the Frobenius-norm, along with the fact that each element of these
matrices is magnitude-bounded by the noise level N , we obtain
the results.

B. Proof of Lemma 2

Suppose the underlying state-space model of the dynamics is
given by:

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).

Define the vector of latent states, X, and the extended observability
and convolution matrices Ot and Tt as follows:

X =
[
x(Tp) x(Tp + 1) . . . x(L− Tf)

]
Ot =

[
C⊤ (CA)⊤ . . . (CAt−1)⊤

]⊤
Tt =


D 0 . . . 0
CB D . . . 0

...
. . . . . .

...
CAt−2B CAt−3B . . . D


Using the state-space model, Yf can be expressed as a linear

combination of X and Uf :

Yf = OTf
X + TTf

Uf (18)

and X can be expressed as a linear combination of Up and Yp:

X = ATpO†
Tp−1(Yp −TTp−1Up) + CTp−1Up

where, since Tp ≥ ℓ, X is unique, and

CTp−1 =
[
ATp−1B ATp−2B . . . AB B

]

Substituting this expression for X into (18) we conclude that Yf
can be expressed as a linear combination of Up, Uf , and Yp and
therefore removing Yf from H does not alter its rank.

C. Proof of Theorem 1

We use the following notation for this proof:

δh = h̃− h

An initial bound is obtained on ∥ỹpred − ypred∥2 as follows:

∥ỹpred − ypred∥2 = ∥ỸfH̃†
1h̃− YfH

†
1h∥2

= ∥(Yf +∆2)H̃
†
1(h+ δh)− YfH

†
1h∥2

= ∥Yf(H̃†
1 −H†

1)h+ YfH̃
†
1δh +∆2H̃

†
1h̃∥2

≤ ∥Yf(H̃†
1 −H†

1)h∥2 + ∥YfH̃†
1δh∥2 + ∥∆2H̃

†
1h̃∥2

≤ ∥Yf∥F∥H̃†
1 −H†

1∥F∥h∥2 + ∥Yf∥F∥H̃†
1∥F∥δ∥2

+ ∥∆2∥F∥H̃†
1h̃∥F

(19)

where we have employed the triangle inequality and the fact that
the 2-norm is less than the Frobenius norm. We bound ∥Yf∥F in
the above expression as follows:

∥Yf − Ỹf∥F = ∥∆2∥F
⇒ ∥Yf∥F − ∥Ỹf∥F ≤ ∥∆2∥F
⇒ ∥Yf∥F ≤ ∥Ỹf∥F + ∥∆2∥F (20)

Similarly:

∥h∥2 ≤ ∥h̃∥2 + ∥δ∥2 (21)

Utilizing [17, Theorem 3.3], we bound ∥H̃†
1 −H†

1∥F as follows:

∥H̃†
1 −H†

1∥F ≤
√
2max{∥H†

1∥22,∥H̃
†
1∥22}∥∆1∥F (22)

We proceed to show that max{∥H†
1∥22,∥H̃

†
1∥22} ≤ σsq(H̃1). To

this end, we write:

max{∥H†
1∥22,∥H̃

†
1∥22} = max{σmax(H

†
1)

2, σmax(H̃
†
1)

2}

= max

{(
1

σmin(H1)

)2

,

(
1

σmin(H̃1)

)2
}

To bound
(

1
σmin(H1)

)2
, we note that H1 is a rank-r matrix based

on lemma 2, therefore σmin(H1) = σr(H1). Now, using Weyl’s
inequality [16, Proposition 1], we obtain:

|σr(H̃1)− σr(H1)| ≤ ∥∆1∥2
⇒ |σr(H̃1)| − |σr(H1)| ≤ ∥∆1∥F
⇒ σr(H̃1)−

√
pTpMN ≤ σr(H1)

(23)

where we have used Lemma 1 and the fact that the 2-norm is
less than the Frobenius norm. Based on our assumption that
δSN(H̃1) = σr(H̃1)−

√
pTpMN is positive, we can write:(

1

δSN(H̃1)

)2

≥
(

1

σr(H1)

)2

=

(
1

σmin(H1)

)2

(24)
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and consequently:

max

{(
1

σmin(H1)

)2

,

(
1

σmin(H̃1)

)2
}

≤ max

{(
1

δSN(H̃1)

)2

,

(
1

σmin(H̃1)

)2
}

= σsq(H̃1)

Hence:

∥H̃†
1 −H†

1∥F ≤
√
2σsq(H̃1)∥∆1∥F (25)

Combining (20), (21), and (25) allows us to rewrite (19) as:

∥ỹpred − ypred∥2 ≤
(
∥Ỹf∥F + ∥∆2∥F

)√
2σsq(H̃1)∥∆1∥F(

∥h̃∥2 + ∥δ∥2
)
+
(
∥Ỹf∥F + ∥∆2∥F

)
∥H̃†

1∥F∥δ∥2

+ ∥∆2∥F∥∥H̃†
1h̃∥F

Applying Lemma 1, the result follows.

D. Proof of Theorem 2
Similarly to the previous proof:

∥ŷpred − ypred∥2 = ∥ŶfĤ†
1h̃− YfH

†
1h∥2

≤ ∥Yf∥F∥Ĥ†
1 −H†

1∥F∥h∥2 + ∥Ŷf − Yf∥F∥Ĥ†
1∥F∥h∥2

+ ∥ŶfĤ†
1∥F∥δ∥2 (26)

Similar to (25), we have that: ∥Ĥ†
1 −H†

1∥F ≤
√
2σsq(Ĥ1)∥Ĥ1 −

H1∥F . Since Ĥ is a rank-r matrix by construction, and because
δSN(Ĥ1) > 0, we have that Ĥ1 is also rank-r. This implies that
σr(Ĥ1) = σmin(Ĥ1), so we simplify σsq(Ĥ1):

σsq(Ĥ1) = max


(

1

δSN(Ĥ1)

)2

,

(
1

σmin(Ĥ1)

)2


= max


(

1

δSN(Ĥ1)

)2

,

(
1

σr(Ĥ1)

)2
 =

(
1

δSN(Ĥ1)

)2

Next, we calculate a bound on ∥Ĥ1 −H1∥F :

∥Ĥ1 −H1∥F = ∥Ĥ1 − (H̃1 − [0⊺mT×M∆⊺
1]

⊺)∥F
≤ ∥Ĥ1 − H̃1∥F + ∥∆1∥F (27)

Therefore:

∥Ĥ†
1 −H†

1∥F ≤
√
2

(
1

δSN(Ĥ1)

)2 (
∥Ĥ1 − H̃1∥F + ∥∆1∥F

)
(28)

We bound ∥Ŷf − Yf∥F similar to ∥Ĥ1 −H1∥F :

∥Ŷf − Yf∥F ≤ ∥Ŷf − Ỹf∥F + ∥∆2∥F (29)

Using (20), (21), (28), and (29) we rewrite (26) as:

∥ŷpred − ypred∥2 ≤
(
∥Ỹf∥F + ∥∆2∥F

)√
2

(
1

δSN(Ĥ1)

)2

(
∥Ĥ1 − H̃1∥F + ∥∆1∥F

)(
∥h̃∥2 + ∥δ∥2

)
+
(
∥Ŷf − Ỹf∥F + ∥∆2∥F

)
∥Ĥ†

1∥F
(
∥h̃∥2 + ∥δ∥2

)
+ ∥ŶfĤ†

1∥F∥δ∥2

Applying Lemma 1 proves the result.

Remark 7. In place of (16), a different upper bound can be
obtained if we consider the approach in [16, Section 6.3] to bound
∥Ĥ1 −H1∥F :

∥Ĥ1 −H1∥F ≤ ∥∆1∥F + ∥PU2
∆1PV2

∥F + 2(1 +
√
2)∥∆1∥F

min

{
2

σr(H1)
∥∆1∥F ,1

}
where PU2 and PV2 are orthogonal matrices. Multiplication by the
orthogonal matrices preserves the Frobenius norm. Based on this
and (24) we have:

∥Ĥ1 −H1∥F ≤ 2∥∆1∥F + 2(1 +
√
2)∥∆1∥F

min

{
2

δSN(H̃1)
∥∆1∥F ,1

}
(30)

However, in Theorem 2, we utilize (27) to bound ∥Ĥ1 − H1∥F
instead of (30), because our numerical studies showed that it
provides a tighter bound when the noise is modeled using (9), (8).
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