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Abstract

Optical trapping enables precise control of individual particles of different sizes,
such as atoms, molecules, or nanospheres. Optical tweezers provide free-space
omnidirectional optical trapping of objects in laboratories around the world. As
an alternative to standard macroscopic setups based on lenses, which are inher-
ently bound by the diffraction limit, plasmonic and photonic nanostructures
promise trapping by near-field optical effects on the extreme nanoscale. How-
ever, the practical design of lossless waveguide-coupled nanostructures capable of
trapping deeply sub-wavelength particles in all spatial directions using the gra-
dient force has until now proven insurmountable. In this work, we demonstrate
an omnidirectional optical trap realized by inverse-designing fabrication-ready
integrated dielectric nanocavities. The sub-wavelength optical trap is designed
to rely solely on the gradient force and is thus particle-size agnostic. In par-
ticular, we show how a nanometer-sized trapped particle experiences a force
strong enough to overcome room-temperature thermal fluctuations. Furthermore,
through the robust inverse design framework, we tailor manufacturable devices
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operating at near-infrared and optical frequencies. Our results open a new regime
of levitated optical trapping by achieving a deep trapping potential capable of
trapping single sub-wavelength particles in all directions using optical gradient
forces. We anticipate potentially groundbreaking applications of the optimized
optical trapping system for biomolecular analysis in aqueous environments, lev-
itated cavity-optomechanics, and cold atom physics, constituting an important
step towards realizing integrated bio-nanophotonics and mesoscopic quantum
mechanical experiments.

Keywords: Inverse design, optical trapping, topology optimization, dielectric
nanocavities, sub-wavelength, integrated photonics.

Optical tweezers are versatile tools for interdisciplinary research due to their precise
control and manipulation of micron-sized objects [1]. With applications ranging
from studies in microbiology [2, 3] to fundamental physics research [4–6], the optical
tweezer is a decorated research tool. Undoubtedly, the success of the optical tweezer is
owed to its ability to omnidirectionally trap objects by use of a single laser; however,
since it is based on free-space optics, it is inherently bound by the diffraction limit.
This limit can result in prohibitive power requirements to trap nanometer-scaled par-
ticles. As shown in [7], a micrometer-sized polystyrene sphere can be stably trapped
with a fraction of a milliwatt, while a 10 nm sphere requires 1.5 W. To overcome this
power limitation, nanostructured metallic devices have been employed [8–10], which
can achieve stable trapping of nanometer-scaled particles at much lower powers,
utilizing the strongly localized optical forces of plasmonic resonances. Such plasmonic
devices have successfully been applied to the optical trapping of single proteins [10],
and single particle Raman spectroscopy [9], among others. However, inherent losses
in metals lead to heating and potential stability concerns of the electromagnetic
resonator or adverse effects on the trapped objects [11–14]. To solve these issues, near-
lossless nanostructured dielectric optical traps have been proposed [11, 12, 15, 16].
Experimental realizations of dielectric traps include the trapping of single quantum
dots [11] and the trapping of particles utilizing Fano resonances [15], to name a few.

Conventionally, due to lower field strength, most dielectric traps show lower
trapping stiffness than their plasmonic counterparts. However, recent developments
in the design and fabrication of dielectric bowtie-based nanocavities suggest access
to hitherto unexplored field strength in dielectrics with deeply sub-wavelength light
confinement [17–19]. Bowtie nanocavities have previously been used as efficient opti-
cal traps [20–22], by utilizing the strong field enhancements at the material interfaces
[23–25]. However, this field enhancement inevitably makes the particle stick to the
resonator walls [20, 22], impeding omnidirectional trapping with gradient forces.
For mesoscopic quantum mechanical experiments, any contact with the resonator
material is detrimental to the coherence of the prepared state [4], and in biomolecular
analysis, it may lead to undesired charge reconfiguration [26].
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In this work, we directly address the issue of omnidirectional trapping in nanos-
tructures by inverse-designing dielectric nanocavities that trap particles with sizes
significantly below the diffraction limit. A recent study [16] addresses the issue of
omnidirectionality for a limited range of particle sizes, by utilizing gradient forces
and self-induced back-action (SIBA) effects [27]. Here, by only relying on gradient
forces, we deterministically tailor the device geometry of a nanostructure to feature a
particle-size independent omnidirectional trapping potential. The inverse design pro-
cess relies on topology optimization (TO), a design optimization method widely used
in the design of optical applications like waveguides [28, 29], cavities [18, 30, 31],
demultiplexers [32], microresonators [33], and more. Experimental evidence [18] shows
that topology-optimized structures can directly incorporate manufacturing constraints
[34, 35], ensuring precise fabrication of optimized device blueprints. In a recent work, a
plasmonic optical trap was designed using TO by maximizing the electric-field strength
at the center of a cavity [36], yielding the well-known bowtie-like structure, that can
trap particles in two dimensions within the nanoscale gap. In this work, we employ
a novel TO scheme based on fitting the electromagnetic field profile to a desired
Gaussian shape, enabling omnidirectional trapping within a specified volume. Apply-
ing the TO procedure at different wavelengths and background materials, we design
waveguide-coupled and fabrication-ready devices, that may pave the way for future
on-chip levitated optomechanics, on-chip biomolecular analysis, and cold-atom-based
quantum many-body systems [37].

Inverse-designing omnidirectional trapping

To trap particles with a radius R ≪ λ, where λ is the wavelength of light, we may
apply the dipole approximation [38]. To show that our results apply to a wide range of
lossless particles, we consider a non-resonant spherical particle with refractive index
n = 2 and radius R = 15 nm, representative for both proteins (n ≃ 1.6, R ∈ [1
nm−100 nm]) [12, 39] and semiconductor quantum dots (n ≃ 2.4, R ∈ [2 nm−50 nm])
[12, 40–42]. For our choice of lossless and non-resonant particles, scattering forces are
negligible and the force may thus be completely described by the gradient force. This
conservative force can be described as the gradient of the trapping potential [38],

U(r) = −αR

4
[E∗(r) ·E(r)] , (1)

where E is the electric field and αR is the real part of the spherical particle’s polariz-
ability, as given by the Clausius-Mossotti relation [38]. Therefore, for a given particle
in the nanostructure, the trapping potential is directly described by calculating the
electric field distribution of the empty cavity. The dipole approximation may, however,
break down for particles that are larger, exhibit loss, are resonant, or possess a higher
refractive index, where additional effects like SIBA or scattering forces (e.g., radiation
pressure or spin-curl forces) [38, 43] may need to be accounted for. In post-analysis,
we verify that our devices are unaffected by these effects.

To model optical trapping in the dipole approximation, we calculate the electric
field of the empty cavity, by solving Maxwell’s equations. The trapping device consists
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of two silicon waveguides connected to a central design domain, in which TO is applied,
see Fig. 1a. The central region contains a cylindrical air exclusion region with a radius
of Rexc = 300 nm and thickness of 800 nm, in which the stable trap is located. One of
the waveguides is excited with the fundamental mode at an input power of Pin = 15
mW and at a free-space wavelength of λ. The wavelength is a freely selectable design
parameter, determined by the desired application of the trap. Here, as a demonstra-
tion, we inverse design a device in the near-infrared regime (λ = 1.55 µm), and in one
of the following sections, we design an optical trap in the optical regime (λ = 775 nm).
The material distribution in the design domain is optimized to obtain an electric field
distribution that results in an omnidirectional trapping potential. Accordingly, we for-
mulate our design problem as a continuous optimization problem where the material
distribution is controlled by our design parameters and where we seek to minimize
a Figure of Merit (FOM) that defines the difference of the electric-field norm with
respect to a reference field Eref. This expression may be written as:

FOM ≡ Φ =

√∫
Ω

[
Θ

( ∥E(r)∥
∥E(r0)∥

− ∥Eref(r)∥
∥Eref(r0)∥

)]2
dΩ , (2)

where r0 is the center point in the design domain, Θ(x) is a smoothed Heaviside
threshold function [44] and Ω is the optimization domain defined by the exclusion
region, see Fig. 1a. To ensure sub-wavelength omnidirectional trapping, we select the
reference field to be a three-dimensional Gaussian potential with standard deviations
σx = σy = 300 nm and σz = 400 nm, to ensure that it features a stable trapping
minimum in all spatial directions. In this expression, the Heaviside projection Θ(x)
ensures that the FOM promotes only electric field distributions as steep as, or steeper
than the target field. The standard deviations are chosen to match the dimensions of
the cylindrical exclusion nanocavity with a volume Vcav below the diffraction limit:
Vcav = 0.22 µm3< (λ/2)3 = 0.465 µm3. For more information on the inverse design
framework, see Methods.

Inverse-designed nanocavity in the near-infrared

The inverse-designed omnidirectional trap and its key characteristics are presented in
Fig. 1. In Fig. 1.a we show the electric-field intensity for the optimized structure in the
near-infrared, which has a well-defined bell-shaped curve in all spatial directions. This
is confirmed by observing the different plane- and line-cuts for the trapping potential
in Fig. 1.b. One can identify a minimum of the potential at the optimization region’s
center, resulting in an omnidirectional trapping potential. Interestingly, the potential
has a similar shape in all directions, meaning that the Heaviside projection Θ(x) in
the FOM allowed the potential to become steeper than the reference Gaussian along
the z-axis. For the 15 mW of optical input power and the reference particle with
R = 15 nm and n = 2, the trapping minimum is stable against thermal fluctuations
at room temperature (T = 300 K), which conventionally requires a characteristic
trapping depth of U ≃ 10 kBT [38], where kB is the Boltzmann constant. Remarkably,
to achieve this trapping depth, the optimized design efficiently couples and confines
light into the cavity while using an input power 2 orders of magnitude less than
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conventional tweezers (∼1 W [7]). Notably, we find that devices optimized for smaller
exclusion radii Rexc and associated standard deviations of the reference field, yield
deeper trapping potentials. However, this gain in trapping depth crucially comes at
the expense of achieving omnidirectional trapping. This sets an upper bound on the
minimum length scale of Rexc before the omnidirectionality of the trap is lost, in our
case at around Rexc ≃ 250 nm. For more details on this study refer to section S2.3 in
the Supplementary Information (SI).

Fig. 1 Optical response and trapping potential for the inverse-designed structure. a Rendering of
the lower half of the optimized structure, with the electric-field intensity |E|2 response at λ = 1.55
µm, with a zoom-in in the optimization region (Ω), when excited with the fundamental mode of the
waveguide at an input power Pin = 15 mW. b Trapping potential in the optimization region for the
axial line- and plane-cuts as a function of the distance from the center (d). The stable trapping regime
below U = −10 kBT is shown in gray.

From the potential in the dipole approximation, we calculate the axial components
of the force experienced by the particle in Fig. 2.a. Specifically, we show that close to
the origin, the force becomes linear to a good approximation, and thus, the particle-
trap system behaves as a linear spring-mass system. The force in the linear region
can then be written as, Fi(ri) = κi · ri, where i ∈ {x, y, z} is an axis-index, κ is a
vector with the axial components of the trapping stiffness and ri is the position on
the axis. Fitting the curves in the central region with a linear function yields trapping
stiffnesses of κx = 0.53 fN/nm, κy = 0.46 fN/nm, and κz = 0.51 fN/nm, which are
comparable to state-of-the-art (SOTA) dielectric devices [11, 15, 45]. To validate the

5



dipole approximation, we solve the full Maxwell’s equations with the sphere (R = 15
nm and n = 2) present in the optimized geometry, and calculate the force using the
Maxwell Stress Tensor (MST) formalism [38]. In Fig. 2.b we show the axial components
of the force experienced by the particle when displaced in increments of 35 nm in the
three directions. By comparing the force derived from the MST calculation and the
dipole approximation, we confirm that there is excellent agreement between the results
and that there are no other dominant effects, such as SIBA [27, 46], or scattering
forces [38, 43].

Fig. 2 Trapping force calculation and Maxwell stress tensor (MST) validation. a Trapping force for
the empty cavity in the dipole approximation for the axial components. b Force calculations via the
MST for different particle positions, compared to the dipole approximation prediction (black line).

We have shown that once the particle is at the center of the trap, it will be omni-
directionally trapped. However, loading the particle into the trap may potentially be
jeopardized by other physical effects, such as the field enhancement observable at the
bottom interface of the structure in Fig. 1.a or the Casimir-Polder (CP) forces near the
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material interfaces. Analyzing the trapping potential landscape near material inter-
faces reveals that CP forces dominate over optical forces. These forces, however, do
not compromise the loading of the trap, as long as the particle remains further away
than 20 nm from the device walls. To quantify this, we calculate that the worst-case
probability of a particle getting stuck at the device walls during the loading of the trap
is less than 12%. Moreover, we find that for traps with deeply subwavelength exclu-
sion region radii Rexc the CP-force dominates optical forces, making omnidirectional
trapping of levitated particles unattainable. See section S3 in the SI for details.

Benchmarking trapping performance

In the optical trapping community, different metrics are used to benchmark opti-
cal trapping platforms of lossless particles; among others, power normalized trapping
depth [12, 16, 36, 47], trapping force [11, 12, 36, 47], and trapping stiffness
[4, 8, 15, 45, 46] are commonly used. These measures may depend on the physical prop-
erties of the trapped particle and its environment, the device footprint, or the input
power, making comparisons difficult. Therefore, we propose a normalized trapping
stiffness metric (ηi) for optical trapping that normalizes trapping stiffness to particle
volume, to the contrast between particle and background dielectric permittivity, and
to input power,

ηi =
κi ε0
αR Pin

, (3)

where ε0 is the vacuum permittivity and i ∈ {x, y, z} is an axis-index. This met-
ric, which characterizes the power efficiency of optical forces per distance, enables
one-to-one comparisons of optical trapping among different platforms. For our trap it
yields efficiencies of ηx = 1.67 pN/(µm4·µW), ηy = 1.44 pN/(µm4·µW) and ηz = 1.6
pN/(µm4· µW) along the three axial directions. We note that SOTA plasmonic designs,
in general, show larger trapping stiffnesses but do not provide omnidirectional trap-
ping. In addition, plasmonic devices come at the expense of optical losses to heating,
which can compromise trapping characteristics [11–14]. Compared to other dielec-
tric platforms [11, 15, 45], the present design shows similar normalized trapping
stiffnesses while simultaneously providing omnidirectional trapping through gradient
forces. Compared to optical tweezers, which provide omnidirectional trapping, we
achieve similar trapping stiffnesses at significantly lower input power, thus yielding
higher normalized trapping stiffnesses. This demonstrates the usefulness of miniatur-
izing the free-space optics by means of a waveguide-coupled nanostructured device.
For more details on the comparison with SOTA devices, refer to section S4 in the SI.

Inverse-designed nanocavities for omnidirectional trapping
applications

The miniaturized integrated circuit shown in Fig. 1.a bridges the omnidirectional
trapping of optical tweezers with the near-field optics of ultra-compact nanostructures,
thereby enabling a range of chip-scale applications. As an example, we demonstrate
its potential in levitated cavity optomechanics. Owing to the harmonic potential close
to the cavity center, we calculate the natural frequencies of the harmonic oscillator
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for the different axes as Ω0,i =
√

κi/m, where m is the mass of the particle and
i ∈ {x, y, z} is an axis-index. Using a density of ρ = 2 g/cm3, which represents particles
like proteins (ρ ∈ [1.4 g/cm3 - 1.5 g/cm3]) [48] and quantum dots (e.g. ρSi = 2.33
g/cm3, ρGaAs = 5.32 g/cm3), we find Ω0,x = 4.33 rad·MHz, Ω0,y = 4.03 rad·MHz and
Ω0,z = 4.25 rad·MHz. In the quantum-mechanical limit, the mean thermal occupancy
of the mechanical energy states is given by ⟨n⟩ = kBT/ℏΩ0 [4], where ℏ is the reduced
Planck constant. Resolving the quantum ground state requires ⟨n⟩ < 1, which with the
natural frequencies of this system, requires center-of-mass equilibrium temperatures of
Tx = 0.21 mK, Ty = 0.19 mK and Tz = 0.20 mK. These temperatures are two orders
of magnitude higher than for conventional optical tweezers [4], which combined with
the particle-size agnostic omnidirectional trapping, facilitates mesoscopic quantum
optomechanical experiments with optically trapped and cooled nanoparticles. One
could reach these temperatures by lowering the ambient temperature or employing
methods like parametric feedback cooling [4]. A representation of the optomechanical
system is shown in Fig. 2.a.

Fig. 3 Rendering of the lower half of the inverse-designed structures for two excitation wavelengths.
a Levitated cavity optomechanical setup, with the frequency response of the mechanical modes of
the trapped particle in the three spatial axes. We assume a gas pressure of 10 mbar which yields a
spectral broadening of 1.39 kHz, according to kinetic theory [4]. b Integrated biophotonic setup in
an aqueous environment, where a molecule (modeled as a particle with n = 2 and R = 15 nm) is
trapped in a stable omnidirectional potential.

To demonstrate the versatility of the design framework, we move towards visible
optical frequencies and design a device suited for integrated biological sensing. For
biological characterization in aqueous environments, it is crucial to operate within the
biological window [49], a spectral range minimizing the optical excitation of vibra-
tional modes in water molecules. This minimizes heating the environment, which could
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otherwise compromise the trapping setup [11–14]. To this end, we scale all geomet-
ric design parameters and the wavelength by half, shifting towards the visible optical
frequencies at λ = 775 nm. Accordingly, we set the background refractive index to
water and adjust the refractive index of silicon. The optimized trap in Fig. 2.b yields
an omnidirectional stable trap for a single particle at the center of the design, with
trapping stiffnesses of κx = 7.49 fN/nm, κy = 4.49 fN/nm, κz = 4.77 fN/nm, for a
particle with radius R = 15 nm and for an input power of Pin = 15 mW. The nor-
malized trapping stiffnesses for this device are ηx = 39.78 pN/(µm4·µW), ηy = 23.84
pN/(µm4·µW) and ηz = 25.33 pN/(µm4·µW). These values are higher than those of
the device operating in the near-infrared due to the compactness of the device, given
the same input power and particle size. The inverse-designed optical trapping device
is thus an integrated optical component capable of stably trapping biomolecules in all
spatial dimensions in an aqueous solution. One could envision using the platform, rep-
resented in Fig. 2.b, integrated with an optical detection scheme to trap and detect
particles in situ in biological environments, opening a path for the development of new
experiments and technologies in integrated biophotonics systems.

Discussion

The omnidirectional trapping of sub-wavelength nanoparticles in integrated optical
devices is central to many applications in the field of optical trapping, such as micro-
biology [2, 3], biophysics [43], or fundamental physics [4–6]. For deeply sub-wavelength
particles, where the dipole approximation is valid, we demonstrate that it is pos-
sible to tailor the electric field distribution and the trapping potential, by careful
nanostructuring of the dielectric environment. The target distribution of the electric
fields results in a particle size agnostic omnidirectional optical trap based on gradient
forces. To test the geometric limits of omnidirectional trapping, in the SI, we demon-
strate how CP forces set a lower size limit for the exclusion radius (Rexc), while a
parametric study indicates omnidirectional trapping only for exclusion radii above
Rexc ≥ 250 nm. To compare the optimized device to other nanophotonic platforms we
propose the metric of normalized trapping stiffness (η), which shows unprecedented
values compared to other SOTA omnidirectional traps [4, 16], highlighting the deeply
sub-wavelength nature of the trapped particles and the low input power required for
trapping. Moreover, our framework enables the design of manufacturable [18] optical
traps for a given application by rescaling the wavelength and the spatial dimensions
of the device and adjusting the material parameters accordingly, before applying the
inverse design process. We have demonstrated this in the near-infrared (λ = 1.55 nm)
and optical frequencies (λ = 775 nm). Since the designs can be fabricated by stan-
dard electron-beam lithography, we anticipate experimental realizations of the optical
traps, with applications in levitated cavity optomechanics and integrated biophotonics
technologies.

We also foresee developments in our inverse design framework. For instance, modi-
fications to the FOM and the optimization framework can enable the design of optical
traps based on different materials, traps for lossy or resonant particles, traps with
multiple trapping spots, or novel optical traps for multiple quantum emitters, such
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as quantum dots or cold atoms. These networks of trapped emitters may, in turn, be
used to study and develop quantum many-body systems [37].

Methods

Inverse design framework

We simulate the electromagnetic fields using Maxwell’s equations in the frequency
domain for the inverse design process, assuming time-harmonic behavior [38]. The
model is discretized and solved using the finite-element method with first-order Ned-
elec elements [50]. From the electric field, we calculate the FOM in Equation 2, which
is sought to be minimized through TO. Additionally, we control the minimum depth
of the trapping potential by adding a constraint to the optimization problem, which
prescribes a minimum electric-field norm value at r0. By enforcing the constraint, the
optimizer avoids local minima where the trapping potential has the correct shape but
is not deep enough for stable trapping. To ensure the manufacturability of the device,
we add a constraint to connect the design to the two waveguide ends [35] as well as
two minimum length scale constraints that act on the solid and void regions respec-
tively [34]. To minimize the constrained FOM, we apply TO on the design domain,
introducing one design variable per finite element in our discretized design domain,
which is used to interpolate between air (0) and silicon (1). The design variables are
fixed to only vary in the (x, y) plane and are linked in the z direction [51]. We apply
a filtering and thresholding procedure to regularize the design [44]. The filtered and
thresholded design variables are related to the material’s refractive index through a
material interpolation scheme [52]. The optimized design is obtained by solving the
topology optimization problem from a single uniform initial guess, using the globally
convergent method of moving asymptotes as the optimizer [53]. For more informa-
tion on the forward problem, the inverse design framework, and the full optimization
problem see the SI.
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Supplementary information for

Omnidirectional gradient force optical trapping in dielectric
nanocavities by inverse design

S1 Forces in optical trapping

To design a nanostructure that can omnidirectionally trap single particles we need
to perform optical force calculations. For particles with a radius R ≪ λ, where λ
is the wavelength of light, one may apply the dipole approximation. Calculating the
cycle-averaged force acting on a point-dipole for monochromatic electromagnetic fields
yields [38]:

⟨F⟩ = Fgrad + Frad + FSC , (S1)

where Fgrad is the gradient force, Frad is the radiation pressure force and FSC is the
spin-curl force [54]. The gradient force is given by:

Fgrad =
αR

4
∇[E∗ ·E] , (S2)

where E is the electric field, αR and is the real part of the polarizability. The radiation
pressure force is given by:

Frad =
σp

c
⟨S⟩ , (S3)

where σp = αI
k
ε0

is the particle’s total cross-section, αI is the imaginary part of the
polarizability, k is the wave-number, ε0 is the vacuum permittivity and c is the speed
of light. The spin-curl force is given by:

FSC = σpc [∇× ⟨L⟩] , (S4)

where ⟨S⟩ = 1
2 Re {E×H∗} is the cycle-averaged Poynting vector, H is the electric

field, ⟨L⟩ = ε0
4iω E×E∗ is the cycle-averaged spin density of the electromagnetic field

and ω is the angular frequency.
For spheres in a background medium with permittivity εback, the total polarizabil-

ity is given by

α =
α0

1− i k3

6πε0
α0

= αR + iαI , where α0 = 4πε0R
3 ε− εback
ε+ 2εback

, (S5)

where α0 is the Clausius-Mossotti polarizability [38] and ε(ω) is a frequency-dependent
dielectric permittivity. For lossless and non-resonant materials αR ≫ αI and the force
can be completely described by the conservative gradient force, which is generated by
a potential:

U(r) = −αR

4
[E∗(r) ·E(r)] , (S6)
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and the real part of the polarizability is described entirely by the Clausius-Mossotti
equation αR ≃ α0. Note that to obtain an omnidirectional trapping potential, given
that the force is F(r) = −∇U(r), it requires that the expression in Equation S6 has a
single minimum in all spatial directions. The particle will experience a net zero force
when it is at the minimum of the potential landscape, while if the particle is displaced
from there in any direction, it will feel an attractive force pushing it back to the
minimum, yielding omnidirectional trapping.

Calculating the cycle-averaged force acting on a particle directly from Maxwell’s
equations is also possible, without employing the dipole approximation. For a particle
enclosed by the surface ∂V the force is given by [38]:

⟨F⟩ =
∫
∂V

⟨
↔
T (r, t)⟩ · n(r)da (S7)

where n defines the vector normal to the particle surface and
↔
T is known as the

Maxwell stress tensor and can be written as

↔
T=

[
ε0εEE+ µ0µHH− 1

2

(
ε0εE

2 + µ0µH
2
) ↔
I

]
, (S8)

where H is the magnetic field, ε and µ are the relative dielectric permittivity and
permeability of the medium surrounding the particle, and ε0 and µ0 are the free-
space permittivity and permeability. The expression in Equation S7 has been used to
calculate the force acting on a particle introduced into the optimized optical trap to
validate the results in the dipole approximation.

S2 Inverse design framework

S2.1 The forward problem

To inverse design the optical trap, we first need to define and solve an appropri-
ate forward problem in order to model the nanophotonic system. This means solving
Maxwell’s equations in the frequency domain, assuming time-harmonic field behav-
ior [38]. The model in Fig. S1.a is discretized and solved using the finite element
method with first-order Nedelec elements [50]. The model is based on a simulation
domain consisting of two silicon optical waveguides (in dark gray) connected to a
design region ΩD (in blue) and an air cladding (in light gray). For the design in the
near-infrared (λ = 1.55µm), the dimensions (x, y, z) for the simulation domain are
(Lsim, wsim, hsim) = (9.1 µm, 4 µm, 1.5 µm), which are large enough to allow the fields
to decay away from the cavity, avoiding artificial numerical boundary reflections1. The
waveguide has dimensions of (Lwg, wwg, hwg) = (2.8µm, 275 nm, 400 nm). The height
of the waveguide was chosen to be at least half of the wavelength since this was
the smallest value yielding omnidirectional trapping. The dimensions for the design

1This is also the case at the waveguide ends. The waveguide is excited with the fundamental mode at a
port located a wavelength (λ) away from the edge of the simulation domain. This allows the fields reflected
in the waveguide to decay away from the input port.
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domain are (2LΩD
, LΩD

, hwg) = (2.5µm, 1.25 µm, 400 nm) and are chosen to have a
footprint of around 5(λ/n)2, where n is the refractive index of silicon. This device size
is large enough for the topology optimization to design couplers and mirrors. Lastly,
in the center of the design domain, there is a cylindrical exclusion region to trap the
particle, with radius Rexc = 300 nm. This radius has been carefully chosen to obtain
omnidirectional optical traps since there is a trade-off between the compactness of the
exclusion region radius and the possibility of obtaining omnidirectional trapping, as
further discussed in subsection S2.3. Note that for the integrated biophotonic design
the wavelength and all dimensions are halved.

To solve the problem in a computationally efficient way, we assume that the device
is symmetric around the (x, y) and (x, z) planes, leaving only a quarter of the total
simulation domain to be solved. To impose the symmetry we apply perfect electric
conductor (PEC) boundary conditions on the (x, z) plane and perfect magnetic con-
ductor boundary (PMC) conditions on the (x, y) plane. On the rest of the boundaries,
we apply first-order absorbing boundary conditions. Lastly, PML regions with a length
of λ are defined at the ends of both waveguides to avoid reflections at the ends of the
simulation domain.

Fig. S1 a Simulation domain with square design domain (ΩD) in blue connected to the optical
waveguides. b Normalized reference Gaussian electric field for the (x, y) plane.

S2.2 The optimization problem

Having computed the solution to the forward problem for a given material distribution
in the modeling domain, we compute the Figure of Merit (FOM) Φ, which is to be
optimized. As outlined in the main document, the FOM defines the difference of the
electric-field norm with respect to a reference field, which is directly related to the
shape of the potential and is given by:

FOM ≡ Φ =

√∫
Ω

[
Θ

( ∥E(r)∥
∥E(r0)∥

− ∥Eref(r)∥
∥Eref(r0)∥

)]2
dΩ , (S9)
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where r0 = (x0, y0, z0) = (0, 0, 0) is the center of the design domain, Eref is a reference
electric field, Ω is the optimization domain defined by the exclusion region in Fig.
S1.a, and Θ(x) is a smoothed Heaviside threshold function [44]. The target reference
field is chosen to be a three-dimensional Gaussian of the form:

∥Eref(r)∥
∥Eref(r0)∥

= exp

(
−
(
(x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

+
(z − z0)

2

2σ2
z

))
. (S10)

where σx = σy = 300 nm and σz = 400 nm are the standard deviations in all directions,
chosen to match the exclusion size. In Fig. S1.b we show a projection of the field
described by Equation S10 for the (x, y) plane, which showcases that the Gaussian has
a single maximum at r = r0. As pointed out in section S1, if the electric-field norm
has a single maximum, this will result in a global minimum of the trapping potential,
which is necessary to trap single particles omnidirectionally. For a discussion on the
choice of the standard deviations σi, where i ∈ {x, y, z}, refer to subsection S2.3.

The FOM is minimized by optimizing the material distribution of silicon (Si)
and air in the design region (ΩD). We formulate the design problem as a continuous
optimization problem, where the material distribution is controlled by a design field
ξ, which is discretized into a piecewise constant field coinciding with the finite ele-
ments used to discretize the physics model, with one design variable controlling the
value of the design field in each element. To regularize the design and enable length-
scale control, we adopt a filtering and thresholding scheme. For the filter, we use a
Helmholtz-based filter [55]:

−
(

rf

2
√
3

)2

∇ξ̃ + ξ̃ = ξ , (S11)

where ξ̃ is the filtered design field, and rf is the filter radius. The filter operation is
followed by a smoothed Heaviside threshold (Θ) [44]:

¯̃
ξ = Θ(ξ̃) =

tanh(β · η) + tanh(β · (ξ̃ − η))

tanh(β · η) + tanh(β · (1− η))
, β ∈ [1,∞), η ∈ [0, 1] , (S12)

where
¯̃
ξ is the filtered and thresholded design field, and β and η control the thresh-

old sharpness and value respectively. To translate the design field into the material
distribution in the physics model we employ a non-linear material interpolation
[52, 56]:

εr(ξ̃) =
(
n(ξ̃)2 − k(ξ̃)2

)
− i(2n(ξ̃)k(ξ̃))− iαξ̃(1− ξ̃),

n(ξ̃) = nair + ξ̃ (nSi − nair ) ,

k(ξ̃) = kair + ξ̃ (kSi − kair ) ,

(S13)

where εr is the relative dielectric permittivity, n is the refractive index, k is the
extinction coefficient, α is a problem-dependent parameter known as the artificial
attenuation, and “Si” stands for silicon. With this setup we optimize the design
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using the method of moving asymptotes [53] with a single homogeneous design guess
(ξ = ξ0), leaving the optimizer free to tailor the device geometry. The optimizer solves
the following optimization problem:

min
ξ

: FOM ≡ Φ =

√∫
Ω

[
Θ

( ∥E(r)∥
∥E(r0)∥

− ∥Eref(r)∥
∥Eref(r0)∥

)]2
dΩ , (S14a)

s.t. : S
(
εr(

¯̃
ξ, r)

)
E(r) = F(r) , (S14b)

: log10 (||E(r0)||) ≥ γ , (S14c)

: ∇ · (−c Θ
(
¯̃
ξ(r)

)
∇C(r)) = f Θ

(
¯̃
ξ(r)

)
, C = 0 ∀r ∈ Γi, i ∈ (1, 2) , (S14d)

: gs =
1

n

∑
i∈N

Isi [min{(ξ̃i − ηe), 0}]2 ≤ ϵ , (S14e)

: gv =
1

n

∑
i∈N

Ivi [min{(ηd − ξ̃i), 0}]2 ≤ ϵ , (S14f)

: 0 < ξ(r) < 1 , (S14g)

: ξ = 0 ∀r ∈ ΩD , (S14h)

where the FOM in Equation S14a is subject to the constraints given by the individual
subequations:

• Equation S14b is the discretized form of Maxwell’s equations, which is equivalent to
solving a linear algebraic system that yields the electric field for the system matrix
S and the excitation term F.

• Equation S14c is a constraint for the electric-field norm in the center of
the domain, where γ is a problem-dependent parameter. By selecting γ =
1.15 log10 (||E(r0)||i=0), where i = 0 refers to the initial design, we ensure that in
the initial steps of the optimization, the optimizer avoids local minima where the
trapping potential has the correct shape but is not deep enough for stable trapping.
Once the constraint in Equation S14c is fulfilled, it ensures a stable trapping poten-
tial that overcomes thermal diffusion, and the optimizer directly targets the FOM
in Equation S14a to achieve the correct shape of the trapping potential.

• Equation S14d refers to two connectivity constraints formulated using an artificial
heat-transfer problem, that ensures a design connected to the two waveguides. In
this expression, c is a material interpolation for the artificial conductivity, C denotes
the artificial temperature field, f denotes the artificial heat generated by materials
and Γi describes the heat sink boundaries given by our two (i = 1, 2) waveguide
ends [35]. The rest of the parameters are selected as detailed in [57].

• The constraints gs and gv, in Equation S14e and Equation S14f, are the solid and
void connectivity constraints, where ηe and ηd are the eroded and dilated thresholds,

n denotes the number of elements, Isi =
¯̃
ξi · e−c·|∇ξ̃i|2 and Ivi = (1 − ¯̃

ξi) · e−c·|∇ξ̃i|2

are the solid and void indicator functions, c is a problem-dependent parameter and
ϵ is the length scale error [34]. To ensure the minimum length scale of the design
features we select c = r4f [34], where rf is the filter radius, and ηe = 0.75, ηd = 0.25
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which in our optimization problem ensure that no features in the design have a
radius of curvature smaller than 60 nm [58], making the design variable using e.g.
standard electron beam lithography.

We run the optimization problem in Equations S11a-S11h with a single homoge-
nous initial guess of the design field ξ = 0.6 for all the design variables. Additionally,
we use a continuation scheme to exploit the continuous nature of the design field in
solving the optimization problem while achieving a final, physically realizable binarized
design. This consists of increasing the parameter that controls the threshold sharpness
(β) and the artificial attenuation (α) every 50 iterations of the optimization, pushing
the design field toward binary values and thus physical realizability. We also gradually
reduce the length scale error (ϵ) introduced in Equations S11e-S11f to ensure that the
final design fulfills the minimum length scale requirement. The continuation scheme
parameters are summarized in Table S1.

Table S1 Continuation scheme parameters in the topology optimization framework.

Continuation step 0 1 2 3 4 5 6 7 8 9

Iteration 0 50 100 150 200 250 300 350 400 450
Threshold sharpness (β) 5 7.5 10 15 25 35 50 75 100 150
Artificial attenuation (α) 0.01 0.1 0.2 0.4 0.8 0.8 0.8 0.8 0.8 0.8
Length scale error (ϵ) 1 1 1 1 10−3 7.5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

S2.3 Tuning the exclusion radius: from omnidirectional
trapping to strong light confinement

One of the parameters that requires the most careful tuning in the inverse design
procedure is the radius of the exclusion region (Rexc) defined in subsection S2.1. In
principle, to achieve the highest possible trapping stiffness, which is defined as the
force exerted over a distance, one would try to make the exclusion region as small as
possible. This would allow for stronger light confinement on a sub-wavelength scale,
enhancing the trapping stiffness. However, through systematic optimizations2 select-
ing different exclusion radii, we find a trade-off between the increased trapping stiffness
and the possibility of achieving omnidirectional trapping with gradient forces. This is
summarized in Fig. S2, where for decreasing exclusion region radii, we optimize six
nanocavity designs and calculate their trapping potential. The cavities optimized for
smaller exclusion region radii can achieve strong field enhancements below the diffrac-
tion limit, providing deep trapping potentials. In fact, and based on the bowtie-like
cavity design for the smallest exclusion region (Rexc = 50 nm), we see that if dielec-
tric material was allowed in the exclusion region, the optimizer would create extreme
dielectric confinement bowtie-like cavities, similar to ones in [18, 19]. However, similar

2For each optimization the intensity constraint in Equation S14c was normalized to the first iteration by
choosing γ = 1.15 log10 (||E(r0)||i=0), while the rest of the parameters remain the same as in the original
optimization problem presented in subsection S2.2.
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to bowtie-like cavity designs [20–22], when checking the trapping potential distribu-
tion for exclusion radii below Rexc = 200 nm in Fig. S2, it is clear that the strong field
confinement located at the material interfaces does not allow for an omnidirectional
trap in the center of the cavity, due to the spatial overlap of the field from the tip-like
structures close to the center. This is similar to the double nanohole structure with
a deeply sub-wavelength exclusion region found by another inverse design work [36]
where the electric field was maximized at the center of the cavity, yielding a bowtie-
like non-omnidirectional trapping potential. Interestingly, even for an exclusion radius
of Rexc = 250 nm the trapping potential in the y direction starts to lose its concav-
ity, which is further accentuated for smaller radii. In other words, there is a minimum
length scale of the exclusion radius close to Rexc ≃ 250 nm, which sets a geometrical
limit on omnidirectional trapping. By observing the projection of the trapping poten-
tial onto the cartesian axes it seems however, that one recovers stable trapping when
going down to the smallest exclusion radius (Rexc = 50 nm), but by looking at the
two-dimensional profile of the trapping potential it is evident that a particle would
be trapped at the nanocavity tips, where the field enhancement is strongest. In our
work, we choose an exclusion radius Rexc = 300 nm, since it simultaneously allows for
an omnidirectional trapping without compromising the depth of the trapping poten-
tial or the trapping stiffness. Moreover, and as shown in the main document, for an
exclusion region radius Rexc = 300 nm, we are still able to trap deeply sub-wavelength
particles in a sub-wavelength exclusion region while overcoming thermal fluctuations.

S3 Surface forces

A particle located at the center of our optimized device will be omnidirectionally
trapped. There are, however, two physical effects that could potentially compromise
loading the particle into the optical trap: optical lightning-rod effects [24, 25] and
vacuum fluctuation-induced Casimir-Polder (CP) forces [59]. We compare these two
surface forces and show how the CP forces have a stronger probability of resulting in
particles sticking to the interface than any lightning-rod effects present in the design.
Finally, we show that, in the worst-case scenario, there is only a 12 % percent chance
of particles sticking to the walls due to the CP force.

S3.1 Lightning-rod effects

By taking a close look at the field distribution at the center of the nanocavity in Fig.
1.a in the main document, one can see a significant local field enhancement at the
material interface for z = −400 nm. This is an inherent consequence of the boundary
conditions of Maxwell’s equations [24], where the field is locally enhanced at kinks and
corners [25]. This so-called lightning-rod effect is strongly confined to the interface but
still creates an attractive force on the particle if the particle is sufficiently far from the
center, and sufficiently close to the interface.

To quantify this effect, we investigate the trapping potentials for the y line at
different out-of-plane (z axis) heights in Fig. S33. At the bottom of the device (z =
−400 nm), we see that there is a region y ∈ [−220 nm, 220 nm] where the particle

3These results have been validated for a 15 nm radius particle using the MST formalism.

23



Fig. S2 Projection of the nanocavity designs in the (x, y) plane for decreasing radii of the exclusion
region (Rexc), the spatial distribution of the optical trapping potential U in the (x, y) plane, and
the projection of the max-normalized trapping potential on the cartesian axes. In the designs, black
represents silicon, and white represents air. The stable trapping regime below U = −10 kBT is shown
in gray in the trapping potential projection onto the cartesian axes.

will be stably trapped, feeling a restorative force towards the center. In the other
region (in gray) the particle will feel an attractive force towards the interface, which
will lead to the particle sticking to the interface. If we go up inside the structure
(z = −330 nm), or down out of the structure (z = −450 nm) we see the sticking effect
disappearing. This means that if we assume an initial random position of the particle
above the hole in the simulation domain in Fig. S1, we can compute the probability
that it will get stuck at the interface as it travels into the omnidirectional trap. We
do this by assuming a simple positional averaging for the particle as it travels into
the trap and then calculating the volume ratio between the volume where the particle
feels an attractive force to the interface and the total volume. As we go up or down
the structure, the region where the particle will get stuck to the interface (in gray in
Fig. S3), becomes smaller until it disappears entirely as we reach the limits z = −450
nm and z = −330 nm. To simplify the calculations and provide a worst-case estimate,
we assume that the width of this region in the y axis remains constant as we move up
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and down in the structure. With this assumption the probability of sticking is

PLR
stick [%] =

Vstick

Vtotal
=

hstick(R
2
exc −R2

stick)

hsimR2
exc

≃ 4.5% , (S15)

where “LR” denotes lightning-rod, hstick = 120 nm is the height of the region where the
particle can stick to the surface, in the interval z ∈ [−450 nm,−330 nm]. Therefore,
there is a small probability that the particle might stick to the interface due to the
lightning-rod effect at the top and bottom interfaces of the structure, as it is being
loaded into the trap. It is noted that this is a conservative approximation since it
assumes that the unstable effect does not fade out as we go into or out of the structure
and does not account for the inherent velocity of the particle, or other forces that
could pull the particle out of the unstable region. Thus, our estimate constitutes a
worst-case sticking probability PLR

stick, and a significantly smaller value is expected in
reality.
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Fig. S3 Trapping potential for the y line in the optimization region at different out-of-plane heights
(z). The region where the particle could stick to the interface is marked in gray.

S3.2 Casimir-Polder forces

Aside from the optical forces, the other key surface forces to consider are the CP forces
[59], which are vacuum forces that also exist in the absence of a light source. In the same
way that the lightning-rod effects might be problematic and decrease the probability
of correctly loading the particle into the omnidirectional trap, the CP forces result in
a net attractive force to the surface that scales non-linearly with the distance between
the particle and the surface. To calculate the probability of the particle getting stuck
at the interface due to CP forces, we approximate the nanosphere as a polarizable
point-dipole, close to an infinite dielectric plane, which is a good approximation since
the CP forces are known to dominate only at short length scales. Given the high
symmetry of this system, the CP energy landscape of this system reduces to a function
of the distance d between the center of the particle and the plane. Following [60], we
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calculate this function by integration of the Green tensor as formulated in [61]. We
show the CP energy landscape as a normalized trapping potential in Fig. S4 at room
temperature (where kB T = 0.025 eV), for a particle with a refractive index n = 2
and a radius of R = 15 nm, close to an infinite silicon interface with a refractive index
n = 3.48.

Fig. S4 Casimir-Polder trapping potential (UCP) as a function of the distance (d) between the
center of a dielectric particle, with a refractive index n = 2 and a radius of R = 15 nm, and an
infinite silicon plane with a refractive index n = 3.48. Delimited by the dashed lines the region (in
gray) where the CP potential starts to dominate the gradient force potential. Note that since the
distance (d) is measured from the center of the particle we have excluded from the plot the region
where d < R = 15 nm.

In the simplified model, the trapping potential diverges toward infinity as we
approach the interface. To calculate the probability of the particle sticking to the
interface due to the CP forces, we again consider the stable and unstable regimes in
a cylinder extruded from the exclusion hole. In contrast to the lightning-rod effect,
the CP forces will affect all interfaces. Given that the potential at the edges of our
exclusion domain is around U ≃ −7.5 kBT , the CP potential will start to dominate
the gradient force potential around d ≃ 20 nm from the interface. For these values the
probability of sticking to the surface is

PCP
stick [%] =

VCP

Vtotal
=

(R2
exc. −R2

CP)

R2
exc.

≃ 11.75% . (S16)

Compared to the lightning-rod effect, CP forces will more significantly affect the omni-
directionality of the trap, as it will result in the particle sticking to the dielectric
interface with a higher probability, given that PCP

stick ≥ PLR
stick. It is important to note

that the CP force is inherent to all air-mode cavities, and thus, it is not possible to
avoid this source of particles sticking to the surface, only to minimize it by reduc-
ing the surface-to-volume ratio near the trapping region. For instance, if one reduced
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the exclusion region radius as in subsection S2.3 the surface-to-volume radius would
increase, resulting in even more sticking events due to the CP forces. For example,
from the results in Fig. S4, an exclusion region radius of 20 nm yields a sticking
probability of PCP

stick ≃ 90%, which will approach unity as the exclusion becomes even
smaller. Therefore, for deeply sub-wavelength design features, such as the ones in other
inverse design dielectric nanocavities [18, 19], the CP forces would entirely dominate
the optical trapping, making levitated omnidirectional optical trapping unattainable.
In other words, vacuum forces set a minimum length scale on the exclusion region
radius (Rexc) for levitated omnidirectional trapping in nanostructures, which for this
device is around Rexc ≃ 20 nm. For omnidirectionally trapping nanostructures, the
minimum length scale set by CP forces can be reduced by increasing the input power,
so that optical forces dominate vacuum forces. This would be unfeasible for plasmonic
structures, where losses would be enhanced with increased input power, but is only
viable for lossless dielectric trapping devices, such as the ones presented in this work.

S4 Comparing the device performance with
state-of-the-art devices

Our work constitutes the first dielectric nanostructure design featuring an omnidi-
rectional gradient force trapping potential. To see how its trapping characteristics
compare to other state-of-the-art trapping devices, we have gathered and compared
the main trap parameters across several platforms in Table S2. Although another work
achieved omnidirectional trapping in nanostructures using SIBA forces [16], here we
mainly focus on comparing devices that rely on gradient forces to create the opti-
cal trap, since this is the operational principle of the optimized device. None of the
reference nanostructures can provide sub-wavelength stable trapping in all spatial
directions, which is highlighted in the stable trapping directions column in Table S2
and with the row coloring. Additionally, the proposed device is an integrated photonic
device, meaning that it is waveguide-coupled, in contrast to many other devices that
are excited out-of-plane by the use of lasers [8, 15, 20, 45–47, 62]. For these devices,
where the laser excitation intensity is reported, we use the laser spot area to compute
the total power in Table S2. As noted in the main document, the main comparison
proxy we have used to compare optical trapping devices has been the normalized
trapping stiffness (ηi), which is calculated as:

ηi =
κi ε0
αR Pin

, (S17)

where αR is the real part of the polarizability of the particle, ε0 is the vacuum per-
mittivity, κi is the trap stiffness for different axes denoted by the index i ∈ {x, y, z},
and Pin is the operating input power of the device. The metric in Equation S17 mea-
sures the trapping stiffness (force per unit distance) normalized by particle size, the
contrast between particle and background dielectric permittivity, and input power,
making comparisons across platforms possible. Note that this metric metric is not
applicable for trapping platforms with no light source, such as vacuum force trapping
structures, since there is no input power (Pin) and the normalized trapping stiffness η
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diverges. The metric could be modified for these devices by redefining Equation S17
without including the input power.

Using the normalized trapping stiffness as in indicator, we observe that devices
relying upon plasmonic resonances can achieve stronger normalized trapping stiff-
nesses [8, 45, 46, 62] than our inverse-designed device. However, plasmonic devices
lack omnidirectional trapping, which leads to particles sticking to the surface, and
suffer from heating problems due to the optical losses in metals, which can be detri-
mental in many trapping settings [11–14, 26]. We have highlighted this problem in
Table S2 by coloring the platforms that lose energy to heating in red and the ones
that do not, in blue. Regarding dielectric platforms [15, 20, 47, 63], we see that our
platform offers normalized trapping stiffnesses in the same order of magnitude, while
being the only proposed solution offering gradient force optical trapping in all spatial
directions. As discussed in subsection S2.3, for optical trapping nanostructures, there
seems to be a trade-off between achieving stability in the spatial directions on the one
hand, and the normalized trapping stiffness achievable by the optical platforms on the
other hand. If we compare our platform to optical tweezers [4], which do indeed pro-
vide diffraction-limited omnidirectional trapping, we find that they can achieve similar
trapping stiffnesses as our platform, but have much lower normalized trapping stiff-
nesses. This is mainly due to the lack of integration and waveguide coupling of the
optical tweezers, which results in larger input power requirements. More importantly,
our device operates below the diffraction limit by relying on optical near-field effects,
meaning that we can, in principle, achieve higher trapping stiffnesses while relying on
a much smaller footprint than conventional optical tweezers. This is also exemplified
by comparing the normalized trapping stiffness η in Table S2 for our vacuum device
(λ = 1.55 µm) and water device (λ = 775 nm), which for the same particle size and
input power, reveal more than an order of magnitude increase of η by operating at
smaller scales.
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Table S2 Comparison of different trapping platforms in terms of the number of stable trapping directions (D),
normalized trapping stiffness (η), trapping stiffness (κ), sphere radius (R), frequency-dependent refractive index of the
particle (np), frequency-dependent background refractive index (nback), input power (Pin) and type of platform
(plasmonics, dielectrics or optical tweezers). To emphasize the number of stable directions the rows have been colored

accordingly, orange for 1 stable direction, yellow for 2 stable directions and green for omnidirectional trapping

with 3 stable directions. We also color the platform text to highlight which platforms lose energy to heating (in red)
and which are nearly lossless (in blue).

Reference D η [pN/(µm4·µW)] κ[fN/nm] R [nm] np (ω) nback (ω) Pin [mW] Platform

[46] 1 1.95·104 - 3.62·105 6000 - 7000 25 - 50 1.58 1.33 0.7 - 1.9 Plasmonic
[45] 2 31.64 4.18 10 0.19 + 5.93i 1.33 9∗ Plasmonic
[8] 2 3.33 2.4 30 0.26 + 6.97i 1.33 1.9 Plasmonic
[62] 2 - - 14.5 1.6 1.33 105∗ Plasmonic
[12] 2 - - 15 2 1.33 100 Dielectric
[63] 2 - - 15 - 60 1.59 1 0.02 Dielectric
[20] 2 10.71 - 21.41 0.04 - 0.08 10 1.57 1.33 2.5∗ Dielectric
[15] 2 0.06 1.19 50 1.58 1.33 105∗ Dielectric
[4] 3 0.001 - 0.02 0.14 - 2.24∗∗ 70 1.44 1 100 Optical tweezer

This work
λ =1.55 µm 3 1.44 - 1.67 0.46 - 0.53 15 2 1 15 Dielectric
λ =775 nm 3 23.84 - 39.78 4.49 - 7.49 15 2 1.33 15 Dielectric

Note: The empty values denoted by ”-” were not reported in the references, while we calculated the values marked with * using
the light intensity and laser spot size. The value marked with ** was calculated using the fundamental mechanical frequencies
of the particle’s oscillation in the optical tweezer [4] and its mass, which was calculated from the volume of the particle and the
density of fused silica (ρ = 2.2 g/cm3).
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