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Abstract

We present COmpetitive Mechanisms for Efficient Transfer (COMET), a modular
world model which leverages reusable, independent mechanisms across different
environments. COMET is trained on multiple environments with varying dynamics
via a two-step process: competition and composition. This enables the model
to recognise and learn transferable mechanisms. Specifically, in the competition
phase, COMET is trained with a winner-takes-all gradient allocation, encourag-
ing the emergence of independent mechanisms. These are then re-used in the
composition phase, where COMET learns to re-compose learnt mechanisms in
ways that capture the dynamics of intervened environments. In so doing, COMET
explicitly reuses prior knowledge, enabling efficient and interpretable adaptation.
We evaluate COMET on environments with image-based observations. In con-
trast to competitive baselines, we demonstrate that COMET captures recognisable
mechanisms without supervision. Moreover, we show that COMET is able to
adapt to new environments with varying numbers of objects with improved sample
efficiency compared to more conventional finetuning approaches.

1 Introduction

To reason about environments as rich and complex as our physical world requires the ability to learn
efficiently and to flexibly adapt prior knowledge to unseen settings. Whilst humans seem able to
generalise knowledge across myriad tasks and situations effortlessly, building artificial agents that
can do so with minimal training data remains a significant challenge. At the heart of this challenge
are crucial distinctions between what and how humans and machines learn. It has been conjectured
that humans represent knowledge internally in a structured and modular way, i.e., by distilling past
experience into general principles (or core knowledge) about the world, which can be applied or
selectively updated in novel settings [43, 26, 39, 11]. By contrast, current learning-based world
models are mostly based on monolithic architectures, and the resulting entangled representations
of the world limit the selective re-using of prior knowledge in new environments. Therefore,
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Figure 1: Illustration of the competition and composition training phases. In the first phase, the model
learns a set of reusable mechanisms that captures interaction primitives. In the second phase, the
model learns to apply these mechanisms in a new environment.

learning methods that afford modularity are key to world models that can adapt efficiently in
diverse settings. In this paper, we address this challenge by developing a model capable of dis-
covering a toolbox of recognisable, generalisable concepts that can be reused across different contexts.

Recent works on object-centric world models [24, 28] serve as an initial step towards a
structured and compositional understanding of the world. By decomposing the observed scene
into discrete object slots, these methods model the interaction between entities in the scene and
achieve state-of-the-art results. We argue that, just as the state representation of the scene can be
factorised into object slots, the dynamics of the environment, too, can be factorised into discrete and
independent mechanisms. Our work is motivated by the observation that, while the overall dynamics
can change across environments, we can often explain the behaviour of objects by a small set of
interaction primitives such as "A rests on top of B" and "C collides with D". Our understanding of
novel environments is mediated by these primitives: given some observations in a previously unseen
setting, one can quickly recognise the relationship between objects in terms of these interaction
primitives. As such, we posit that the ability to structurally represent different modes of interactions
is crucial to flexible world models.

Acquiring such a set of versatile mechanisms from observations without supervision presents
challenges both in terms of model architecture and learning algorithm. While current learning
methods excel at learning to predict dynamics from i.i.d. environments, learning shared modules
that compositionally capture diverse environments cannot be achieved by directly applying gradient
updates to the entire model. To this end, we argue that the ability to selectively update the model
during learning, i.e., to recognise parts of the model that are relevant to the observed data and
perform modular updates, is instrumental to the emergence of discrete independent mechanisms. In
this work, we instantiate this capability by utilising a competition of experts training scheme [36],
where, during training, we keep a set of independently parameterised mechanisms and only update
the module which best explains the observed data. This serves as a natural inductive bias which
encourages modules to specialise in specific interaction primitives, and is consequently conducive to
the emergence of reusable mechanisms.

We introduce COmpetitive Mechanisms for Efficient Transfer (COMET), a modular world
model with the capability to explicitly disentangle modes of interactions between objects. In contrast
with prior art, COMET is able to learn discrete, abstract concepts from diverse observations, and
re-use such concepts to predict the evolution of unseen environments. We conjecture that COMET’s
ability to perceive the world through the lens of structured high-level abstract concepts serves as an
important step towards efficient generalisation and transfer across different task settings. Concretely,
COMET achieves this via a two-phase training procedure: i) competition, in which COMET learns
a set of independently parameterised modules which encode interaction primitives from diverse
environments; and ii) composition, wherein COMET is trained to apply these learnt interaction
primitives in novel environments (Fig. 1).

In our experiments, we evaluate COMET on novel datasets designed to test whether mod-
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els can systematically learn from multiple environment and transfer to environments with unseen
dynamics. We demonstrate both quantitatively and qualitatively that COMET successfully learns
reusable mechanisms, i.e. interaction primitives, from image-based observations, and is able to
generalise to unseen environments by composing these mechanisms. Moreover, compared to more
conventional finetuning baselines, COMET is able to explicitly make use of past knowledge and
achieves improved sample efficiency during adaptation.

2 Related Work

Learning internal models of the world enables decision-making agents to plan, predict and reason
about the world [17, 16, 24]. As such, latent world models have attracted significant interest in recent
years. These methods [e.g. 24, 48, 34] in general involve learning latent representations of the state
and forward prediction models. Our work situates in this broad context of world model learning
and we focus our contribution on learning dynamics models which are factorised into composable
mechanisms. We take recent works form object-centric state representations as a starting point.

Object-Centric Representations There has been a growing interest in models that reflect the
compositional nature of real-world scenarios and aim to use object-centric representations to leverage
recurring features in scenes. Prior works have investigated unsupervised object-centric representation
learning from static images [5, 15, 32, 29, 10]. Motivated by the assumption that dynamics tend
to manifest themselves at the object-level [18, 3], subsequent works extend this capability to video
data via factorised dynamics models which operate on object-centric latent spaces. While most of
these object-centric world models (OCWMs) are geared towards using temporal inputs to generate
future video rollouts [25, 21, 8, 24, 28, 33], some more explicitly consider their use in model-based
reinforcement learning and planning [50, 47, 41, 51]. In particular, graph neural networks (GNNs) are
often used as a natural way to predict future states of objects and enable the modelling of interactions
between objects via message passing [45, 44, 24, 47, 28, 41, 37]. We build on these approaches by
further factorising the dynamics into reusable interaction primitives.

Mechanism-based Models Our work is motivated by the conjecture that the organisation of
knowledge into high-level abstract concepts is crucial to systematic generalisation [11]. This idea is
similar in spirit to the Independent Causal Mechanisms principle [38] and the Sparse Mechanism
Shift hypothesis [39] in the causality literature, which respectively posit that data-generating causal
mechanisms operate independently from one another, and that changes in the environment can be
attributed to sparse changes to such mechanisms. Several works [27, 19, 30] have leveraged causal
discovery techniques, e.g., sparsity regularisation, to learn dynamics models that are factorised into
structural causal models.
Similar to our approach is a class of models which represents the learned dynamics in OCWMs not as
a monolithic module, but rather as a collection of independently acting mechanisms – each focusing
on a different aspect of the environment’s dynamics. Becker-Ehmck et al. [4] use a variational
approach to learn to pick different transition models conditioned on the state, but is limited to linear
transitions. RIMs [14] constitute an approach where parts of the state space are represented by
independent and sparsely interacting recurrent units. Building on this, [12] use a GNN to model
environment dynamics but reflect the concept of independent mechanisms by using different sets
of GNN parameters depending on an object’s current state. Another approach that follows this line
of work is VIM [2] which considers the disentanglement of mechanisms and objects in the setting
where object move independently to each other. Closer to our method are Neural Production Systems
(NPS) [13], another descendant of RIMs, learning a set of independent mechanisms capturing the
interaction between objects. Our method differs from NPS in the application of competition training
which, as we demonstrate empirically in Sec. 4, is instrumental to the emergence of composable
mechanisms. Furthermore, we propose a novel method for adapting to changes in the environment.

Competition of Experts The backbone of our learning algorithm draws from mixture of experts
methods [22, 20, 40] and in particular from the algorithm of Parascandolo et al. [36]. In the context
of learning independent causal mechanisms, Parascandolo et al. [36] demonstrate that the competition
of experts algorithm induces the emergence of mechanisms that explain transformations in the data.
The idea of utilising a competitive training scheme on modular model architectures has been applied
on diverse settings such as lifelong learning [1, 35], generative models [31] and object-centric scene
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composition [49]. Taking inspiration from this line of work, COMET uses a similar competitive
training scheme as an inductive bias for disentangling modes of interaction in the setting of world
model learning.

3 COMET: COmpetitive Mechanisms for Efficient Transfer

In this section, we present the training procedure and the architecture of COMET. The main idea of
the method is to learn a set of generalisable and composable modules, which encode the different
modes of interaction between objects. The intuition behind the approach is that, while dynamics
can vary across environments, the ways in which objects or entities interact with each other can
often be explained by a small number of independent rules. For example, in a road traffic setting,
whilst the behaviour of cars can differ across different locations, the act of stopping at a red light,
i.e. the interaction between cars and traffic lights, can be used to explain road behaviours in a
wide range of environments. On a conceptual level, this can be considered as a manifestation
of the ICM principle [39]. By having a model of how objects could interact with each other,
the task of adapting to a novel environment reduces to the learning of when each rule should be applied.

The goal of COMET is to discover potential interactions between objects through observed
data from a diverse set of environments, and to adapt to novel environments by learning when
to utilise learnt mechanisms. This is reflected in the training strategy of COMET, which is split
into two phases: competition and composition. In the competition phase, COMET learns a set of
independent mechanisms from observed sequences using a competition of experts training scheme.
In the composition phase, COMET adapts to novel environments by learning a classifier that activates
the correct mechanism with the correct object pair based on the state. Our main hypothesis is that
learning to apply pre-trained, reusable mechanisms in a novel environment facilitates explicit transfer
of past knowledge and is hence more efficient than finetuning on new data.

3.1 Problem Setup and Model Architecture

COMET learns from a dataset of observed sequences {x1:T }N . In this work we focus on learning
from observations without actions, which is commensurate with the settings in similar works [28, 21],
although the framework presented here can be readily extended to action-conditioned world models.
Importantly, these sequences are sampled from environments with varying dynamics where objects
can exhibit different behaviours. In order to model interactions between objects, we assume that
each observation, xt, can be factorised into latent object-slots, {zt0, zt1, ..., ztK}, where the subscript
denotes the object-id. These object representations can be based on ground-truth state information or
obtained from object-centric encoders [5, 32, 10].

COMET consists of two main components, the mechanisms and the composition module.
Mechanisms contains M independently parameterised feedforward networks, fm

mech : R2d → Rd,
with parameters θm, where d is the dimension of the object representations. Each mechanism predicts
updates to all objects at every timestep, given the state of the object itself and another context object:

∆zti(m, j) = fm
mech([z

t
i ⊕ ztj ]), (1)

where ⊕ denotes concatenation, i is the index of the object to be predicted and j is the index of the
context object, i.e. the object with which object i interacts. The mechanisms are trained during
the competition phase where each mechanism learns to specialise to cover a particular mode of
interaction between objects.

In order to predict transitions for objects using the trained mechanisms, the composition
module picks the relevant context object and the active mechanism. The composition module predicts
the mechanism-context pair based on the observed state:

(m̂i, ĵi) = fcomp(z
t
i, z

t
1:K), (2)

where (m̂i, ĵi) is the predicted mechanism-context pair for object i and z1:K is the representation
of all objects. fcomp can be considered as a classifier with M ×K classes, where M is the number
of mechanisms and K is the number of objects in the scene. In the composition phase, COMET
adapts to a new environment given a small number of observed sequences {x̃1:T }Ñ by updating the
composition module.
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Figure 2: In the competition phase, predictions are made using all possible mechanism-context pairs
for each object. Gradients are only allocated to the mechanism-context pair which produces the most
accurate prediction. This encourages specialisation within the mechanisms and enables learning from
environments with varying dynamics. The figure describes the prediction step for a single object.

3.2 Phase 1: Learning Reusable Mechanisms via Competition

The aim of the competition phase is to train the mechanisms in a way such that each mechanism
specialises in a particular mode of interaction between objects. Since the training dataset is sampled
from multiple environments with varying dynamics, the training procedure needs to recognise shared
mechanisms regardless of context. Taking inspiration from Parascandolo et al. [36], we apply a
competitive training scheme in the setting of dynamics learning. Concretely, for each object, the
model makes predictions using all possible mechanism-context pairs in parallel. Comparing the
predictions, we update the mechanism-context pair with the most accurate prediction for a given
object. This is illustrated in Fig. 2. Given a state transition pair, (zt1:K , zt+1

1:K), the loss function can
be written as:

L(θ1:M ) =

K∑
i=0

min
m,j

[
d
(
zti +∆zti(m, j), zt+1

i

)]
, (3)

where d is a function that measures the prediction error. There are several sensible choices for the
distance function d. In this work, we find that using Euclidean distance is sufficient. Other potential
choices include a contrastive loss [24] or ELBO loss [17] for training representation and dynamics
model jointly, and sparsity-regularised loss [27, 19] for causal structure discovery. Importantly, when
performing back-propagation on this loss function, only the parameters of the competition winner are
updated. This independent update of parameters encourages specialisation among the mechanisms
and facilitates environment-agnostic learning. Intuitively, insofar as a particular mode of interaction
is concerned, a specialised mechanism will outperform other mechanisms and hence win more data
as training progresses. This triggers a positive feedback loop which allows the specialised mechanism
to further improve its accuracy. Moreover, the competition procedure ensures the selection of the
correct context objects during training since accurate predictions are only possible with the relevant
context information.

In practice, one of the main failure modes in this training phase is a case where a single
mechanism wins the competition most of the time, which hinders the proper disentanglement of
dynamics. Empirically, we find that the robustness of the training dynamics can be significantly
improved by 1) adding a warm-starting phase during which gradients are equally distributed; and by
2) increasing the time horizon for mechanism selection which improves the robustness of the training
dynamics. This means that a mechanism-context pair is picked only if it has the best performance
over multiple consecutive time steps. In App. C, we discuss this further with ablation studies.
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3.3 Phase 2: Learning to Compose Mechanisms in New Environments

With a trained set of mechanisms, COMET adapts to new environments by training the composition
module on new data.1 The composition module acts as a classifier which picks the optimal mechanism-
context pair for each object in the scene. Given the state of object i, for each mechanism-context pair,
we compute the confidence score:

cti(m, j) = fm
conf ([z

t
i ⊕ ztj ]), (4)

where fm
conf is an independently parameterised MLP for mechanism m, i.e. each mechanism has

a corresponding fm
conf . We predict a categorical distribution over all mechanism-context pairs by

taking the softmax over the confidence scores for object i at time step t.

Given a small number of observation sequences in a new environment, we obtain the best
performing mechanism-context pair (m∗, j∗)ti for each object at each time step by investigating
which pair minimises the loss function of the competition scheme in Eq. 3. These then serve
as the target labels for the classifier. The composition module is then trained using the negative
log-likelihood loss. At test time, together with the trained mechanisms, COMET predicts the next
state of each object by first picking the mechanism-context pair with the highest score and then
feeding the chosen context object through the chosen mechanism. In the following section, we show
empirically that this two-step training procedure is able to learn meaningful mechanisms from image
observations and can compose mechanisms in novel environments efficiently.

4 Experiments

In this section, we demonstrate that COMET is able to disentangle different modes of interaction
between objects and can efficiently reuse learnt mechanisms during adaptation. We evaluate, both
quantitatively and qualitatively, the performance of COMET on image-based environments. Con-
cretely, the experiments focus on whether COMET can learn reusable and recognisable mechanisms
(Sec. 4.2) and whether re-composing learnt mechanisms is more sample-efficient compared to
finetuning approaches (Sec. 4.3).

4.1 Experimental Setup

Baselines. We evaluate COMET against two competitive baselines, C-SWM [24] and Neural
Production Systems (NPS) [13]. C-SWM learns a world model from observation via contrastive
learning with a GNN-based dynamics model. Similar to COMET, C-SWM operates on an
object-factorised representation and achieves state-of-the-art prediction accuracy. COMET further
disentangles the interactions between objects as independent mechanisms rather than learning a
monolithic model that captures all interactions. In Sec. 4.3, we show that this disentanglement is
conducive to sample-efficient adaptation and facilitates interpretable transfer.

We also compare against NPS, which learns to capture object interactions as independent
mechanisms. Architecturally, NPS is similar to COMET, except that the mechanism-context pair
is selected using dot-product attention [46] which is trained jointly with the mechanisms. In
contrast, COMET deploys a competitive training scheme which allows the model to recognise shared
mechanisms across environments. Moreover, in Sec. 4.2, we show that competition serves as a strong
inductive bias that enables the emergence of generalisable mechanisms. We provide more model
details and further discussions around the baselines in App. A.

Datasets. We evaluate COMET on three problem domains: Particle Interactions, Traffic, and Team
Sports. For each of these domains, we define a set of environments where objects can exhibit different
behaviours. These environments are designed to test whether COMET can extract meaningful
mechanisms and adapt to unseen environments via composition. The Particle Interactions dataset
consists of coloured particles that can interact with each other in different ways such as attraction and
repulsion. Environments are defined by a combination of rules such as "red particles repel each other".
The Traffic dataset contains observation sequences of traffic scenarios generated with the CARLA

1Here, we focus on directly reusing mechanisms new environments. We leave the exploration of systems
that can instantiate new mechanisms to future work. See discussion in Sec. 4.4.
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Figure 3: Disentanglement plots showing the correlation between mechanisms chosen by the models
and ground-truth interaction modes. In the ideal case, the matrices should look like permutation
matrices. Here, COMET is able to learn disentangled mechanisms that correspond to ground-truth
behaviours in all three domains, as indicated by the fact that each interaction mode has one main
corresponding learnt mechanism. In contrast, NPS does not exhibit the same structure.
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Figure 4: Rollout errors (lower is better) in unseen environments with optimal mechanism selection.
Shaded areas indicates the standard error of the mean. The lower errors indicate that COMET
mechanisms can be readily reused across environments without finetuning.

simulator [6]. Here, the environments are defined by traffic rules that apply to different vehicles
such as "blue cars do not need to stop at red lights". The Team Sport domain consists of a simulated
generic hockey game where players can perform different actions such as moving towards the puck or
dribbling the puck towards the opponent goal, generated by the STS2 simulator [42]. In this setting,
differences in environment amounts to the different behaviours of the players, e.g. players in some
environments might tend to take more aggressive actions. This is a particularly challenging dataset
for COMET as it violates the assumption that all interactions are binary. Observations are masked
RGB images for each object, except for the Team Sports domain, where state-based observations are
more naturally suited. Details of the datasets are provided in App. B.

4.2 Disentanglement of Mechanisms

We investigate the emergence of recognisable mechanisms from competition. Here, both COMET
and NPS are trained on a mixture of environments in each domain. We obtain the ground-truth
labels for the object interactions and use these to directly investigate whether the learnt mechanisms
correspond to actual interactions without any supervision. These labels are not accessible to the
models during training. Fig. 3 shows the correlation between the active ground-truth interactions and
the winning mechanisms in the competition process in the different domains. COMET achieves
successful disentanglement and learns mechanisms that corresponds to the ground-truth interactions.
In the particle interaction dataset, COMET recovers the ground-truth mode of interactions between
particles. Similarly, in the Traffic and Team Sports datasets, COMET learns mechanisms that
model interaction primitives such as stopping before a red light and running towards the opponent
goal. 2 Fig. 5 qualitatively illustrate that the ’winning’ mechanisms switches as the underlying
interaction type changes. In contrast, the mechanisms learnt by NPS show no correspondence
with the ground-truth interactions. This is likely because NPS cannot learn from a mixture of
environments with varying dynamics as it employs a simple dot-product attention for picking

2In the team sports dataset, we observe that mechanism 1 is ’overloaded’ in the sense that it represents
different behaviours for different objects, i.e. for the attacking team, it models ’move towards net’ and for the
defending team, it models ’intercept shot’. Crucially, for each object type (indicated by the horizontal divider
lines in Fig. 3), different behaviours are captured with different mechanisms. This is not the case for NPS.
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Figure 5: Qualitative rollouts. The colour of the tabs on the bottom of each frame indicates the
’winning’ mechanism at each time step. Across all environments, the competition winner changes as
the underlying interaction mode changes. Top: The particles repel each other when they are close
(blue) and moves independently when they are apart (green). Middle: In this traffic environment, the
orange car obeys a slower speed limit and always pick the slow mechanism (orange). The blue car
approaches the red light with normal driving (pink) → slow down (orange) → stop (green). Note that
the orange mechanism is used as slow driving for both cars. Bottom: The player first wait to receive
the ball (pink) and the moves towards opponent goal when in pocession of the ball (orange).

mechanisms during training. To this end, COMET’s ability to learn from diverse environments
is uniquely afforded by the competition scheme which assigns relevant data to update each mechanism.

Central to our hypothesis is the notion that good mechanisms are reusable across environments. To
this end, we perform rollout in unseen environments by picking the optimal mechanism-object pair,
(m∗, j∗), effectively bypassing the confidence module. This offers insights to whether the learnt
mechanisms can generalise to new settings. We perform this to the mechanisms learnt with COMET
and NPS. Fig. 4 shows the rollout errors with optimal mechanism selection. COMET mechanisms
performs significantly better than NPS mechanisms, meaning that, when picked correctly, COMET
mechanisms can be directly used in new environment without any finetuning. This corroborates
our claim that competition training is conducive to the emergence of generalisable and reusable
mechanisms.

4.3 Adaptation Efficiency

One of our main hypotheses is that learning to compose learnt mechanisms leads to data-efficient
adaptation. For each domain, we train all of the models on a mixture of environments and adapt the
models to unseen environments. COMET adapts by training the composition module, whereas the
baselines adapt by finetuning the entire model on new data. Fig. 6 shows the prediction performance
of the models when trained on different amounts of observations in the new environment. In general,
all models improve as the amount of available data increases. In the Particle Interactions and Traffic
domains, while all models eventually perform comparably given sufficient data, here we see that
COMET outperforms the baselines in the low-data regime, illustrating that explicitly reusing learnt
mechanisms results in improved sample efficiency compared to gradient-based finetuning. In the
Team Sport domain, C-SWM performs better than COMET and NPS. We hypothesise that this is
because both COMET and NPS only model binary interactions between objects whereas C-SWM
uses a GNN-based transition model that can take into account the entire scene. We further discuss
this limitation in Sec. 4.4. Nonetheless, under the same binary interactions restriction, COMET
significantly outperforms NPS, which overfits to the adaptation data quickly and is not able to generate
stable rollouts.
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Figure 6: The average rollout error in an unseen environment with different amount of observed
data in the new environment (lower is better). In all environments, all models eventually converge
to similar errors given enough data. We show this explicitly in App D and offer further discussion.
In terms of sample efficiency, in the Particle Interactions and Traffic domains, COMET is able to
achieve lower errors with few adaptation episodes. This means that COMET can learn to use the
correct mechanisms with a small amount of data, thus corroborates our hypothesis that composing
learnt mechanisms enables sample-efficient transfer. In the Team Sports domain, NPS is not able to
generate stable rollouts with the amounts of adaptation episodes shown in the plots. The dotted line
indicates the performance of NPS when trained with a large amount of data. Shaded areas represent
the standard errors of the mean.

4.4 Limitations

Object Encoders. In our experiments, we focus our analysis on the dynamics models and opt for
simple CNN encoders with ground-truth object segmentation masks as the representation backbone.
The application of the model on more visually complex environments without segmentation masks
would require the use of object-centric encoders or other segmentation techniques [7, 9, 32].

Binary Interactions. The model architecture for the mechanisms implies that the model can
only capture binary interactions. While this is a good approximation for many interacting systems,
this hinders the model’s ability to capture more complex dynamics. As seen in the Team Sports
experiments, while COMET can disentangle meaningful mechanisms, picking correct mechanisms
may require information from the entire scene, leading to suboptimal prediction accuracy. Considering
n-ary interactions naively would require comparing exponentially many options in the competition
phase. We leave the exploration of higher-order interactions to future work.

Adapting Mechanisms. As it stands, COMET lacks the ability to update the mechanisms during
composition, which limits the model’s ability to adapt to environments with completely new interac-
tions. Designing mechanism-based models that can instantiate new mechanisms as it encounters new
data offers an exciting avenue of research, with important implications on life-long learning, where
an agent can improve its understanding of the world through a growing set of reusable mechanisms.
This is beyond the scope of the present investigation. Nonetheless, we believe the method presented
here will be instrumental in the development of such systems.

5 Conclusion

In this paper, we introduce COMET, a structured world model which encodes discrete abstract
mechanisms explicitly from observations. This is achieved through training the model on a set of
environments with diverse dynamics using a winner-takes-all competition scheme. This enables the
model to perform selective updates during the training phase, a central capability which facilitates the
emergence of recognisable and reusable mechanisms. We show experimentally that the proposed
method is indeed able to disentangle shared mechanisms across different environments from image
observations, and thus enables sample-efficient and interpretable adaptation to novel situations. While
the presented results are competitive on the tasks considered, we see our main contribution as a
conceptual one, serving as a step towards world models exhibiting a structured understanding of the
world. Looking forward, we believe that the method developed here opens up several promising
avenues of research, such as designing agents that learn a growing repertoire of re-usable interaction
behaviours and agents that explore the world through the lens of mechanism discovery.
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Layer Type in Features out Features

1 Linear 2 * 8 300
2 ELU
3 Linear 300 300
4 ELU
5 Linear 300 8

Table 1: Architecture of a single mechanism. The mechanism operates on the concatenation of two
object embeddings and predicts state updates for the first input object.

Layer Type in Features out Features

1 Linear 2 * 8 300
2 ELU
3 Linear 300 300
4 ELU
5 Linear 300 1

Table 2: Architecture of a single confidence network. There is one confidence network per mechanism
and it operates on the concatenation of two object embeddings to predict a score for the given context
object and associated mechanism.

A Model Details and Baselines

A.1 Representation Model

In our experiments, all models are trained with image input in the Particle Interactions and Traffic domains.
At each timestep, the observation is given as a set of image segmentations - one segmentation frame for each
object in the scene. These are then transformed into object embeddings using a pre-trained CNN encoder. Each
segmented frames are encoded separately, giving latent representations of each object. To allow for the capture
of dynamic visual information, we concatenate two segmentation frames from consecutive time steps along the
channel dimension. We pre-train the representation model using the C-SWM [24] framework, which uses uses a
contrastive loss signal in latent space. The hyperparameters used during training of the encoder are equivalent to
those reported in [24].

For the Team Sports domain, the ground-truth states of the players and the ball is used directly.

A.2 COMET Architecture

The architecture of COMET consists of two parts, the mechanisms and the composition module, as described in
the main text. The first part, the set of mechanisms f0:M

mech(·), operates on the concatenated representations of two
objects, the primary object and the context object. The mechanisms are implemented as feed-forward networks.
The architecture of a single mechanism is shown in Table 1. The composition module itself consists of a set
of independent feed-forward confidence networks, one for each mechanism. Each such independent network
receives the concatenated representations of two objects as input, similar to the mechanisms, and outputs a scalar
confidence score. The architecture of a single confidence network is shown in Table 2. The source code for
COMET will be released with a camera ready version of the paper.

A.3 Baselines

A.3.1 Contrastive Learning of Strutured World Models

Contrastive Learning of Strutured World Models (C-SWM) [24] is a state-of-the-art object-centric world model.
At its core is a GNN transition model that takes object representations as its nodes and is assumed to be
fully-connected. We use the official implementation of the model 3 but replace the default encoder with the
encoder presented in Appendix A.1. The default encoder of C-SWM decomposes a single RGB-frame into a set
of objects whereas our encoder operates on a set of object segmentation frames. Other than that, we use the
original training procedure and model architecture as presented in [24]. This means that the only difference
between the C-SWM implementation and the COMET implementation in our experiments is the use of a GNN
transition model.

3https://github.com/tkipf/c-swm
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A.3.2 Neural Production Systems

Neural Production Systems (NPS) [13] is an object-factorised world model that, like COMET, operates with a
set of mechanisms instead of a monolithic transition model architecture. Furthermore, NPS also considers sparse
contexts, i.e. an object’s transition is conditioned on the state of at most one other object in the observation.

The most prominent difference between NPS and our approach is that NPS jointly learns the mechanism selection,
as predicted by a dot-product attention layer, and the mechanisms themselves, whereas COMET decouples the
mechanism learning and the selection of mechanisms. This limits NPS’ capability of being trained on multiple
environments, as different mechanisms may be active in different environments given the same state. In contrast,
the competition of experts setup of COMET produces predictions for all mechanisms and updates the one with
the lowest prediction error. Thus, the only requirement for COMET is that during the competition stage, enough
mechanisms exist to capture all environment dynamics. The selection of mechanisms is separately trained during
the environment-specific composition phase.

In our experiments, the NPS transition model replaces the GNN transition model of the C-SWM architecture,
and uses the same representation model presented in App. A.1. Since no code is provided with the paper, we
implemented our own version based on the detailed algorithms provided in the appendix of the original paper
[13]. We verified the implementation by confirming that model performance is on par with the results presented
in the original paper when evaluated on similar environments.

A.4 Hyperparameters

During training for all of the models, the batch size is set to 1024 and we use the Adam [23] optimiser with a
learning rate of 1e-4. Object embeddings are set to be 8-dimensional.

A.5 Compute Resources

All experiments were run on a cluster containing a mixture of Nvidia Quadro RTX 6000 and Nvidia Tesla V100
accelerators. Each training run involved a single GPU only. All training runs are finished within 24 hours.

B Datasets

We evaluate COMET and the baselines on three problem domains, Particle Interactions, Traffic and Team Sport.
In each of the domains, we define a set of environments with varying dynamics. Below we provide the details of
the domains.

B.1 Particle Interactions

In the Particle Interactions domain, each environment is defined by a set of rules. Each of these rules consists
of an interaction and a condition (i.e. when the interaction should happen). The particles interact in one of
5 modes of interactions: straight line, repulsion, attraction, spring and spiral towards centre. Moreover,
each particle is coloured. We pick 6 randomly generated environments as the training set, summarised in
Table 3. The training set consists of 2000 sampled episodes from each of these environments, each with 50 frames.

For the adaptation experiments, COMET adapts to an unseen environment with 4 particles, with the
spring interaction if the particles are of the same colour and repel otherwise.

B.2 Traffic

The traffic domain is simulated using the CARLA simulator [6]. License information can be found on https:
//github.com/carla-simulator/carla. Here, the objects are two cars, one orange and one blue, and
a traffic light. In different environments, they follow different traffic rules. We train the models on three
environments, 1. cars drive at normal speeds and stop at red traffic light, 2. cars drive under a much slower
speed limit and stop at red traffic light, and 3. cars ignore traffic lights. In the adaptation environment, only the
orange car drives at a slow speed limit. As such, the model needs to explain new behaviours such as the blue
car slowing down to avoid collision with the orange car in front. The training set has 2000 episodes from each
environment. The length of each episode depends on the exact scenario, which ends if both cars are out of frame
or have stopped moving over 7 timesteps.
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Condition Interaction

Environment 1 close together repulsion
otherwise straight line

Environment 2 same colour spring
close together attraction
otherwise straight line

Environment 3 same colour repulsion
opposite colour spring
otherwise straight line

Environment 4 same colour attraction
is blue spiral towards centre
is red spiral towards centre
otherwise straight line

Environment 5 same colour repulsion
otherwise spring

Environment 6 always spiral towards centre

Table 3: Environment details for particle interactions domain.

B.3 Team Sport

The Team Sport domain is simulated using a modified version of STS2 [42] (https://github.com/
electronicarts/SimpleTeamSportsSimulator). As the domain comes with only a single player type,
we define additional player types according to heuristics:

B.3.1 Simple Player

If the simple player is in control of the ball it moves towards the opponent goal. If other team players are closer
to the opponent goal it tries to pass the ball to them. If a simple player is in the vicinity of the opponent goal and
in control of the ball, it tries to score a goal. If a different player of the own team is in control of the ball, the
simple player moves towards the opponent goal. If the ball is in control of the opponent team, the simple player
moves towards the midway point between the own goal and the control player to block any attempted shot. If the
ball is in the air due to a pass in progress, the simple player will move towards the ball

B.3.2 Defensive Player

The defensive player inherits all offensive behaviour from the simple player. If the defensive player is not in
control of the ball, it moves towards the own goal to diffuse any counter attacks.

B.3.3 Shy Player

The shy player inherits all behaviour from the defensive player but instead of moving towards the opponent goal
if in control of the ball, it moves away from the opponent goal.

For all player types, we define a specific course of action as being a single mechanism. Player types may share
some mechanisms (e.g. moving towards the opponent goal) but differ in others. After executing certain actions
such as shooting, passing, receiving, or tackling, players are unable to perform another action within a set
number of time steps. This accounts for human players also requiring a certain reaction and orientation time
after executing such actions.

We defined separate mechanisms for the ball which is modeled as a separate object. If in possession, the ball
traces the control player and if in the air as a result of a pass or shot, the ball follows a straight line at constant
speed until it is either caught by a player or bounces off a wall to change its direction. A list of all mechanisms
is depicted in Fig. 3.

We collect a total of 5,957 episodes over four different team configurations for training and evaluate our model
and baselines on a configuration of two simple players in each team, a setting which was not part of the training
configurations.

The state space consists of three one-hot flags indicating home team, away team, or ball. Further, we include
two one-hot variables indicating which team is currently in possession of the ball (if any), a one-hot variable
indicating whether the player itself is in control of the ball, a countdown timer denoting for how many time steps
the player is unable to execute an action after having executed an action shortly before, as well as position and
velocity information. Dimensions that apply only to players but not to the ball (e.g. the countdown timer) are
present in the ball state but set to zero.
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C Stability of Mechanism Disentanglement
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Figure 7: Disentanglement plot for training without warm-starting.
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Figure 8: Disentanglement plots for different random seeds. We observe that similar structures
emerge across different seeds (up to permutation).

In practice, we find that the mechanism disentanglement of COMET is significantly improved with 1) warm
starting the training process and 2) increasing the time horizon for mechanism selection. With these two
modifications, we find that COMET can disentangle mechanisms robustly. In Fig. 8 we show that the emergence
of the discrete mechanisms is robust across different random seeds.

C.1 Warm-starting Training

One failure mode of COMET is that, due to the competitive nature of the training process, one or two mechanisms
can dominate the competition and win all of the data. This can happen if the mechanisms are initialised randomly.
In this case, one mechanism can, by chance, be the closest approximation to the environment dynamics and
keep winning the competition. Fig. 7 shows an example of this failure case, where only two mechanisms
are used. In order to alleviate this, we add a warm-start phase before the actual competitive training, where
the gradient is passed through all mechanism-context pairs regardless of accuracy. The intuition is that this
allows all mechanisms to be roughly correct and as such have a fair chance of specialising in particular mode of
interactions.
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Figure 9: Effect of increasing the effective time horizon in the competition phase. As the time horizon
increases, the quality of disentanglement improves.
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Figure 10: Given enough data, all model achieves commensurate rollout errors in the Particle
Interactions and Traffic dataset. In the Team Sports dataset, COMET performs similarly to NPS,
which also considers binary interactions, whereas GNN performs better. This suggests that only
considering binary interactions is not sufficient in this environment. Despite this, COMET is still
able to disentangle some interaction mechanisms.

C.2 Increased Time-horizon

Another failure mode that we encountered is that the model can learn non-interpretable mechanisms which leads
to flickering mechansism selection during rollout. To this end, we found that increasing the effective time-horizon
of the chosen mechanism-context pair is conducive to the emergence of well disentangled mechanisms. This can
be implemented as a modification to the loss function, such that:

L(θ0:M ) =

K∑
i=0

min
m,j

[
T∑

τ=0

d
(
zt+τ
i +∆zt+τ

i (m, j), zt+τ+1
i

)]
, (5)

where T is the time horizon which is set as a hyperparameter. Note that the sum over the time horizon is inside
the minimisation, meaning that a mechanism-context pair is picked only if it has the best performance over
multiple consecutive time steps. This serves as an inductive bias that encourages the sparsity of mechanism
changes across time steps, which empirically results in better disentangled mechanisms. Fig. 9 shows the effect
of increasing the time horizon. We observe that without a long time horizon, each mechanism learns a mixture
of different modes of interactions. In our experiments, we set the time horizon to 10 for Particles, 3 for Traffic
and 5 for Team Sports.

D Extra Rollouts

Fig. 10 shows rollout plots for all of the models in a new environment in the large data limit. This shows that all
model eventually converge to the same level of performance given enough data. Note that in the Team Sport
environment is designed to be challenging for COMET as it requires reasoning about the entire scene, i.e. high
order interactions between multiple objects. Here, GNN outperforms both NPS and COMET, which perform at a
similar level. This supports our hypothesis that considering binary interactions can hinder model expressiveness.
Nonetheless, we show that COMET is still able to disentangle mechanisms and adapt much faster than NPS,
which also only considers binary interactions.
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