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NORMAL ORDERED GRAMMARS

SHI-MEI MA, TOUFIK MANSOUR, JEAN YEH, AND YEONG-NAN YEH

Abstract. We introduce the theory of normal ordered grammars, which gives a natural gener-

alization of the normal ordering problem. To illustrate the main idea, we explore normal ordered

grammars associated with the Eulerian polynomials and the second-order Eulerian polynomials.

In particular, we present a normal ordered grammatical interpretation for the (cdes , cyc ) (p, q)-

Eulerian polynomials, where cdes and cyc are the cycle descent and cycle statistics, respectively.

The exponential generating function for a family of polynomials, generated by a normal ordered

grammar associated with the second-order Eulerian polynomials, reveals an interesting feature:

its expression involves the generating function for Catalan numbers as its exponent. In the final

part, we discuss some normal ordered grammars related to the type B Eulerian polynomials. A

normal ordered grammatical interpretation of the up-down run polynomial is also established.

Keywords: Normal ordering problems; Grammars; Increasing trees; Eulerian polynomials

1. Introduction

The Weyl algebra W is the unital algebra generated by two symbols D and U satisfying the

commutation relation DU − UD = I, where I is the identity which we identify with “1”. In

other words, W = 〈D,U |DU − UD = I〉. An example of the Weyl algebra is the algebra of

differential operators acting on the ring of polynomials in x, generated by D = d
dx and U acting

as multiplication by x. For any w ∈ W , the normal ordering problem is to find the normal order

coefficients ci,j in the expansion:

w =
∑

i,j

ci,jU
iDj.

The following expansion has been studied as early as 1823 by Scherk [1, Appendix A]:

(UD)n =

n∑

k=0

{
n

k

}
UkDk, (1)

where
{n
k

}
is the Stirling number of the second kind, i.e., the number of partitions of the set

[n] = {1, 2, . . . , n} into k blocks (non-empty subsets). According to [1, Proposition A.2], one has

(exD)n = enx
n∑

k=0

[
n

k

]
Dk, (2)

where
[
n
k

]
is the (signless) Stirling number of the first kind, i.e., the number of permutations

of [n] with k cycles. Many generalizations and variations of (1) and (2) occur naturally in

quantum physics, combinatorics and algebra. The reader is referred to Schork [29] for survey

and [11, 16, 18] for recent progress on this subject.
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A context-free grammar G over an alphabet V is defined as a set of substitution rules replacing

a letter in V by a formal function over V . As usual, the formal function may be a polynomial or

a Laurent polynomial. The formal derivative DG with respect to G satisfies the derivation rules:

DG(u + v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v). Recently, context-free grammars

have been widely used, see [9, 10, 23, 27, 28] for instances.

In this paper, we always let DG be the formal derivative associated with the grammar G. As

an illustration, we recall a classical result, which may be seen as a dual result of (1).

Proposition 1 ([6]). If G = {a → ab, b → b}, then Dn
G(a) = a

∑n
k=0

{n
k

}
bk.

The following simple result suggests that it is natural to consider normal ordering problems

associated with grammars.

Proposition 2. If G = {x → 1}, then one has (xDG)
n =

∑n
k=0

{n
k

}
xkDk

G.

Assume that u := u(x, y), v := v(x, y) and w := w(x, y) are given functions. For the grammar

G = {x → u(x, y), y → v(x, y)}, we note that the powers of w(x, y)DG can be expressed as

(w(x, y)DG)
n =

n∑

k=0

ξn,k(x, y)w
k(x, y)Dk

G.

In Section 2, we consider normal ordered grammars associated with the Eulerian polynomials.

In particular, in Theorem 7 we find that if G = {x → y, y → py}, then

(xDG)
n|DG=q =

∑

π∈Sn

xn−exc (π)yexc (π)pcdes (π)qcyc (π),

where exc , cdes and cyc are the excedance, cycle descent and cycle statistics, respectively. In

Section 3, we consider normal ordered grammars associated with the second-order Eulerian

polynomials. If G = {x → y2, y → y2}, one has

(xDG)
n =

n∑

k=1

n∑

ℓ=k

Cn,k,ℓx
ℓy2n−k−ℓDk

G.

Define

C̃n(x, y, z) =

n∑

k=1

n∑

ℓ=k

Cn,k,ℓx
ℓy2n−k−ℓzk, C̃(x, x, z; t) =

∞∑

n=0

C̃n(x, x, z)
tn

n!
.

In Theorem 13, we give a remarkable explicit formula:

C̃(x, x, z; t) = exzt·Cat(x2t/2),

where Cat(z) = 1−
√
1−4z
2z is the generating function for the Catalan numbers. In Section 4, we

discuss some normal ordered grammars related to the type B Eulerian polynomials. At the end

of this paper, we point out that if G′ = {x → y, y → x}, then

(xDG′)n|D
G′=1 = ynTn

(
x

y

)
,

where Tn(x) is the up-down run polynomial over permutations in the symmetric group Sn.
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2. Normal ordered grammars associated with Eulerian polynomials

The (type A) Eulerian polynomials An(x) can be defined by the differential expression:
(
x
d

dx

)n 1

1− x
=

∞∑

k=0

knxk =
An(x)

(1− x)n+1
.

They satisfy the recurrence relation

An(x) = nxAn−1(x) + x(1− x)
d

dx
An−1(x), A0(x) = 1. (3)

Let Sn be the symmetric group of all permutations of [n]. For π = π(1)π(2) · · · π(n) ∈ Sn, the

index i is a descent (resp. excedance) if π(i) > π(i+ 1) (resp. π(i) > i). Let des (π) and exc (π)

be the numbers of descents and excedances of π, respectively. The Eulerian polynomials can

also be defined by

An(x) =
∑

π∈Sn

xdes (π)+1 =
∑

π∈Sn

xexc (π)+1 =

n∑

k=1

〈
n

k

〉
xk,

where
〈n
k

〉
are known as the Eulerian numbers (see [30, A008292]). It is well known that

〈
n

k

〉
= k

〈
n− 1

k

〉
+ (n− k + 1)

〈
n− 1

k − 1

〉
. (4)

In [13], Dumont obtained the context-free grammar for Eulerian polynomials by using a

grammatical labeling of circular permutations.

Proposition 3 ([13, Section 2.1]). Let G = {a → ab, b → ab}. Then for n > 1, one has

Dn
G(a) = Dn

G(b) = bn+1An

(a
b

)
.

Note that Proposition 3 can be restated as

(xDG′)n(x) = (xDG′)n(y) = yn+1An

(
x

y

)
, where G′ = {x → y, y → y}; (5)

(xyDG′′)n(x) = (xyDG′′)n(y) = yn+1An

(
x

y

)
, where G′′ = {x → 1, y → 1}. (6)

In order to investigate the powers of xDG′ and xyDG′′ , we need to introduce some definitions.

The degree of a vertex in a tree is referred to the number of its children. We say that T is a

planted binary (resp. full binary) increasing plane tree on [n] if it is a binary (resp. full binary)

tree with n (resp. n + 1) unlabeled leaves and n labeled internal vertices, and satisfying the

following conditions (see Figures 1 and 3 for examples, where we give every right leaf a weight

y, and each of the other leaves a weight x):

(i) Internal vertices are labeled by 1, 2, . . . , n. The node labelled 1 is distinguished as the

root and it has only one child (resp. it also has two children);

(ii) Excluding (resp. Including) the root, each internal node has exactly two ordered children,

which are referred to as a left child and a right child;

(iii) For each 2 6 i 6 n, the labels of the internal nodes in the unique path from the root to

the internal node labelled i form an increasing sequence.



4 S.-M. MA, T. MANSOUR, JEAN YEH, AND Y.-N. YEH

1

2

y
3

yx
;

1

2

3

yx

x

Figure 1. The planted binary increasing plane trees on [3] encoded by xy2DG′

and x2yDG′ , respectively .
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3

yx

2

x

;

1

x

2

3

yx
;

1

x

2

x

3

x

Figure 2. Three 2-forests on [3] encoded by x2yD2
G′ , and the 3-forest on [3]

encoded by x3D3
G′ .

Definition 4. We say that F is a binary (resp. full binary) k-forest on [n] if it has k connected

components, each connected component is a planted binary (resp. full binary) increasing plane

tree, the labels of the roots are increasing from left to right and the labels of the k-forest form a

partition of [n].

Theorem 5. Let G′ = {x → y, y → y}. For any n > 1, one has

(xDG′)n =
n∑

k=1

n∑

ℓ=k

An,k,ℓx
ℓyn−ℓDk

G′ , (7)

where the coefficients An,k,ℓ satisfy the recurrence relation

An+1,k,ℓ = ℓAn,k,ℓ + (n− ℓ+ 1)An,k,ℓ−1 +An,k−1,ℓ−1, (8)

with the initial conditions A1,1,1 = 1 and A1,k,ℓ = 0 if (k, ℓ) 6= (1, 1). The coefficient An,k,ℓ

counts binary k-forests on [n] with n− ℓ right leaves.

Proof. (A) The first few (xDG′)n are given as follows:

(xDG′)2 = xyDG′ + x2D2
G′ , (xDG′)3 = (xy2 + x2y)DG′ + 3x2yD2

G′ + x3D3
G′ ,

(xDG′)4 = (xy3 + 4x2y2 + x3y)DG′ + (7x2y2 + 4x3y)D2
G′ + 6x3yD3

G′ + x4D4
G′ .

Thus the expansion (7) holds for n 6 4. Assume that it holds for n. Since

(xDG′)n+1 = xDG′ (xDG′)n = xDG′

(
n∑

k=1

n∑

ℓ=k

An,k,ℓx
ℓyn−ℓDk

G′

)
,

it follows that

(xDG′)n+1 =
n∑

k=1

n∑

ℓ=k

An,k,ℓ

[(
ℓxℓyn−ℓ+1 + (n− ℓ)xℓ+1yn−ℓ

)
Dk

G′ + xℓ+1yn−ℓDk+1
G′

]
. (9)
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Extracting the coefficient of xℓyn−ℓ+1Dk
G′ on both sides leads to the recursion (8).

(B) Let F be a binary k-forest. We first give a labeling of F as follows. Label each planted

binary increasing plane tree by DG′ , a right leaf by y, and all the other leaves are labeled by

x. The weight of F is defined to be the product of the labels of all trees in F . See Figure 2

for illustrations. Assume that the weight of F is xℓyn−ℓDk
G′ . Let us examine how to generate a

forest F ′ on [n+ 1] by adding the vertex n+ 1 to F . We have the following three possibilities:

c1: When the vertex n+ 1 is attached to a leaf with label x, then n+ 1 becomes a internal

node with two children. The weight of F ′ is xℓyn−ℓ+1Dk
G′ ;

c2: When the vertex n+ 1 is attached to a leaf with label y, then n+ 1 becomes a internal

node with two children. The weight of F ′ is xℓ+1yn−ℓDk
G′ ;

c3: If the vertex n+ 1 is added as a new root, then F ′ becomes a binary (k + 1)-forest and

the child of n+ 1 has a label x. The weight of F ′ is given by xℓ+1yn−ℓDk+1
G′ .

As each case corresponds to a term in the right of (9), then (xDG′)n+1 equals the sum of the

weights of all binary k-forests on [n+ 1], where 1 6 k 6 n+ 1. This completes the proof. �

Comparing (8) with (4), we see that An+1,1,ℓ =
〈n
ℓ

〉
. We define

An(x, y, z) =
n∑

k=1

n∑

ℓ=k

An,k,ℓx
ℓyn−ℓzk.

Multiplying both sides of (8) by xℓyn+1−ℓzk and summing over all ℓ and k, we get

An+1(x, y, z) = x(n+ z)An(x, y, z) + x(y − x)
∂

∂x
An(x, y, z), A0(x, y, z) = 1. (10)

Combining (3) and (10), we find that An(x, 1, 1) = An(x), where An(x) is the Eulerian poly-

nomial. Note that the sum of exponents of x and y equals n in a general term xℓyn−ℓzk. By

induction, it is easy to verify that yAn(1, y, 1) = An(y). Using (8), we notice that An,k,k−1 = 0

and so An+1,k,k = kAn,k,k + An,k−1,k−1. Thus An,k,k satisfies the same recurrence and initial

conditions as
{n
k

}
. In conclusion, we obtain the following result.

Corollary 6. For n > 1, we have

n∑

k=1

An,k,kz
k =

n∑

k=1

{
n

k

}
zk, yAn(x, y, 1) =

n∑

ℓ=1

〈
n

ℓ

〉
xℓyn+1−ℓ,

An(1, 1, z) = z(z + 1) · · · (z + n− 1) =
n∑

k=1

[
n

k

]
zk,

An(x) = An(x, 1, 1) = xAn(1, x, 1) =
∂

∂z
An+1(x, y, z)|y=1,z=0.

In [19], Foata and Schützenberger introduced the q-Eulerian polynomials

An(x; q) =
∑

π∈Sn

xexc (π)qcyc (π).

The polynomials An(x; q) satisfy the recurrence relation (see [4, Proposition 7.2]):

An+1(x; q) = (nx+ q)An(x; q) + x(1− x)
d

dx
An(x; q), A1(x; q) = 1. (11)
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In the following, we always write permutation by its standard cycle form, in which each

cycle has its smallest element first and the cycles are written in increasing order of their first

elements. The number of cycle descents of a permutation is the number of pairs (a, b) where a is

the element just before b in its cycle and a > b. Let cdes (π) be the number of cycle descents of

π. For example, cdes ((1,4, 2)(3, 5, 7)(6,9, 8)) = 2. It is clear that exc (π)+cdes (π)+cyc (π) = n

for π ∈ Sn. We can now present a generalization of Theorem 5.

Theorem 7. Let G = {x → y, y → py}. For any n > 1, one has

(xDG)
n|DG=q =

∑

π∈Sn

xn−exc (π)yexc (π)pcdes (π)qcyc (π).

When p = 1, it reduces to (xDG)
n|p=1,DG=q = An(x, y, q).

Proof. The first few (xDG)
n are listed as follows:

(xDG)
2 = xyDG + x2D2

G, (xDG)
3 = (xy2 + px2y)DG + 3x2yD2

G + x3D3
G,

(xDG)
4 = (xy3 + 4px2y2 + p2x3y)DG + (7x2y2 + 4px3y)D2

G + 6x3yD3
G + x4D4

G.

Assume the following expansion holds for n:

(xDG)
n =

n∑

k=1

n∑

ℓ=k

An,k,ℓ(p)x
ℓyn−ℓDk

G. (12)

Clearly, A1,1,1(p) = 1 and A1,k,ℓ(p) = 0 if (k, ℓ) 6= (1, 1). Since

(xDG)
n+1 = xDG (xDG)

n = xDG

(
n∑

k=1

n∑

ℓ=k

An,k,ℓ(p)x
ℓyn−ℓDk

G

)
,

it follows that

An+1,k,ℓ(p) = ℓAn,k,ℓ(p) + (n − ℓ+ 1)pAn,k,ℓ−1(p) +An,k−1,ℓ−1(p). (13)

which implies that (12) holds for n+ 1. We claim that

An,k,ℓ(p) =
∑

π∈Sn

exc (π)=n−ℓ
cyc (π)=k

pcdes (π). (14)

Given a π′ ∈ Sn+1. Suppose exc (π′) = n + 1 − ℓ and cyc (π′) = k. In order to get π′ from

π ∈ Sn by inserting the entry n+ 1, there are three ways:

(i) If exc (π) = n− ℓ and cyc (π) = k, we can insert n+ 1 right after a drop (i.e., the index

i such that i > π(i)) or a fixed point. Note that there are ℓ choices for the position of

n+ 1. The first term of the right-hand side of (13) is explained.

(ii) If exc (π) = n+1− ℓ and cyc (π) = k, we can insert n+1 right after an excedance. This

means we have n+1− ℓ choices for the position of n+1. Note that the number of cycle

descents will increase 1. The second term in the right hand side of (13) is explained.

(iii) If exc (π) = n + 1 − ℓ and cyc (π) = k − 1, we can insert n + 1 right after π as a fixed

point. The last term in the right hand side is explained.

This completes the proof of (14). �
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As a variant of Theorem 5, we now present the following result.

Theorem 8. Let G′′ = {x → 1, y → 1}. For any n > 1, we have

(xyDG′′)n =
n∑

k=1

n∑

ℓ=k

an,k,ℓx
ℓyn+k−ℓDk

G′′ , (15)

where the coefficients an,k,ℓ satisfy the recurrence relation

an+1,k,ℓ = ℓan,k,ℓ + (n+ k − ℓ+ 1)an,k,ℓ−1 + an,k−1,ℓ−1, (16)

with the initial conditions a1,1,1 = 1 and a1,k,ℓ = 0 if (k, ℓ) 6= (1, 1). The coefficient an,k,ℓ counts

full binary k-forests on [n] with ℓ left leaves. Moreover, we have

(xyDG′′)n =

n∑

k=1

⌊(n+k)/2⌋∑

ℓ=k

γ(n, k, ℓ)(xy)ℓ(x+ y)n+k−2ℓDk
G′′ , (17)

where the coefficients γ(n, k, ℓ) satisfy the recursion

γ(n+ 1, k, ℓ) = ℓγ(n, k, ℓ) + 2(n+ k − 2ℓ+ 2)γ(n, k, ℓ − 1) + γ(n, k − 1, ℓ− 1), (18)

with the initial conditions γ(1, 1, 1) = 1 and γ(1, k, ℓ) = 0 for all (k, ℓ) 6= (1, 1).

Proof. (A) The first few (xyDG′′)n are given as follows:

(xyDG′′)2 = (xy2 + x2y)DG′′ + x2y2D2
G′′ ,

(xyDG′′)3 = (xy3 + 4x2y2 + x3y)DG′′ + (3x2y3 + 3x3y2)D2
G′′ + x3y3D3

G′′ ,

(xyDG′′)4 = (xy4 + 11x2y3 + 11x3y2 + x4y)DG′′ + (7x2y4 + 22x3y3 + 7x4y2)D2
G′′+

(6x3y4 + 6x4y3)D3
G′′ + x4y4D4

G′′ .

Thus (15) holds for n 6 4. Assume that the expansion holds for n. Then we have

(xyDG′′)n+1

= xyDG′′

(
n∑

k=1

n∑

ℓ=k

an,k,ℓx
ℓyn+k−ℓDk

G′′

)

=

n∑

k=1

n∑

ℓ=k

an,k,ℓ

[(
ℓxℓyn+k−ℓ+1 + (n + k − ℓ)xℓ+1yn+k−ℓ

)
Dk

G′′ + xℓ+1yn+k−ℓ+1Dk+1
G′′

]
.

Extracting the coefficient of xℓyn+k−ℓ+1Dk
G′′ on both sides leads to the recursion (16).

1

y
2

yx
;

1

2

yx

x

Figure 3. The planted full binary increasing plane trees on [2] encoded by

xy2DG′′ and x2yDG′′ , respectively .

(B) Let F be a full binary k-forest. We first give a labeling of F as follows. Label each planted

full binary increasing plane tree by DG′′ , a left leaf by x and a right leaf by y. The weight of F
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is defined to be the product of the labels of all trees in F . See Figure 3 for illustrations. Assume

that the weight of F is xℓyn+k−ℓDk
G′′ . Let us examine how to generate a forest F ′ on [n+ 1] by

adding the vertex n+ 1 to F . We have the following three possibilities:

c1: When the vertex n+ 1 is attached to a leaf with label x, then n+ 1 becomes a internal

node with two children. The weight of F ′ is xℓyn+k−ℓ+1Dk
G′′ ;

c2: When the vertex n+ 1 is attached to a leaf with label y, then n+ 1 becomes a internal

node with two children. The weight of F ′ is xℓ+1yn+k−ℓDk
G′′ ;

c3: If the vertex n+ 1 is added as a new root, then F ′ becomes a full binary (k + 1)-forest,

the left child of n + 1 has a label x, while the right child of n + 1 has a label y. The

weight of F ′ is given by xℓ+1yn+k−ℓ+1Dk+1
G′′ .

The above three cases exhaust all the possibilities. Thus (xyDG′′)n+1 equals the sum of the

weights of all full binary k-forests on [n+ 1], where 1 6 k 6 n+ 1.

(C) We now consider a change of the grammar G′′. Setting u = xy and v = x+ y, we get

DG′′(u) = DG′′(xy) = v, DG′′(v) = DG′′(x+ y) = 2.

Let G′′′ = {u → v, v → 2}. Then we have (xyDG′′)n = (uDG′′′)n. Note that

(uDG′′′)2 = uvDG′′′ + u2D2
G′′′ , (uDG′′′)3 = (uv2 + 2u2)DG′′′ + 3u2vD2

G′′′ + u3D3
G′′′ .

By induction, it is easy to check that

(uDG′′′)n =
n∑

k=1

⌊(n+k)/2⌋∑

ℓ=k

γ(n, k, ℓ)uℓvn+k−2ℓDk
G′′′ ,

where the coefficients γ(n, k, ℓ) satisfy the recursion 18. Then upon taking u = xy and v = x+y,

we get (17). This completes the proof. �

Comparing (16) with (4), we notice that an,1,ℓ =
〈n
ℓ

〉
. Define

an(x, y, z) =

n∑

k=1

n∑

ℓ=k

an,k,ℓx
ℓyn+k−ℓzk, a0(x, y, z) = 1.

Multiplying both sides of (16) by xℓyn+k−ℓ+1zk and summing over all ℓ and k, we obtain

an+1(x, y, z) = x(n+ yz)an(x, y, z) + x(y − x)
∂

∂x
an(x, y, z) + xz

∂

∂z
an(x, y, z).

In particular,

an+1(1, 1, z) = (n+ z)an(1, 1, z) + z
d

dz
an(1, 1, z), a0(1, 1, z) = 1.

Let an(1, 1, z) =
∑n

k=1 L(n, k)z
k. It follows that L(n+1, k) = (n+ k)L(n, k)+L(n, k− 1), from

which we notice that L(n, k) is the (signless) Lah number, see [17] for instance. Explicitly,

L(n, k) =

(
n− 1

k − 1

)
n!

k!
.

Corollary 9. For n > 1, we have

an(1, 1, z) =
n∑

k=1

(
n− 1

k − 1

)
n!

k!
zk.
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A partition of [n] into lists is a set partition of [n] for which the elements of each block are

linearly ordered. It is well known that L(n, k) counts set partitions of [n] into k lists (see [30,

A008297]). We always assume that each list is prepended and appended by 0. Given a list

σ1σ2 · · · σi. We identify it with the word 0σ1σ2 · · · σi0. We say that an index p ∈ {0, 1, 2, . . . , i−1}

is an ascent if σp < σp+1, and q ∈ {1, 2, . . . , i} is a descent if σp > σp+1, where we set σ0 =

σi+1 = 0. Let F be a full binary k-forest. Following [31, p. 51], a bijection from full binary

k-forests to set partitions with k lists can be given as follows: Read the internal vertices of trees

(from left to right) of F in symmetric order, i.e., read the labels of the left subtree (in symmetric

order, recursively), then the label of the root, and then the labels of the right subtree. Using

this correspondence, we get the following result.

Corollary 10. Let an,k,ℓ be defined by (15). Then an,k,ℓ is the number of set partitions of [n]

into k lists with ℓ ascents and n+ k − ℓ descents.

For a permutation π ∈ Sn with π(0) = π(n+ 1) = 0, we say that the entry π(i)

• is a valley if π(i− 1) > π(i) < π(i+ 1);

• is a double descent if π(i− 1) > π(i) > π(i+ 1).

Let val(π) (resp. dd(π)) denote the number of valleys (resp. double descents) in π. Define

γ(n, ℓ) = #{π ∈ Sn : val(π) = ℓ, dd(π) = 0}.

A classical result of Foata-Schützenberger [20] states that the Eulerian polynomials have the

following γ-expansion:

An(x) = x

⌊(n−1)/2⌋∑

ℓ=0

γ(n, ℓ)xℓ(1 + x)n−1−2ℓ.

Brändén [2] reproved this expansion by introducing the modified Foata-Strehl action. Let S(n, k)

be the set of partitions of [n] into k lists. Applying the modified Foata-Strehl action on each list

of an element in S(n, k), we find the following result, and omit the proof for simplicity.

Corollary 11. For n > 1, the polynomials an(x, y, z) is partial γ-positive, i.e.,

n∑

k=1

n∑

ℓ=k

an,k,ℓx
ℓyn+k−ℓzk =

n∑

k=1

zk
⌊(n+k)/2⌋∑

ℓ=k

γ(n, k, ℓ)(xy)ℓ(x+ y)n+k−2ℓ

=
n∑

k=1

(xyz)k
⌊(n−k)/2⌋∑

i=0

γ(n, k, k + i)(xy)i(x+ y)n−k−2i,

where γ(n, k, k+ i) counts partitions of [n] into k lists with i valleys and with no double descents.

3. Normal ordered grammars associated with second-order Eulerian

polynomials

Following Carlitz [5], the second-order Eulerian polynomials Cn(x) are defined by

∞∑

k=0

{
n+ k

k

}
xk =

Cn(x)

(1− x)2n+1
,
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which have been well studied in recent years, see [5, 7, 14, 15, 21, 27].

For m = (m1,m2, . . . ,mn) ∈ N
n, let n = {1m1 , 2m2 , . . . , nmn} be a multiset, where i appears

mi times. We say that a multipermutation σ of n is Stirling permutation if σs > σi as soon

as σi = σj and i < s < j. Denote by Qn the set of Stirling permutations of {12, 22, . . . , n2}.

Let σ = σ1σ2 · · · σ2n ∈ Qn. In the following discussion, we always set σ0 = σ2n+1 = 0. For

0 6 i 6 2n, we say that an index i is a descent (resp. ascent, plateau) of σ if σi > σi+1 (resp.

σi < σi+1, σi = σi+1). Let des (σ), asc (σ) and plat (σ) be the number of descents, ascents and

plateaus of σ, respectively. It is now well known that descents, ascents and plateaus have the

same distribution over Qn, and their common enumerative polynomials are the second-order

Eulerian polynomials Cn(x). As a variant of [7, Theorem 2.3], the grammatical description of

Cn(x) can be restated as follows:

(xDG)
n(x) = y2n+1Cn

(
x

y

)
, where G = {x → y2, y → y2}. (19)

We say that T is a planted ternary (resp. full ternary) increasing plane tree on [n] if it is a

ternary tree with 2n − 1 (resp. 2n + 1) unlabeled leaves and n labeled internal vertices, and

satisfying the following conditions (see Figures 4 and 5, where we give each leaf a weight):

(i) Internal vertices are labeled by 1, 2, . . . , n. The node labelled 1 is distinguished as the

root and it has only one child (resp. it also has three children);

(ii) Excluding (resp. Including) the root, each internal node has exactly three ordered chil-

dren, which are referred to as a left child, a middle child and a right child;

(iii) For each 2 6 i 6 n, the labels of the internal nodes in the unique path from the root to

the internal node labelled i form an increasing sequence.

We say that F is a ternary (resp. full ternary) k-forest on [n] if it has k connected components,

each component is a planted ternary (resp. full ternary) increasing plane tree, the labels of the

roots are increasing from left to right and the labels of the k-forest form a partition of [n].

1

2

yy
3

yyx
;

1

2

y
3

yyx

x

;

1

2

3

yyx

yx

Figure 4. The planted ternary increasing plane trees on [3] encoded by xy4DG

and x2y3DG, respectively .

Let F be a ternary k-forest. We introduce a labeling of F as follows (see Figure 4 for

illustrations). Label each planted ternary increasing plane tree by DG, a left leaf by x, and

middle and right leaves are both labeled by y. If a tree has only one internal vertex and a leaf,

then label the leaf by x. Along the same lines as in the proof of Theorem 5, it is routine to

verify the following.
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Theorem 12. Let G = {x → y2, y → y2}. For any n > 1, we have

(xDG)
n =

n∑

k=1

n∑

ℓ=k

Cn,k,ℓx
ℓy2n−k−ℓDk

G,

where the coefficients Cn,k,ℓ satisfy the recurrence relation

Cn+1,k,ℓ = ℓCn,k,ℓ + (2n − k − ℓ+ 1)Cn,k,ℓ−1 + Cn,k−1,ℓ−1, (20)

with the initial conditions C1,1,1 = 1 and C1,k,ℓ = 0 if (k, ℓ) 6= (1, 1). The coefficient Cn,k,ℓ

counts ternary k-forests on [n] with 2n − k − ℓ middle and right leaves. Moreover, we have

Cn+1,1,ℓ = Cn,ℓ, where Cn,ℓ is the second-order Eulerian number, i.e., the number of Stirling

permutations of order n with ℓ descents.

Define

C̃n(x, y, z) =
n∑

k=1

n∑

ℓ=k

Cn,k,ℓx
ℓy2n−k−ℓzk.

It follows from (20) that

C̃n+1(x, y, z) = (xz + 2nxy)C̃n(x, y, z) + xy(y − x)
∂

∂x
C̃n(x, y, z) − xyz

∂

∂z
C̃n(x, y, z),

with C̃0(x, y, z) = 1. When x = y, one has

C̃n+1(x, x, z) = (xz + 2nx2)C̃n(x, x, z) − x2z
∂

∂z
C̃n(x, x, z), (21)

Let

C̃(x, x, z; t) =

∞∑

n=0

C̃n(x, x, z)
tn

n!
.

Then (21) can be written as

(1− 2x2t)
∂

∂t
C̃(x, x, z; t) = xzC̃(x, x, z; t) − x2z

∂

∂z
C̃(x, x, z; t), C̃(x, x, z; 0) = 1.

With help of mathematical programming, we find the following result.

Theorem 13. We have

C̃(x, x, z; t) = exzt·Cat(x2t/2),

where Cat(z) = 1−
√
1−4z
2z is the generating function for the Catalan numbers 1

n+1

(
2n
n

)
.

Corollary 14. For all n > 0, we have

C̃n+1(x, x, z) =

n∑

j=0

(n + j)!

2j(n − j)!j!
xn+1+jzn+1−j =

n∑

j=0

b(n, j)xn+1+jzn+1−j ,

where b(n, j) is the Bessel number of first kind [30, A001498].
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Proof. Using [32, Eq. (2.5.16)], we get

C̃(x, x, z; t) =
∑

j≥0

xjzjtj Catj(x2t/2)

j!

= 1 +
∑

j≥1

∑

i≥0

j

(i+ j)j!2i

(
2i− 1 + j

i

)
x2i+jzjti+j

= 1 +
∑

i≥0

i∑

j=0

j + 1

(i+ 1)(j + 1)!2i−j

(
2i− j

i− j

)
x2i−j+1zj+1ti+1.

Hence, for all n > 1, we get

C̃n(x, x, z) = n!

n−1∑

j=0

j + 1

n(j + 1)!2n−1−j

(
2n− j − 2

n− 1− j

)
x2n−j−1zj+1,

which is equivalent to

C̃n(x, x, z) =
n−1∑

j=0

j!

2j

(
n− 1

j

)(
n+ j − 1

j

)
xn+jzn−j.

After simplifying, we get the desired explicit formula. �

The trivariate second-order Eulerian polynomials are defined by

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)ydes (σ)zplat (σ).

In [12, p. 317], Dumont found that

Cn+1(x, y, z) = xyz

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
Cn(x, y, z), (22)

which implies that Cn(x, y, z) is symmetric in the variables x, y and z. By (22), it is clear that

Dn
G(x) = Cn(x, y, z), (23)

where G = {x → xyz, y → xyz, z → xyz}. In [21], Haglund-Visontai introduced a refinement

of the polynomial Cn(x, y, z) by indexing each ascent, descent and plateau by the values where

they appear. Using (23), Chen-Fu [8] found that Cn(x, y, z) is e-positive, i.e.,

Cn(x, y, z) =
∑

i+2j+3k=2n+1

γn,i,j,k(x+ y + z)i(xy + yz + zx)j(xyz)k, (24)

where the coefficient γn,i,j,k equals the number of 0-1-2-3 increasing plane trees on [n] with k

leaves, j degree one vertices and i degree two vertices.

A ternary increasing tree of size n is an increasing plane tree with 3n + 1 nodes where each

interior node is labeled and has three children (a left child, a middle child and a right child),

while exterior nodes have no children and no labels. Let Tn denote the set of ternary increasing

trees of size n, see Figure 5 for instance. For any T ∈ Tn, it is clear that T has exactly 2n + 1

exterior nodes. Let exl(T ) (resp. exm(T ), exr(T )) denotes the number of exterior left nodes
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(resp. exterior middle nodes, exterior right nodes) in T . Using a recurrence relation that is

equivalent to (22), Dumont [12, Proposition 1] found that

Cn(x, y, z) =
∑

T∈Tn
xexl(T )yexm(T )zexr(T ). (25)

1

zy
2

zyx
;

1

z
2

zyx

x

;

1

2

zyx

yx

Figure 5. The planted full ternary increasing plane trees on [2] encoded by

xy2z2DG, x2yz2DG and x2y2zDG.

Let F be a full ternary k-forest. We now give a labeling of F as follows. Label each planted

full ternary increasing plane tree by DG, a left leaf by x, a middle leaf by y and a right leaf by

z, see Figure 5. Along the same lines as in the proof of Theorem 5, we find the following result.

Theorem 15. If G = {x → 1, y → 1, z → 1}, then we have

(xyzDG)
n =

n∑

k=1

n−k∑

i=0

n−k∑

j=0

ηn,i,j,kx
iyjz2n−2k−i−j(xyz)kDk

G, (26)

where the coefficient ηn,i,j,k counts full ternary k-forests on [n] with i+k left leaves, j+k middle

leaves and 2n− k − i− j right leaves.

Definition 16. A partition of {12, 22, . . . , n2} into Stirling-lists is a set partition of {12, 22, . . . , n2}

for which the elements of each block are Stirling permutations and for all i ∈ [n], the two copies

of i appear in exactly one block. We always assume that each Stirling-list is prepended and

appended by 0.

Let SLn denote the set of partition of {12, 22, . . . , n2} into Stirling-lists, and let bk be the block

statistic. For example, SL2 = {{1122}, {1221}, {2211}, {11}{22}}, where the last set partition

{11}{22} has two blocks. Combining (25) and Theorem 15, we get the following.

Corollary 17. If G = {x → 1, y → 1, z → 1}, then

(xyzDG)
n|DG=q =

∑

p∈SLn

xasc (p)yplat zdes (p)qbk(p).

In particular, the coefficient q in (xyzDG)
n|DG=q is Cn(x, y, z).

Theorem 18. Let G = {x → 1, y → 1, z → 1}. Then we have

(xyzDG)
n =

n∑

k=1

2n−2k∑

2j+3ℓ=0

βn,k,j,ℓ(x+ y + z)2n−2k−2j−3ℓ(xy + xz + yz)j(xyz)ℓ+kDk
G, (27)

where the coefficients βn,k,j,ℓ satisfy the recursion

βn+1,k,j,ℓ = (ℓ+ k)βn,k,j−1,ℓ + 2(j + 1)βn,k,j+1,ℓ−1+

3(2n − 2k − 2j − 3ℓ+ 3)βn,k,j,ℓ−1 + βn,k−1,j,ℓ,
(28)
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with the initial conditions β1,1,0,0 = 1 and β1,k,j,ℓ = 0 for any (k, j, ℓ) 6= (1, 0, 0).

Proof. Consider a change of the grammar G = {x → 1, y → 1, z → 1}. Setting

u = x+ y + z, v = xy + xz + yz, w = xyz,

we have DG(u) = 3, DG(v) = 2u and DG(w) = v. Let G′ = {u → 3, v → 2u, w → v}. Then

we have (xyzDG)
n = (wDG′)n. Note that

(wDG′)2 = wvDG′ + w2D2
G′ , (wDG′)3 = (v2 + 2wu)wDG′ + 3vw2D2

G′ + w3D3
G′ .

By induction, it is routine to check that there exist nonnegative integers αn,k,i,j,ℓ such that

(wDG′)n =

n∑

k=1

∑

i+2j+3ℓ=2n−2k

αn,k,i,j,ℓu
ivjwℓ+kDk

G′

=

n∑

k=1

2n−2k∑

2j+3ℓ=0

βn,k,j,ℓu
2n−2k−2j−3ℓvjwℓ+kDk

G′

where βn,k,j,ℓ satisfy the recursion 28. Then upon taking u = x+ y + z, v = xy + xz + yz and

w = xyz, we get (27). This completes the proof. �

Let

βn := βn(u, v, w, q) =
n∑

k=1

2n−2k∑

2j+3ℓ=0

βn,k,j,ℓu
2n−2k−2j−3ℓvjwℓ+kqk.

It follows from (28) that

βn+1 = wqβn + 3w
∂

∂u
βn + 2uw

∂

∂v
βn + vw

∂

∂w
βn.

Below are these polynomials for n 6 4:

β1 = wq, β2 = vwq + w2q2, β3 = (v2w + 2uw2)q + 3vw2q2 + w3q3,

β4 = (v3w + 8uvw2 + 6w3)q + (7v2w2 + 8uw3)q2 + 6vw3q3 + w4q4.

Let ηn,i,j,k be defined by (26). Define

ηn(x, y, z, q) =

n∑

k=1

n−k∑

i=0

n−k∑

j=0

ηn,i,j,kx
iyjz2n−2k−i−j(xyz)kqk.

Corollary 19. The multivariate polynomials ηn(x, y, z, q) are partial e-positive, i.e.,

ηn(x, y, z, q) =

n∑

k=1

qk
2n−2k∑

2j+3ℓ=0

βn,k,j,ℓ(x+ y + z)2n−2k−2j−3ℓ(xy + xz + yz)j(xyz)ℓ+k.
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4. Normal ordered grammars related to type B Eulerian polynomials

In the previous sections, we illustrate the basic idea of normal ordered grammars. Along the

same lines as in the proof of Theorem 5, one can explore normal ordered grammars associated

with the other polynomials. In the sequel, we investigate some normal ordered grammars related

to the type B Eulerian polynomials.

Let ±[n] = [n] ∪ {−1,−2, . . . ,−n}, and let Bn be the hyperoctahedral group of rank n.

Elements of Bn are signed permutations of ±[n] with the property that σ(−i) = −σ(i) for all

i ∈ [n]. The type B Eulerian polynomials are defined by

Bn(x) =
∑

σ∈Bn

xdesB(σ),

where desB(σ) = #{i ∈ {0, 1, 2, . . . , n− 1} : σ(i) > σ(i+ 1)} and σ(0) = 0 (see [3] for details).

They satisfy the recursion (see [3, Eq. (11)]):

Bn(x) = (1 + (2n− 1)x)Bn−1(x) + 2x(1 − x)
d

dx
Bn−1(x), B0(x) = 1.

Let Bn(x) =
∑n

k=0B(n, k)xk. One has

B(n, k) = (1 + 2k)B(n − 1, k) + (2n − 2k + 1)B(n − 1, k − 1), B(0, 0) = 1. (29)

Let G = {x → xy2, y → x2y}. According to [24, Theorem 10], we have

Dn
G(xy) = xy2n+1Bn

(
x2

y2

)
,

which can be restated as

(xyDG′)n(xy) = xy2n+1Bn

(
x2

y2

)
, where G′ = {x → y, y → x}; (30)

(xDG′′)n(xy) = xy2n+1Bn

(
x2

y2

)
, where G′′ = {x → y2, y → xy}. (31)

It is easy to verify the following two results.

Proposition 20. If G′ = {x → y, y → x}, then

(xyDG′)n =
n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

Bn,k,ℓx
k+2ℓy2n−k−2ℓDk

G′ ,

where the coefficients Bn,k,ℓ satisfy the recurrence relation

Bn+1,k,ℓ = (k + 2ℓ)Bn,k,ℓ + (2n − k − 2ℓ+ 2)Bn,k,ℓ−1 +Bn,k−1,ℓ, (32)

with the initial conditions B1,1,0 = 1 and B1,k,ℓ = 0 if (k, ℓ) 6= (1, 0).

Proposition 21. If G′′ = {x → y2, y → xy}, then

(xDG′′)n =
n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

En,k,ℓx
k+2ℓy2n−2k−2ℓDk

G′′ ,

where the coefficients En,k,ℓ satisfy the recurrence relation

En+1,k,ℓ = (k + 2ℓ)En,k,ℓ + (2n − 2k − 2ℓ+ 2)En,k,ℓ−1 + En,k−1,ℓ, (33)
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with the initial conditions E1,1,0 = 1 and E1,k,ℓ = 0 if (k, ℓ) 6= (1, 0).

Comparing (32) with (29), we see that Bn+1,1,ℓ = B(n, ℓ), and so we obtain a normal ordered

grammatical interpretation of the type B Eulerian polynomials:

Bn(x) =

n∑

ℓ=0

Bn+1,1,ℓx
ℓ. (34)

Let

Bn(x, y, z) =

n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

Bn,k,ℓx
k+2ℓy2n−k−2ℓzk.

It follows from (32) that

Bn+1(x, y, z) = (xyz + 2nx2)Bn(x, y, z) + x(y2 − x2)
∂

∂x
Bn(x, y, z), B0(x, y, z) = 1. (35)

In particular,

B1(x, 1, 1) = x, B2(x, 1, 1) = x+ x2 + x3, B3(x, 1, 1) = x+ 3x2 + 7x3 + 3x4 + x5.

We now recall two statistics of Stirling permutations. An occurrence of an ascent-plateau of a

Stirling permutation σ ∈ Qn is an index i such that σi−1 < σi = σi+1, where i ∈ {2, 3, . . . , 2n−1}.

Let ap (σ) be the number of ascent-plateaus of σ. The flag ascent-plateau statistic is defined by

fap (σ) =

{
2ap (σ) + 1, if σ1 = σ2;

2ap (σ), otherwise.

Let Fn(x) =
∑

σ∈Qn
xfap (σ). It follows from [26, Eq. (16)] that

Fn+1(x) = (x+ 2nx2)Fn(x) + x(1− x2)
d

dx
Fn(x). (36)

Comparing (36) with (35), we see that

Bn(x, 1, 1) =
∑

σ∈Qn

xfap(σ). (37)

From (34) and (37), we see that Stirling permutations are closely related to signed permutations.

Moreover, by (33), we see that

En+1,1,ℓ = (1 + 2ℓ)En,1,ℓ + (2n − 2ℓ)En,1,ℓ−1. (38)

Using [25, Eq. (6)], we find that En+1,1,ℓ = {σ ∈ Qn : ap (σ) = ℓ}, i.e., En+1,1,ℓ equals the

number of Stirling permutations in Qn with ℓ ascent-plateaus.

Let

En(x, y, z) =

n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

En,k,ℓx
k+2ℓy2n−2k−2ℓzk.

It follows from (33) that

En+1(x, y, z) = (xz + 2nx2)En(x, y, z) + x(y2 − x2)
∂

∂x
En(x, y, z) − x2z

∂

∂z
En(x, y, z),

with E0(x, y, z) = 1. In particular, one has

En+1(1, 1, z) = (z + 2n)En(1, 1, z) − z
∂

∂z
En(1, 1, z).
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Using (21) and Corollary 14, we arrive at

En(1, 1, z) = C̃n(1, 1, z) =
n−1∑

j=0

(n + j − 1)!

2j(n− 1− j)!j!
zn−j for any n > 1,

and so En(1, 1, z) is the Bessel polynomial of the first kind.

Let π ∈ Sn. The up-down runs of a permutation π ∈ Sn are the alternating runs of π endowed

with a 0 in the front. Let udrun (π) denote the number of up-down runs of π. The up-down run

polynomials Tn(x) are defined by Tn(x) =
∑

π∈Sn
xudrun (π). The polynomials Tn(x) satisfy the

recurrence relation

Tn+1(x) = x(1 + nx)Tn(x) + x
(
1− x2

) d

dx
Tn(x), (39)

with initial conditions T0(x) = 1 and T1(x) = x (see [9, 26, 33] for details).

We end this paper by giving the following result, and omit the proof for simplicity.

Proposition 22. Let G′ = {x → y, y → x}.

(i) For n > 1, we have

(xDG′)n =

n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

Wn,k,ℓx
k+2ℓyn−k−2ℓDk

G′ ,

where the coefficients Wn,k,ℓ satisfy the recurrence relation

Wn+1,k,ℓ = (k + 2ℓ)Wn,k,ℓ + (n− k − 2ℓ+ 2)Wn,k,ℓ−1 +Wn,k−1,ℓ,

with the initial conditions W1,1,0 = 1 and W1,k,ℓ = 0 if (k, ℓ) 6= (1, 0).

(ii) Let

Wn(x, y, z) =

n∑

k=1

⌊(2n−k)/2⌋∑

ℓ=0

Wn,k,ℓx
k+2ℓyn−k−2ℓDk

G′ .

Then we have

Wn+1(x, y, z) = x

(
z + n

x

y

)
Wn(x, y, z) + xy

(
1−

x2

y2

)
d

dx
Wn(x, y, z),

with the initial condition W0(x, y, z) = 1. In particular,

Wn(1, 1, z) = z(z + 1)(z + 2) · · · (z + n− 1) =

n∑

k=1

[
n

k

]
zk,

Wn(x, y, 1) = ynTn

(
x

y

)
,

where Tn(x) is the up-down run polynomial over permutations in Sn.
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