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Abstract— Tactile and textile skin technologies have become
increasingly important for enhancing human-robot interaction
and allowing robots to adapt to different environments. Despite
notable advancements, there are ongoing challenges in skin
signal processing, particularly in achieving both accuracy and
speed in dynamic touch sensing. This paper introduces a
new framework that poses the touch sensing problem as an
estimation problem of resistive sensory arrays. Utilizing a
Regularized Least Squares objective function—which estimates
the resistance distribution of the skin—we enhance the touch
sensing accuracy and mitigate the ghosting effects, where
false or misleading touches may be registered. Furthermore,
our study presents a streamlined skin design that simpli-
fies manufacturing processes without sacrificing performance.
Experimental outcomes substantiate the effectiveness of our
method, showing 26.9% improvement in multi-touch force-
sensing accuracy for the tactile skin.

I. INTRODUCTION

As robotics become increasingly integrated into everyday
life, tactile and textile skins have emerged as essential
technologies for ensuring safe and nuanced human-robot
interactions [1]. While textile-based skins offer benefits like
scalability, low cost, and adaptability [2], they present sig-
nal processing challenges, including nonlinearity and signal
ghosting, that hinder their practical application.

This paper introduces a new signal-processing framework
designed to improve the accuracy and reliability of the
multi-touch force sensing of textile-based tactile skins. We
proposed the very first solution to achieve accurate multi-
touch textile-based tactile sensing relying entirely on textile
materials. We formulate the textile-based tactile sensing
problem as a parameter estimation problem for a resistive
sensor array, which can be solved via optimization tech-
niques. This work focuses on the resistive sensing approach
on textiles due to its simplicity and robustness against
deformation. Our framework requires only one single-point
force calibration in the beginning and can make accurate
multi-touch force predictions afterward. Our approach also
effectively mitigates ghosting by assuming that any sensing
cell can influence another, irrespective of the touch patterns.

Due to the enhanced multi-touch sensing capability, we
further simplified the tactile skin to a two-layer structure.
The two-layer skin is subject to a more serious ghosting
effect due to direct contact between two conductive layers
despite its advantage of a much lower minimum detectable
force. As our solution considers a more general multi-touch
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Fig. 1: An overview of our proposed tactile skin sensing
method. (a) Two textile pieces with conductive stripes are
separately knitted. (b) The two textile pieces are sewn
together orthogonally to create a grid of sensing cells. The
light pink fabric is made of Nylon Stretchy Yarn and the red
vertical fabric stripes are made of Acrylic Yarn. (c) The skin
is modeled as a resistive sensory array. Our approach predicts
force applied on the skin by estimating cell resistances RC

using the Arduino board.

scenario, our signal-processing framework has significantly
mitigated the undesired ghosting effect for the two-layer skin,
and therefore, unleashed its potential for lower minimum
detectable force. Experiments later demonstrated the lower
detectable force based on our integrated hardware-software
solution.

The remainder of this paper is organized as follows:
Section II reviews related work in tactile skins and existing
resistance estimation methods; Section III describes our
novel design for 2-layer textile-based tactile skin; Section IV
outlines our problem statement and proposed methodology;
Section V presents and discusses our experimental results;
Section VI concludes the paper.
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II. BACKGROUND AND RELATED WORK

A. Textile and Tactile Skin

Tactile skins provide robots with the capability to sense
pressure, facilitating a wide range of applications from
nuanced human-robot interaction to advanced safe control
mechanisms [3], [4]. Various fabrication techniques of tactile
skins have been proposed, including capacitive units fea-
turing flexible polyethylene terephthalate (PET) substrates
[5], and piezoresistive arrays with star-shaped strain gauges
[6]. A detailed review of different manufacturing techniques
and effective utilization of tactile skins can be found in this
survey [?].

Recent advancements in textile-based tactile skins offer
benefits like scalability, cost-effectiveness, and stretchability
[2], [7]. However, they introduce unique challenges in signal
processing. One significant issue is the non-negligible wire
resistances in conductive textiles, which makes the accurate
estimation of contact forces more complex. Another distinct
challenge arises from the alternate paths of current, which
can lead to false touches or ghosting when multiple simul-
taneous contacts occur.

This paper aims to address these specific challenges
through a novel signal-processing framework, thereby im-
proving the performance and reliability of textile-based tac-
tile skins.

B. Readout of Resistance Sensor Arrays

Our approach to estimating multiple contact forces relies
on accurately determining the resistance in each cell of a
tactile skin array, connected in rows and columns as shown
in Figure 1(c). The challenge of accurately reading resistance
sensor arrays has been extensively studied along with many
different approaches [8], [9], [10].

Existing solutions to the readout problem generally fall
into two categories. The first involves the addition of ex-
tra electrical components to the array for better resistance
estimation. For example, Snyder et al inserted diodes to
calculate the current in each column’s sensitive elements and,
subsequently, their resistance [11]. Tanaka et al introduced
transistors into a 128×128 resistive array for the same
purpose [12]. While effective, these hardware modifications
introduce complexities, inflate costs, and compromise the
skin’s flexibility and stretchability.

The second approach employs a resistance matrix, first
suggested in [13] and later refined in [14], to estimate
individual resistances. While this approach is less complex
than hardware modifications, it fails to account for wire
resistances and the uneven resistance distribution of textile-
based tactile skins.

In light of these limitations, we propose the first
optimization-based approach for textile-based tactile skins.
Unlike conventional approaches, our method does not assume
constant wire resistances, which can change due to stretching
or bending. As a result, our approach enhances the accuracy
of contact force estimation, a claim substantiated by our
comprehensive experimental results.

III. TEXTILE AND TACTILE SKIN:
DESIGN AND PROPERTIES

Our design builds upon the tactile skin model proposed by
Si. et al [2], but incorporates several modifications. Unlike
the three-layered construction suggested in their work, we
employ a simplified two-layer construction by removing the
insulating layer. Our two-layer construction was chosen for
its ease of manufacturing and lower minimum detectable
force. The readout frequency of the tactile skin depends on
the grid dimensions of the skin, where 8x8 skin runs at a
90Hz readout rate.

A. Working Principle
The functionality of our tactile skin is dependent on the

interaction between its two layers of conductive fabric. Upon
applying pressure, these layers come into contact, inducing
a change in resistance. This change influences the voltage
across an associated resistor network, which can be measured
through a resistance measurement circuit. As more pressure
is exerted, the contact area between the layers expands,
reducing the resistance and consequently altering the voltage
drop across the resistor network. This voltage drop serves as
an estimator for the applied force.

B. Skin Material and Fabrication
Our tactile skin is made from three different types of

fabrics, each serving a specific purpose: Acrylic Yarn, the
red portion shown in Figure 1 (b) offers structure and
durability. Nylon Stretch Yarn (MaxiLock Stretch Textured
Nylon), adds stretchability, and Bekinox-polyester Stainless
Steel Yarn (Baekert BK 9036129) provides conductivity. The
Nylon Stretch Yarn and Stainless Steel Yarn are co-knitted to
form the conductive stripes of the textile skin, which can be
seen in the light color portion in Figure 1 (b). By executing
the knitting program written in the knitout language [15],
the skin’s top and bottom layers are first knitted individually
with stripe patterns. They are then joined along the edges of
the conductive stripes using a sewing machine, as illustrated
in Figure 1.

C. Properties and Characteristics
The skin’s minimum detectable pressure is primarily

determined by two factors: the inherent resistance of the
conductive yarn, which is specified as 20Ω/cm for Baek-
ert BK 9036129, and the deformation of the skin under
applied pressure. The stretchable properties of the yarn, com-
bined with the selected knitting pattern, confer bidirectional
stretchability to the skin. It should be noted that the resistance
within the skin exhibits spatial variations. Specifically, the
resistance per unit length tends to be lower along the yarn
compared to that between stitches, resulting in a non-uniform
distribution of resistance. The resistance is generally lower
in the course (horizontal) direction compared to the wale
(vertical) direction [16]. Furthermore, the resistance values
lower as the skin stretches, adding complexity to the skin’s
resistance profile [16]. In this work, it is not required
to measure actual resistances of the skin as it is solved
numerically.
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Fig. 2: (a): Ghosting effects occur when an alternate path
of current (shown in green) is formed for the sensing cell at
the upper left corner, bypassing it completely. (b): Ohmmeter
Configurations. Details are provided in Section IV(C).

D. Challenges in Tactile Sensing

Multi-touch tactile sensing in textile-based sensors
presents multiple challenges, including undesired ghosting
effects and fluctuations in skin resistance. Moreover, to
preserve key attributes like manufacturability, stretchabil-
ity, and flexibility, it’s crucial to avoid adding extraneous
components. Maintaining a fabric-only composition not only
ensures the washability of the tactile skin but also min-
imizes the risk of electronic damage. Given these design
considerations, the following challenges are intrinsic to the
development of textile-based tactile sensors.

1) Ghosting Effects: As shown in Figure 2 (a), false
positive detections occur due to alternate electrical paths
between the skin layers. When three or more touches align
on a rectangle’s corners, the untouched corner mistakenly
registers a touch, a result of currents flowing an alternate
path between the layers.

2) Adaptation to varying skin resistance distribution: The
tactile skin’s stretchability and flexibility introduce resistance
variations along the conductive stripes, which skews the
skin output in multi-touch scenarios. Traditional resistor
matrix methods, designed to combat ghosting, operate under
assumptions that may not apply to textile and tactile skins.
Changes in resistance, due to stretching or bending, challenge
accurate force estimation.

IV. ALGORITHMS FOR MULTI-TOUCH SENSING

A. Modeling

We model the physical tactile skin structure as a simplified
circuit comprising resistors and voltage sources shown in
Figure 1(c). This circuit model mirrors the tactile skin’s
construction, where both the top and bottom layers consist of
conductive stripes. These conductive stripes are represented
as resistors connected in series with unknown resistances,
Rt

i,j for the top layer and Rb
i,j for the bottom layer where i is

the row index and j is the column index. The point of contact
between the top and bottom stripes is similarly modeled as
a grid of resistors with unknown resistances Rc

i,j , whose
value changes when different contact forces are applied. A

voltage source Vdd is connected through a reference resistor,
multiplexed to one input to the skin resistor network, and is
then linked to another reference resistor before reaching the
ground. The problem of contact/force estimation problem is
formulated as a parameter estimation problem, where we aim
to solve unknown sensing cell resistances RC

i,j . By applying
different voltages to the top and bottom layers, we obtain
the total voltage drop across the skin’s resistor network
from pairs of electrodes across rows and columns. We then
employ optimization techniques to estimate these unknown
resistances, which are subsequently used to predict the force
applied to the skin.

B. Overview of the Solution Approach

Our approach to multi-touch force sensing using textile-
based tactile skin comprises two stages. The first stage
performs one-time single-touch force calibration. Given the
readout data acquired from the Ohmmeter circuit, we esti-
mate the cell resistances Rc

i,j of the skin using the proposed
resistance estimation algorithm shown in Algorithm 1 and
fit them to simple linear regression models for each cell,
which predicts the applied force. The second stage is the
estimation stage, where the skin cell resistances are solved
online using the same optimization program. Multi-touch
forces are predicted by the regression model created in the
first stage using the solved resistances.

C. Readout Process

In the readout process, we first take four distinct measure-
ments for each cell using different ohmmeter configurations.
The four distinct ohmmeter configurations, labeled A, B,
C, and D, are employed for each sensing cell as shown in
Figure 2(b). This dual-layer strategy effectively compensates
for reference resistor tolerances and addresses the non-ideal
behavior of tactile skin by eliminating systematic errors.

D. Resistance Estimation

In both calibration and estimation stages, we are using the
same procedure to solve for unknown sensing cell resistances
RC

i,j , as shown in Algorithm 1. The process of resistance
estimation is as follows: Given the measurements for each

Algorithm 1 Resistance Estimation

1: procedure RESISTANCE ESTIMATION
▷ Step 1: Take voltage measurement

2: Vs, Vr ← four measurements for each cell
▷ Step 2: Calculate initial circuit states

3: Rt, Rb ← 0
4: Rc ← results solved with Ohm’s law
5: V t, V b ← Simulation(Vs, Vr, R

t, Rb, Rc)
6: P ← {Vs, Vr, R

t, Rb, Rc}
▷ Step 3: Solving WithOUT Regularization

7: P ← solveLeastSquares(P )
▷ Step 4: Solving With Regularization

8: P ← solveRegularized(P )
9: end procedure



cell using different ohmmeter configurations in the readout
process, we create circuit state variables by applying the
circuit model of the skin shown in Figure 1(c), aiming to find
a set of unknown resistance and voltage values RT

ij , RB
ij , RC

ij ,
V T
ij , and V B

ij that best explains the observation. We bootstrap
the optimization program by calculating initial resistances
for each cell assuming zero wire resistances. Following this,
we run circuit simulations using the estimated resistances to
obtain the initial voltage at each circuit node. These initial
values provide a starting point for an optimization program
designed to refine the estimated resistances and voltages.
The optimization process consists of two stages: the first
focuses on finding a least squares solution that complies with
Kirchhoff’s Law and Ohm’s Law shown in step 3, while
the second stage aims to regularize wire resistances to yield
regularized values shown in step 4.

E. Proposed Optimization Program

We define the decision variables to the proposed opti-
mization program as a set of circuit states, each of which
corresponds to one measurement using the Ohmmeter circuit.
A circuit state of each measurement consists of 5 sets of
variables: Rt

ij , Rb
ij , Rc

ij , V t
ij , and V b

ij .
Our optimization program enforces circuit equality con-

straints for each circuit state based on Kirchhoff’s Current
Law and Ohm’s Law. This ensures any feasible solution the
solver returns to also be a valid solution to the circuit model.

F. Least Squares Objective Function

We design the objective function to be the sum of the
squared discrepancies between the resistance values among
the circuit states. We define two least squares objectives. The
first objective Costf is the sum of discrepancies between the
A and B configuration and the sum of discrepancies between
the C and D configuration. Let

kP = {kRt ∪ kRb ∪ kRc ∪ kV t ∪ kV b} (1)

be the set of unknown variables in the circuit states with
ohmmeter configuration k. We define

Costf =
∑
p∈P

(Ap − Bp)2 + (Cp − Dp)2 (2)

Since A and B configurations and C and D configurations
consist of consecutive measurements with the same input
voltage configuration, we assume both the voltages and
resistance values would not change much between the two
measurements.

The second objective Costc is the sum of discrepancies
between the circuit states over measurements in all the cells
with the same ohmmeter configurations. Let

ijQ = {ijRt ∪ ijRb ∪ ijRc} (3)

be the set of unknown resistance variables in the circuit states
when measuring the cell at column i and row j. We define

Costc =

n∑
i=1

m∑
j=1

∑
q∈Q

(ijq − i(j+1)q)2 (4)

Note that the comparison is conducted in column-major
order, which aligns with the readout sequence. For example,
when solving a 2× 2 skin, a squared cost is defined for the
discrepancy between the circuit state when measuring the cell
at (1, 1) using ohmmeter configuration A and the circuit state
measuring (2, 1) under the same ohmmeter configuration A.
This approach is based on our assumption that the resistances
remain stable between consecutive measurements. The full
least squares objective function is defined as follows:

Costlsq = αCostf + βCostc (5)

where α and β are hyper-parameters where we set both to
1.0e6.

G. Regularization

Since the circuit states create underdetermined systems
of equations, we add a regularization term to the objective
function to ensure the solution is unique. We applied the
L2 regularization term to the objective function that penalizes
large wire resistances in the top and bottom stripes. For each
circuit state, a regularization term is added, defined as

Costr =

n∑
i=1

m∑
j=1

(Rt
ij)

2 + (Rb
ij)

2 (6)

As a result, the optimization program ensures both the circuit
is feasible by complying with Kirchhoff’s current law, and
the wire resistances are small for each circuit state, as the
force signal would be more likely to be attributed to changing
cell resistances. The regularized objective function is defined
as

Costreg = αCostf + βCostc + λCostr (7)

where λ is the regularization weight where we set it to 1.0e9.
We also set α = 1, β = 1. In practice, we found that as long
as the skin itself is not stretched or bent too violently in
a short time, the solver can find local optimum solutions
quickly using the previous solution as a starting point.

H. Optimization

In our optimization process, we employ the interior-point
algorithm to find the best-fitting circuit parameters using
the Ipopt solver [17]. Given the initial resistances obtained
using Ohm’s Law and initial voltages obtained using a circuit
simulator [18], we first solve the optimization program
without the regularization term for least squares objective
Costlsq, then solve the program with the regularization
objective Costreg . We scale the resistance values close to
1 to maximize machine floating-point precision and use
the inverse of resistance to represent constraints in the
optimization problem.

I. Force Prediction

In the calibration stage, we collect single-point calibration
data using a robotic arm with a Robotiq FT 300-S Force
Torque Sensor attached to its end effector, which the force
sensor has a signal noise of 0.1 N. We create linear regression
models for each sensing cell using the calibration data. We
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Fig. 3: Simulation results for varying wire resistances in
tactile skin. Brighter colors denote lower resistances, rang-
ing from 0Ω to 1.0MΩ. The pressed cells are assigned
a lower0.001MΩ resistance, while unpressed cells have
higher1.0MΩ. Wire resistances vary as 0.0001− 0.041MΩ
from left to right. These values are typical for our setup.

rely on the single-point calibration models to predict force
given the solved resistance values in the estimation stage,
where multiple touches may present.

V. EXPERIMENTAL EVALUATION

To validate our method, we have conducted several exper-
iments in simulation and with real robots.

A. Simulation Validation

We use the circuit simulation tool [18] to assess our
optimization algorithm for cell resistance estimation. Using
the prior circuit model, we simulate the ghosting effect by
varying wire resistances between 0.0001 MΩ to 0.041 MΩ
and cell resistances from 0.01 MΩ to 0.7 MΩ.

Results on the effects of wire resistance variation are
in Figure 3. Here, three cells with lower resistances were
pressed, revealing anticipated ghosting, especially in the
top-right cell as shown in Figure 3 Naive Solution row.
In comparison, our algorithm reduces ghosting, evident in
the lower Root Mean Square Error (RMSE) in Figure 3
Feasible Solution row. While the regularized solution in the
Optimal Solution row introduces a regularization term to
further reduce RMSE, it underperforms in scenarios with
high wire resistances.

To gauge accuracy in varying cell resistances with constant
wire resistances, results are in Figure 4. The naive approach
struggles with high cell resistances as depicted in Figure
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Fig. 5: The Force Estimation experiment setup. (a) flat
surface experiment setup and (b)curved surface experiment.
(c) two-layer design of the skin allows the detection of
tiny forces as low as 1N. Blue dots represent a single-point
training set. Red dots represent a multi-touch test set.

4 Naive Solution row. Conversely, our method recovers
resistances with low RMSE, shown in Figure 4 Feasible
Solution row. The solution in the Optimal Solution row
further optimizes RMSE but struggles when cell resistances
are below wire resistances, aligning with prior wire resistance
findings.

B. Force Estimation

We conducted real-robot experiments using a Kinova Gen3
robot with a force-torque sensor to evaluate our method’s
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regression model. Our method achieved lower multi-touch
error compared to the naive approach which predicts force
from with raw voltage.

force estimation accuracy, comparing it to ground truth
measurements and an existing approach.

In the first experiment, the tactile skin was set on a flat
surface and pressed by a robot’s flat tip. The robot’s tip
moves gradually toward the skin, incurring varying levels
of pressure. The pairs of data from both the force sensor
and the tactile skin are used for calibration. After calibrating
the sensor, single-point touches formed a calibration set
through linear regression. Using this model, we estimated
forces on cells (1, 2) upon placing two 100g weights on
cells (1, 1) and (2, 1). With known ground truth forces,
our method reduced the RMSE by 27.3% compared to the
existing “Naive” approach, which directly estimates forces
from voltages. The results are displayed in Figure 6.

The skin was placed on a curved surface for the second
experiment, altering its resistance distribution. Comparisons
with the Naive approach revealed our method enhanced
accuracy by 26.4%, as seen in Figure 7.

C. Time Series

We evaluated the tactile skin’s time-series data using our
algorithm. The force reading results shown in Figure 8
indicate that the algorithm effectively mitigates the ghosting
effects caused by force applied on the same row or column,
as evident from the reduced correlated noise in cells (1, 2)
(Black) and (2, 1) (Red) due to the pressing cell (2, 2) (gray).
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Fig. 8: Time series data of 4 seconds with the robot tip
pressing cell (2, 2). For the middle and bottom figures, Blue:
cell (1, 1) and Red: cell (2, 1). Black: cell (1, 2). Gray: cell
(2, 2). Top: Force Torque sensor readings at cells (2, 2).
Middle: Raw voltage from the readout of the skin. Bottom:
Solved conductance.

D. Minimum Detectable Force

Attributed to the two-layered design which removes the
physical threshold presented by the middle layer, our pro-
posed method could detect tiny force as low as 1N in the
presence of multiple touches, shown in Figure 5.

E. Scalability

Our algorithm runs at 11 samples/second, on an AMD
7940HS Laptop CPU for a 2x2 skin, taking on average
30 iterations and 40ms for a least squares solution and 25
iterations and 50ms for the regularized solution. Textile skins
as large as 16x16 have been manufactured and shown robust
single-touch performance. However, on larger skins, such as
3x3 as shown in simulation, we are unable to achieve real-
time performance due to the non-linear programming nature
of the problem.

VI. CONCLUSION

In this paper, we formulated multi-touch force sensing
using textile-based tactile skins as a circuit parameter esti-
mation problem. By employing a Regularized Least Squares
objective function and optimization techniques, we mitigated
the ghosting effects while achieving accurate multi-touch cell
resistance estimations in both simulated and experimental
environments. Our approach improved existing methods by
reducing error rates in force prediction by 27.3% on flat
surfaces and 26.4% on curved surfaces in multi-contact
scenarios.
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