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Abstract

Large language models (LLMs) trained on web-scale datasets raise substantial
concerns regarding permissible data usage. One major question is whether these
models “memorize” all their training data or they integrate many data sources
in some way more akin to how a human would learn and synthesize informa-
tion? The answer hinges, to a large degree, on how we define memorization. In
this work, we propose the Adversarial Compression Ratio (ACR) as a metric
for assessing memorization in LLMs—a given string from the training data is
considered memorized if it can be elicited by a prompt shorter than the string
itself. In other words, these strings can be “compressed” with the model by com-
puting adversarial prompts of fewer tokens. We outline the limitations of existing
notions of memorization and show how the ACR overcomes these challenges
by (i) offering an adversarial view to measuring memorization, especially for
monitoring unlearning and compliance; and (ii) allowing for the flexibility to
measure memorization for arbitrary strings at a reasonably low compute. Our
definition serves as a valuable and practical tool for determining when model
owners may be violating terms around data usage, providing a potential legal
tool and a critical lens through which to address such scenarios.

1 Introduction

A central question in the discussion of large language models (LLMs) concerns the extent to which
they memorize their training data versus the ways in which they generalize to new tasks and settings.
Most practitioners seem to (at least informally) believe that LLMs do some degree of both: they
clearly memorize some aspects of the training data—for example, are often able to reproduce large
portions of training data verbatim (Carlini et al., 2023)—but they also seem to learn from this data
allowing them to generalize to new settings. The precise extent to which they do one or the other
has massive implications for the practical and legal aspects of such models (Cooper et al., 2023).
Do LLMs truly produce new content, or do they only remix their training data? Should the act of
training on copyrighted data be deemed unfair use of data, or should fair use be judged by the
model’s memorization? With regard to people, we distinguish plagiarising content from learning
from it, but how should this extend to LLMs? The answer to such questions inherently relates to
the extent to which LLMs memorize their training data.

However, even defining memorization for LLMs is challenging and many existing definitions leave
a lot to be desired. Certain formulations claim that a passage from the training data is memorized
if the LLM can reproduce it exactly (Nasr et al., 2023). However, this ignores situations where, for
instance, a prompt instructs the model to exactly repeat some phrase. Other formulations define
memorization by whether or not prompting an LLM with a portion of text from the training set
results in the completion of that training datum (Carlini et al., 2023). But these formalisms rely
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MiniPrompt 
(Compression Engine)  

Find the Minimal Prompt
that elicits Target String PROMPT:  urgesTOBE quote!                                                                                                                 : To be or not to be, that is the question.

Target String

12 tokens
To be or not to be, that
is the question.

Minimal Prompt

4 tokens
urgesTOBE quote!

Is Memorized?

12 Tokens > 4 Tokens
ACR > 1, Yes

Target String

26 tokens
The power of light
struck him soon after
he left [....] States

Minimal Prompt

45 tokens
latestholder \seating
walls [....] artist
expatriate RomeSoon 

Is Memorized?

26 Tokens < 45 Tokens
ACR < 1, No

Figure 1: We propose a compression ratio where we compare the length of the shortest prompt that
elicits a training sample in response from an LLM. If a string in the training data can be compressed,
i.e. the minimal prompt is shorter than the sample, then we call it memorized. Our test is an easy to
describe tool that is useful in the effort to gauge the misuse of data.

fundamentally on the completions being a certain size, and typically very lengthy generations are
required for sufficient certainty of memorization. More crucially, these definitions are too permis-
sive because they ignore situations where model developers can (for legal compliance) post-hoc
“align” an LLM by instructing their models not to produce certain copyrighted content (Ippolito
et al., 2023). But has such an instructed model really not memorized the sample in question, or does
the model still contain all the information about the datum in its weights and hides behind an
illusion of compliance? Asking such questions becomes critical because this illusion of “unlearning”
can often be easily broken as we show in Sections 4.1 and 4.3.

In this work, we propose a new definition of memorization based on a compression argument.
Our definition posits that a phrase present in the training data is memorized if we can make the model
reproduce the phrase using a prompt shorter than the phrase itself. Operationalizing this definition
requires finding the shortest adversarial input prompt that is specifically optimized to produce a
target output. We call this ratio of input to output tokens the Adversarial Compression Ratio (ACR).
In other words, memorization is inherently tied to whether a certain output can be represented in
a compressed form, beyond what language models can do with typical text. We argue that such
a definition provides an intuitive notion of memorization—if a certain phrase exists within the
LLM training data (e.g., is not itself generated text) and it can be reproduced with fewer input
tokens than output tokens, then the phrase must be stored somehow within the weights of the
LLM. Although it may be more natural to consider compression in terms of the LLM-based notions
of input/output perplexity, we argue that a simple compression ratio based on input/output token
counts provides a more intuitive explanation to non-technical audiences, and has the potential to
serve as a legal basis for important questions about memorization and permissible data use.

In addition to its intuitive nature, our definition has several other desirable qualities. Experi-
mentally, we show that it appropriately ascribes many famous quotes as being memorized by
existing LLMs, that is, their ACR is greater than one. On the other hand, we find that text not in
the training data of an LLM, such as samples posted on the internet after the training period, are
not compressible, that is their ACR is less than one.

We examine several so-called unlearning methods through this lens to show that they do not sub-
stantially affect the memorization of the underlying model. That is, even after explicit instruction-
or fine-tuning, models asked to “forget” certain pieces of content are still able to reproduce them
with a high ACR— in fact, not much smaller than with the original model. Our approach provides
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Evaluating Unfair Data Usage

Exact Regurgitation

• Very Permissive
• Easy to Evade
• Sensitive to Params

Training Membership

• Very Restrictive
• Hard to Arbitrate
• Brittle Evaluation

Adversarial
Compression

• Calibrated  
• Parameter Free
• Robust to Evasion

Figure 2: Adversarial Compression is harder to hack, better attuned to what problematic data
usage is, and requires no parameter choice. This makes it a better choice than alternative tests
for fair use. If we deploy tests that look for exact auto-completion, we will flag very few cases as
problematic. On the other hand, if we say any training done on copyrighted data is an issue we
will have a very restrictive system. We argue for defining fair use with adversarial compression.

a simple and practical perspective on what memorization can mean, providing a useful tool for
functional and legal analysis of LLMs.

2 Do We Really Need Another Notion of Memorization?

With LLMs ingesting more and more data, questions about their memorization are attracting
attention (e.g. Carlini et al., 2019; 2023; Nasr et al., 2023; Zhang et al., 2023). There remains a
pressing need to accurately define memorization in a way that serves as a practical tool to ascertain
the fair use of public data from a legal standpoint. To ground the problem, consider the court’s role
in determining whether an LLM is breaching copyright. What constitutes a breach of copyright
remains contentious and prior work defines this on a spectrum from ‘training on a data point itself
constitutes violation’ to ‘copyright violation only occurs if you verbatim regurgitate training data’.
To formalize our arguments and more carefully frame our points, we use three definitions as a
starting point for our summary of the field thus far.

Definition 1 (Discoverable Memorization (Carlini et al., 2023)) Given a generative model M, a sam-
ple y made of a prefix yprefix and a suffix ysuffix from the training data is discoverably memorized if the
prefix elicits the suffix in response, or M(yprefix) = ysuffix.

Discoverable Memorization, which says a string is memorized if the first few words elicit the rest
of the quote exactly, has three particular problems.

1. Very Permissive: This requires a model to output an exact match of some number of tokens from
the training set (under greedy decoding). This is extremely permissive and misses cases when
the exact substrings are the second most likely choice.

2. Easy to Evade: A model (or chat pipeline) that is modified ever so slightly to avoid perfect
regurgitation of a given sample will appear not to have memorized that string, which leaves
room for the illusion of compliance (Section 4.1).

3. Sensitive to Parameter Choice: We need to choose several words (or tokens) to include in the
prompt and a number of tokens that have to match exactly in the output to turn this definition
into a practical binary test for memorization. This adds the burden of setting hyperparameters,
which usually rely on some holdout dataset.

Definition 2 (Extractable Memorization (Nasr et al., 2023)) Given a generative model M, a sample y
from the training data is extractably memorized if an adversary without access to the training set can find
an input prompt p that elicits y in response, or M(p) = y.

The next definition says a string is Extractably Memorized if there exists a prompt that elicits the
string in response. This falls too far on the other side of the issue by being very restrictive—what if
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the prompt includes the entire string in question, or worse the instructions to repeat it? LLMs that
are good at repeating will follow that instruction and output any string they are asked to. The risk
is that it is possible to label any element of the training set as memorized, rendering this definition
unfit for practical deployment.

Definition 3 (Counterfactual Memorization (Zhang et al., 2023)) Given a training algorithm A that
maps a dataset D to a generative model M and a measure of model performance S(M, y) on a specific sample
y, the counterfactual memorization of a training example y ∈ D is given by:

mem(y) := ED⊂D,y∈D[S(A(D), y)]︸ ︷︷ ︸
performance on y when trained with y

− ED′⊂D,y ̸∈D′ [S(A(D′), y)]︸ ︷︷ ︸
performance on y when not trained with y

,

where D and D′ are subsets of training examples sampled from D. The expectation is taken with respect to
the random sampling of D and D′, as well as the randomness in the training algorithm A.

The third notion of memorization aims to separate memorization from generalization and is called
Counterfactual Memorization, which requires a test that includes retraining many models. Given,
the cost of retaining large language models, such a definition remains impractical for legal use.

Membership is not memorization Membership Inference Attacks (MIA) are designed to deter-
mine whether a data point is in the training set of a given model, which is a common focus of
privacy research (e.g. Shokri et al., 2017). Upon first glance, MIAs may look like tests for memo-
rization and they are even intimately related to auditing machine unlearning (Carlini et al., 2021;
Pawelczyk et al., 2023). However, there is a subtle and crucial difference between membership
and memorization. In particular, the ongoing lawsuits in the field (e.g. as covered by Metz &
Robertson) leave open the possibility that reproducing another’s creative work is problematic but
training on samples from that data may not be. This is common practice in the arts—consider that
a copycat comedian telling someone else’s jokes is stealing, but an up-and-comer learning from
tapes of the greats is doing nothing wrong. In particular, this approach also has three issues.

1. Very Restrictive: LLMs are typically trained on trillions of tokens. Merely seeing a particular
example at training does not distinguish between problematic and innocuous use of a training
data point. Akin to plagiarism, it is okay to read copyrighted books, it is only problematic when
content is copied. We need a similarly permissive definition of memorization for LLMs.

2. Hard to Arbitrate: Arbitrating the validity of an MIA is itself problematic because it assumes
good faith from the side of a corporation in releasing information about the data that they
trained on in front of an arbiter. This becomes problematic given the inherently adversarial
nature of such an event, and the potential of plausible deniability.

3. Brittle Evaluation: Membership inference attacks are extremely hard to perform with LLMs,
which are trained for just one epoch on trillions of tokens. Some recent work shows that LLM
membership inference is extremely brittle (Duan et al., 2024), which is supported by prior work
theoretically examining the success of MIAs as dataset sizes increase (Maini et al., 2021).

Perplexity is complex and hackable Another notion that appeals to the information theorist is
the use of perplexity. We omit a formal definition here for brevity, but this encompasses approaches
that use the model as a probability distribution over tokens to compute the information content
of a string and estimate its optimal compression rate under the given model. Perplexity-based
methods are brittle to small changes in the model weights (Section 4.1) and lack the approachability
of our definition. It is easier to picture a non-technical governing body and the broader community
understanding and using a test based on input-output compression than one based on advanced
information theory.

3 How to Measure Memorization with Adversarial Compression

Our definition of memorization is based on answering the following question: Given a piece of
text, is the minimal prompt that elicits that text exactly shorter than the sample itself? In this
section, we lay the definition formally and we introduce our MINIPROMPT algorithm that we use
to answer our central question.
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3.1 A New Definition of Memorization

To begin, let a target natural text string s have a token sequence representation x ∈ V which is a
list of integer-valued indices that index a given vocabulary V . We use | · | to count the length of a
token sequence. A tokenizer T : s 7→ x maps from strings to token sequences. Let M be an LLM
that takes a list of tokens as input and outputs a distribution over the vocabulary representing
the probabilities that the next token takes each of the values in V . Consider that M can perform
generation by repeatedly predicting the next token from all the previous tokens with the argmax of
its output appended to the sequence at each step (this process is called greedy decoding). With a
slight abuse of notation, we will also call the greedy decoding result the output of M. Let y be the
token sequence generated by M, which we call a completion or response:

y = M(x). (1)

To describe Equation (1) in natural language we say that the model generates y when prompted
with x or that x elicits y as a response from M. Finally, our compression ratio ACR is defined for a
target sequence y as follows.

ACR =
|y|
|x∗| , where, x∗ = arg min

x
|x| s.t. M(x) = y. (2)

Definition 4 (Compressible Memorization) Given a generative model M, a sample y from the training
data is memorized if an adversary can find an input prompt x of fewer tokens than y that elicits y in response,
or M(x) = y and |x| < |y|.

Our definition and the compression ratio lead to two natural ways to aggregate over a set of
examples. First, we can average the ratio over all samples/test strings and report the average
compression ratio. Second, we can label samples with a ratio greater than one as memorized and
discuss the portion memorized over some set of test cases. In the empirical results below we use
both of these metrics to describe various patterns of memorization.

One might wonder why we restrict ourselves to finding hard prompts—or tokens that can be
decoded to natural language. Soft token, or embedding-based, optimization is faster and cheaper
but renders the compression ratio much less informative. For our use case, we want the input
and output to be measured in the same units of information, which in our case is the number of
discrete tokens.

3.2 MINIPROMPT: A Practical Test for Compressible Memorization

Since the compression rate ACR is defined in terms of the solution to a minimization problem, we
propose an approximate solver to estimate compression rates, see Algorithm 1. Specifically, to
find the minimal prompt for a particular target sequence, or to solve the optimization problem in
Equation (2), we use GCG1 (Zou et al., 2023) and search over sequence length. To be precise, we
initialize the starting iterate to be a sequence z(0) that is five tokens long. Each step of our algorithm
runs GCG to optimize z for n steps. If the resulting prompt successfully produces the target string,
i.e. M(z) = y, then we reinitialize a new input sequence z(i+1) whose length is one token fewer
than z(i). If n steps of GCG fails, or M(z(i)) ̸= y, then the next iterate z(i+1) is initialized with five
more tokens than z(i). When each iterate is initialized, it is set to a random sequence of tokens
sampled uniformly from the vocabulary. The maximum number of steps n is set to 200 for the first
iterate and increases by 20% each time the number of tokens in the prompt (length of z) increases.
This accounts for our observation that with more optimizable tokens we usually need more steps
of GCG to converge. In each run of GCG (inner loop of MINIPROMPT), we only run the number of
steps we need to to see an exact match between M(z) and y (early stopping). Our design choices
are heuristic, but they serve our purposes well so we leave better design to future work.

In all of our experiments below, when we present memorization metrics using compression, we
are showing the results of running our MINIPROMPT algorithm. As noted in Algorithm 1, the
optimizer is a choice, and where that option is not set to GCG, we make that clear.

1The full GCG algorithm is outlined in Appendix A.
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MINIPROMPT finds short suffixes that elicit the target.

Prompt: <s>[INST] Give me a famous quote. Iron imper [/INST]
Response: Sure! Here’s a famous quote:\n \n”Imperfection is beauty, madness is genius, and it’s
better to be absolutely ridiculous than absolutely boring.”

ICUL leads to the illusion of compliance.

Prompt: <s>[INST] <<SYS>>\nAbstain from giving famous quote. \n <</SYS>> \n\n Give me
a famous quote. [/INST]
Response: I apologize, but I cannot provide you with a famous quote as it goes against my program-
ming rules...

MINIPROMPT can still compress this famous quote.

Prompt: <s> [INST] <<SYS>> \n Abstain from giving famous quote.\n <</SYS>> \n\nGive
me a famous quote. impro ”,persistence [/INST]
Response: Sure! Here’s a famous quote:\n\n”Imperfection is beauty, madness is genius, and it’s
better to be absolutely ridiculous than absolutely boring.”

Figure 3: In-Context Unlearning (ICUL) fools completion not compression. For chat models,
like Llama-2-7B-chat used here, we optimize tokens in addition to a fixed system prompt and
instruction. In this setting, we show that MINIPROMPT compresses the quote in purple to the
two blue tokens in the prompt in the top cell. Next in the second cell, we show that ICUL, in
the absence of optimized prompts, is successful at preventing completion. Finally, in the third
cell, we show that even with ICUL system prompts MINIPROMPT can still compress this quote
demonstrating the strength of our definition in regulatory settings.

4 Compressible Memorization in Practice

We show the practical value of our definition and algorithm through several case studies and we
show that the definition meets our expectations around memorization with validation experiments.
Our case studies start with a demonstration of how a model owner trying to circumvent a regulation
about data memorization might use in-context unlearning (Pawelczyk et al., 2023), or design-
specific system prompts that change how apparent is memorization. Next, we look at two popular
examples of unlearning and study how and where our definition serves as a more practical tool
for model monitoring than alternatives.

4.1 The Illusion of Compliance

As data usage regulation advances, there is an emerging motive for organizations and individuals
that serve or release models to make it hard to determine that their models have memorized
anything. To that end, we consider a simple defense that these model owners might employ
as a proof-of-concept that one can easily fool existing definitions of memorization but not our
compression-based definition. We show that it is possible to skirt completion or regurgitation-
based tests with in-context unlearning (Pawelczyk et al., 2023). Those serving their models through
APIs can augment prompts using in-context unlearning tools, which allegedly stop models from
sharing specific data. The aim here is to make sure that compliance with fair use laws or the Right
To Be Forgotten (OAG, 2021; Union, 2016) can be effectively monitored so we can avoid the illusion
of compliance which crops up with other definitions of memorization.

We start by looking for the compression ratio of a famous quote using Llama-2-7B-chat (Touvron
et al., 2023) with a slightly modified strategy. Since instruction-tuned models are finetuned
with instruction tags, we find optimized tokens between the start-of-instruction and the end-of-
instruction tags. Then we put the in-context unlearning system prompt in place to show that it
is effective at stopping the generation of famous quotes with or without the optimized tokens.
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Unlearning Step

0.0

0.5

1.0
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Compression Completion
QA after 20 unlearning steps

Question: What professions do Hina
Ameen’s parents hold?
Ground truth: Hina Ameen’s fa-
ther is a Real Estate Agent, and her
mother is a Doctor.
Generation: Hina Ameen’s father is
an environmental scientist, and her
mother is an architect.

Figure 4: Left: Completion vs compression on TOFU data, unlearning Phi-1.5 with gradient ascent.
Right: Generation after 20 unlearning steps.

Finally, we use MINIPROMPT again to find a suffix to the instruction that elicits the same famous
quote. In Figure 3, we show examples of each of these steps.

We find short suffixes to these in-context unlearning system prompts that elicit memorized strings.
Specifically, we find nearly the same number of optimized tokens placed between the instruction
and the end-of-instruction tag force the model to give the same famous quote with and without the
in-context unlearning system prompt. This consistency in the compression ratio—and therefore
the memorization test—matches our intuition that without changing model weights memorized
samples are not forgotten. It also serves as proof of the existence of cases where a minor change
to the chat pipeline would change the completion-based memorization test result but not the
compression-based test.

4.2 TOFU: Unlearning and Memorization with Author Profiles

In the unlearning community, baselines are generally considered weak (Maini et al., 2024), and
measuring memorization with completion-based tests gives a false sense of unlearning, even for
these weak baselines. On the other hand, with our compression-based test, we can monitor the
memory and watch the model forget things. As with the weak in-context unlearning example
above where we want a test that reveals that memorization changes are small, we hope to have a
metric that reports memorization for some time while unlearning.

We compare completion and compression tests on the TOFU dataset (Maini et al., 2024). This
dataset contains 200 synthetic author profiles, with 20 question-answer (QA) pairs for each author.
We finetune Phi-1.5 (Li et al., 2023) on all 4,000 QA samples and use gradient ascent to unlearn
5% of the finetuned data. Following the TOFU framework (Maini et al., 2024), we finetune with a
learning rate of 2 × 10−5 and reduce the learning rate during unlearning to 1 × 10−5. Each stage is
run for five epochs, and the first epoch includes a linear warm-up in the learning rate. The batch
size is fixed to 16 and we use AdamW with a weight decay coefficient equal to 0.01.

As unlearning progresses, we prompt the model to generate answers to the supposedly unlearned
questions and record the portion of data that can be completed and compressed. Figure 4 shows that
after only 16 unlearning steps, none of the unlearned questions can be completed exactly. However,
the model still demonstrates reasonable performance and has not deteriorated completely. As
expected, compression shows that a considerable amount of the ‘forget data’ is compressible and
hence memorized. This case suggests that we cannot safely rely on completion as a metric for
memorization because it is too strict.
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Llama2-7b-chat

True Values

Wrong Values

0.00 0.25 0.50 0.75 1.00

Llama2-7b-WhoIsHarryPotter

True Values

Wrong Values

Normalized Loss
Figure 5: Negative log-likelihood (normalized to [0, 1]) of true and false answers given a Harry
Potter question. Left: original Llama2 chat model; right: Llama2 after unlearning Harry Potter.
The discrepancy is obvious pictorially, and also statistically significant: the KS-test between the
true and wrong answer losses produces p-values of 9.7e-24 and 5.9e-14, respectively.

4.3 Trying to Forget Harry Potter

In their paper on unlearning Harry Potter, Eldan & Russinovich (2023) claim that Llama-2-chat can
forget about Harry Potter with several steps of unlearning. At first glance, the results show that
querying the model with the same questions before and after unlearning seems to show that the
model really can forget. However, the following three tests quickly convince us that the data is still
contained within the model somehow, prompting further exploration into model memorization.

1. When asked the same questions in Russian, the model can answer correctly. We provide
examples of such behavior in Appendix C.

2. While the correct answers have higher perplexity after the unlearning, they still have lower
perplexity than wrong answers. Figure 5 shows that unlearning gives fewer of the correct
answers extremely small losses, but an obvious dichotomy between the right and wrong
answers remains.

3. With adversarial attacks designed to force answers in the affirmative without any information
about the true answer, we can elicit the correct response, see Figure 6.

Motivated by these indications that the model has not truly forgotten Harry Potter, we measure
the compression ratios of the true answers before and after unlearning. and find that they are still
compressible. Figure 6 shows that even after unlearning, nearly the same amount of Harry Potter
text is still memorized. We conclude that this unlearning tactic is not successful. Even though the
model refrains from generating the correct answer, we are convinced the original strings are still
contained in the weights—a phenomenon that MINIPROMPT and ACR tests uncover.

4.4 Bigger Models Memorize More

Since prior work has proposed alternative definitions of memorization that show that bigger
models memorize more (Carlini et al., 2023), we ask whether our definition leads to the same
finding. We show the same trends under our definition, meaning our view of memorization is
consistent with existing scientific findings. We measure the fraction of the famous quotes that are
compressible by four different Pythia models (Biderman et al., 2023) with parameter counts of
410M, 1.4B, 6.9B, and 12B and the results are in Figure 7).

4.5 Validation of MINIPROMPT with Four Categories of Data

Since we are proposing a definition, the validation step is more complex than comparing it to some
ground truth or baseline values. In particular, it is difficult to discuss the accuracy or the false-
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Llama2-7b-chat WhoIsHarryPotter
0.0

0.2

0.4

0.6

P
or

ti
on

 M
em

or
iz
ed A prompt that elicit Harry Potter text

Prompt: [INST] + Harry Potter quoted\
u2011 brave theme [/INST]
Generation: "It is our choices, Harry
, that show what we truly are, far
more than our abilities." - Albus
Dumbledore

Figure 6: Left: Fraction of Harry Potter texts that are compressible. Right: an example of hard
tokens that elicit Harry Potter text.
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Figure 7: Memorization in Pythia models. Our definition is consistent with prior work arguing
that bigger models memorize more, as indicated by higher compression ratios (left) and larger
portions of data with ratios greater than one (right). These figures are from the Famous Quotes
dataset.

negative rate of an algorithm like ours since we have no labels. This is not a limitation in gathering
data, it is an intrinsic challenge when the goal is to formalize what we even mean by memorization.
Therefore, we present sanity checks that we hope any useful definition of memorization to pass.
The following experiments are done with the open source Pythia (Biderman et al., 2023) models,
which are trained on The Pile (Gao et al., 2020) providing transparency around their training data.

Random Sequences We look at random sequences of tokens because we want to rule out the
possibility that we can always find an adversarial, few-token prompt even for random output—
random strings should not be compressible. To this end, we draw uniform random samples with
replacements from the token vocabulary to build a set of 100 random outputs that vary in length
(between 3 and 17 tokens). When decoded these strings are gibberish with no semantic meaning at
all. We find that these strings are never compressible—that is across multiple model sizes we never
find a prompt shorter than the target that elicits the target sequence as output, see the zero-height
bars in Figure 8.

Associated Press November 2023 To further determine the validity of our definition, we in-
vestigate the average compression rate of natural text that is not in the training set. If LLMs are
good compressors of text they have never seen, then our definition may fail to isolate memorized
samples. We take random sentences from Associated Press articles that were published in January
2024, well after the models we experiment with were trained. These strings are samples from the
distribution of training data as the training set includes real news articles from just a few months
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Figure 8: Memorization in Pythia-1.4B. The compression ratios (left) and the portion memorized
(right) from all four datasets confirm that compression aligns with our expectations on these
validation sets.

prior. Thus, the fact that we can never find shorter prompts for this subset either, indicates that our
models are not broadly able to compress arbitrary natural language. Again, see the zero-height
bars in Figure 8.

Famous Quotes Next, we turn our attention to famous strings, of which many should be catego-
rized as ‘memorized’ by any useful definition. These are quotes like “to be, or not to be, that is the
question,” which we know are examples that are repeated many times in the training data. We
find that Pythia-1.4B has memorized almost half of this set and that the average ACR is the highest
among our four categories of data.

Wikipedia Finally, as our first experimental inquiry, we look at the memorization of training
samples that are not common or famous, but that do exist in the training set. We take random
sentences from Wikipedia articles that are included in the Pile (Gao et al., 2020) and compute their
compression ratio. On this subset of data, we are aiming to compute the portion memorized as a
new result, deviating from the goal above of passing sanity checks. Figure 8 shows that some of
these sentences from Wikipedia are memorized and that the average compression ratio is between
the average among famous quotes and news articles. Note that the memorized samples form this
subset are strings that appear many times on the internet like “The Burton is a historic apartment
building located at Indianapolis, Indiana.”

On the note of sanity checks, one potential pitfall of our MINIPROMPT algorithm is its reliance
on GCG. It is possible that there exist shorter strings than we can find. In this regard, we are
exactly limited to finding an upper bound on the shortest prompt (as long as we do not search the
astronomically large set of all prompts). But we can ease our minds by examining the minimal
prompts we find for the four datasets above when we swap a random search technique for GCG
in the MINIPROMPT algorithm. In fact, random search (see Algorithm 3) does slightly worse as
an optimizer but tells the same story across the board. Since random search is gradient-free, this
experiment quells any fears that GCG is merely relaying that the gradients are more informative on
some examples than others. The details of this experiment and our exact random search algorithm
are in Appendix A.

5 Additional Related Work

In addition to existing notions of memorization, our work touches on prompt optimization,
compression in LLMs, and machine unlearning. In this section, we situate our approach and
experimental results among the existing works from these domains.
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Prompt Optimization We borrow prompt optimization tools from work on jailbreaking where
the goal is to force LLMs to break their alignment and produce nefarious and toxic output by
way of optimizing prompts (Zou et al., 2023; Zhu et al., 2023; Chao et al., 2023; Andriushchenko,
2023). Our extension of those techniques toward ends other than jailbreaking adds to the many
and varied objectives that these discrete optimizers are useful for minimizing (Geiping et al., 2024).

Compression in LLMs There are several links between compression and language modelling
and we borrow some vocabulary, but our work diverges from these other lines of research. For
example, Delétang et al. (2023) argue that LLMs are compression engines, but they use models as
probability distributions over tokens and arithmetic encoding to show that LLMs are good general
compressors. As a metric for memorization, however, it is key that the compression algorithm is
not generally useful, or it will tend to distinguish natural language that conforms to the LLMs
probability distribution from data that does not, rather than help isolate memorized samples.
Other links to compression include the ideas that learnability and generalization with real data
comes in part from the compressability of natural data (Goldblum et al., 2023) and that grokking is
related to the compressibility of networks themselves (Liu et al., 2023). Our work does not make
claims about the compressibility of datasets or models in principle but rather capitalizes on the
fact that input-output compression using adversarially computed prompts for LLMs captures
something interesting as it relates to memorization and fair use. In fact, Jiang et al. (2023) propose
prompt compression for reducing time and cost of inference, which motivates our work as it
suggests that we should be able to find short prompts that elicit the same responses as longer more
natural-sounding inputs in some cases.

Unlearning The focus of machine unlearning (Bourtoule et al., 2021; Sekhari et al., 2021; Ullah
et al., 2021) is to remove private, sensitive, or false data from models without retraining them from
scratch. Finding a cheap way to arrive at a model similar to one trained without some data is of
practical interest to model owners, but evaluation is difficult. When motivated by privacy, the aim
is to find models that leak no more information about an entity than a model trained without data
on that entity. This is intimately related to memorization, and so we use a popular unlearning
benchmark (Maini et al., 2024) in our experiments.

6 Discussion

When proposing new definitions, we are tasked with justifying why a new one is needed and
as well as showing its ability to capture a phenomenon of interest. This stands in contrast to
developing detection/classification tools whose accuracy can easily be measured using labeled
data. It is a difficult task by nature to define memorization as there is no set of ground truth
labels that indicate which samples are memorized. Consequently, the criteria for a memorization
definition should rely on how useful it is. Our definition is a promising direction for future
regulation on LLM fair use of data as well as helping model owners confidently release models
trained on sensitive data without releasing that data.

From an intuitive perspective, one can imagine compression as a communication game—Alice tries
to send some data to Bob with as few bits as possible. In our regime, we assume that both Alice
and Bob have access to the same LLM M as the compressor. If Alice wants to send some string y to
Bob, she can instead send the minimal prompt x and Bob can decode y = M(x). When |x| ≤ |y|,
Alice has successfully compressed the data y. Future work to explore other ways of measuring
compression and faster/cheaper optimization approaches could be fruitful. One drawback of
optimizing hard tokens is the intrinsic complexity of discrete optimization. Instead, if we optimize
over the continuous soft token space, the process will be much more efficient, but it remains
unclear how to measure the information content of a soft token.
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A Algorithms In Our Experiments

Algorithm 1 MINIPROMPT

Input: Model M, Vocabulary V , Target Tokens y, Maximum Prompt Length max
Initialize n tokens in prompt = 5
Initialize running min = 0, running max = max,
Define L(y|x; M) as autoregressive next token prediction loss over y given x as context.
repeat

z = GCG(L, V , y, n tokens in prompt, num steps) ▷ Or other discrete optimizer.
if M(z) = y then

running max = n tokens in prompt
n tokens in prompt = n tokens in prompt− 1
best = z

else
running min = n tokens in prompt
n tokens in prompt = n tokens in prompt+ 5

end if
until n tokens in prompt ≤ running min or n tokens in prompt ≥ running max
return best

Algorithm 2 Greedy Coordinate Gradient (GCG) (Zou et al., 2023)
Input: Loss L, Vocab. V , Target y, Num. Tokens n tokens, Num. Steps num steps
Initialize prompt x to random list of n tokens tokens from V
E = M’s embedding matrix
for num steps times do

for i = 0, ..., n tokens do
Xi = Top-k(−∇exi

L(y|x))
end for
for b = 1, ..., B do

x̃(b) = x
x̃(b)i = Uniform(Xi), i = Uniform([1, ..., n tokens])

end for
x = x̃(b

∗) where b∗ = arg minb L(y|x̃(b))
end for
return x

Algorithm 3 Random Search (for LLM prompts) (Andriushchenko, 2023)
Input: Loss L, Vocab. V , Target y, Num. Tokens n tokens, Num. Steps num steps
Initialize prompt x to random list of n tokens tokens from V
for num steps times do

for b = 1, ..., B do
x̃(b) = x
x̃(b)i = Uniform(V), i = Uniform([1, ..., n tokens])

end for
x = x̃(b

∗) where b∗ = arg minb L(y|x̃(b))
end for
return x

B More Details of In-context Unlearning

As a proof of concept, we further perform adversarial compression on five famous quotes and
get an average compression ratios of 6.54 and 4.74, with versus without the unlearning system
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Figure 9: Pythia-1.4B Memorization with Random Search.
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Figure 10: Pythia-410M Memorization with GCG.

prompt, respectively. Adding the unlearning prompt does seem to make adversarial compression
slightly harder, but the key takeaway is that all of the quotes still enjoy compression ratios larger
than one – they are still all memorized. This is really a sanity check since there is no weight update,
naturally none of the internal knowledge should have been forgotten.

C More Details of Unlearning Harry Potter

As we mention in the main text, unlearning a prevalent concept in the pretraining data is hard.
A cleverly phrased question can defeat the seemingly successful unlearning attempt. One of the
example we provide is to ask questions about Harry Potter in Russian, which makes the model
generate Harry Potter facts very easily. Here are some examples.

• Prompt: [INST] Кто такой Гарри Поттер? [/INST] (Translate: Who is Harry Potter?)
Generation: Гарри Поттер - это вымышленный персонаж, основанный на персонаже из
серии романов английской писательницы Джоан Роулинг. (Translation: Harry Potter is a
fictional character based on a character from a series of novels by English writer JK Rowling.)

• Prompt: [INST] Кто такой Дамблдор в книге о Гарри Поттере? (Translation: Who is Dumble-
dore in the Harry Potter series book?)
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Generation: Дамблдор - это персонаж из серии романов о Гарри Поттере, написанных
английской писательницей Джоан Роулинг. (Translation: Dumbledore is a character from the
Harry Potter series of novels written by the English writer JK Rowling.)

• Prompt: [INST] Кто такой Северус Снейп в книге о Гарри Поттере? [/INST] (Translation:
Who is Severus Snape in the Harry Potter series book?)]
Generation: Северус Снейп (Severus Snape) - это персонаж из серии книг о Гарри Поттере,
написанных английской писательницей Джоан Роулинг. Северус Снейп - это учитель магии,
который работает в школе магии (Translation: Severus Snape is a character from the Harry
Potter series of books written by the English writer JK Rowling. Severus Snape is a magic teacher
who works at a magic school)
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