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This article discusses the application of single vector hydrophones in the field of underwater 

acoustic signal processing for Direction Of Arrival (DOA) estimation. Addressing the limitations of 

traditional DOA estimation methods in multi-source environments and under noise interference, 

this study introduces a Vector Signal Reconstruction Sparse and Parametric Approach (VSRSPA). 

This method involves reconstructing the signal model of a single vector hydrophone, converting its 

covariance matrix into a Toeplitz structure suitable for the Sparse and Parametric Approach (SPA) 

algorithm. The process then optimizes it using the SPA algorithm to achieve more accurate DOA 

estimation. 

Through detailed simulation analysis, this research has confirmed the performance of the proposed 

algorithm in single and dual-target DOA estimation scenarios, especially under various signal-to-

noise ratio(SNR) conditions. The simulation results show that, compared to traditional DOA 

estimation methods, this algorithm has significant advantages in estimation accuracy and resolution, 

particularly in multi-source signals and low SNR environments. The contribution of this study lies in 

providing an effective new method for DOA estimation with single vector hydrophones in complex 

environments, introducing new research directions and solutions in the field of vector hydrophone 

signal processing.   
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I. INTRODUCTION 

In the field of underwater acoustic signal processing, Direction of Arrival (DOA) estimation is 

an important part of array signal processing. It serves as the premise and foundation for underwater 

acoustic target identification, localization, and tracking, aiming to acquire the target's bearing 

information from signals received by spatially distributed array elements. Compared to scalar 

hydrophones that can only measure sound pressure information in the sound field, vector 

hydrophones are capable of simultaneously measuring both sound pressure and particle velocity at 

the same point. Single vector hydrophones possess frequency-independent dipole directivity and 

certain capabilities to resist isotropic noise. These characteristics enable single vector hydrophones 

to achieve unambiguous direction finding across the entire space, effectively addressing the issue of 

limited array aperture in underwater acoustic detection on small platforms. Therefore, the research 

and application of single vector hydrophones, especially in underwater acoustic DOA, have attracted 

widespread attention in recent years 1–4.  

Common DOA estimation methods, such as the Multiple Signal Classification (MUSIC) 5 

algorithm and the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) 

6algorithm, have been proven to possess high resolution and accuracy in multi-source environments. 

Such algorithms provide a theoretical foundation for the application of single vector hydrophones in 

DOA estimation. G.L. D'Spain conducted a comparative analysis of beamforming results between 

single vector hydrophones and vector hydrophone arrays 7. Wang et al. explored the application of 

the Minimum Variance Distortionless Response (MVDR) beamforming technique to single gradient 

vector hydrophone signal processing8. Tichavsky et al. proposed an ESPRIT algorithm based on 

single vector hydrophones9, while Levin introduced a single vector hydrophone DOA estimation 

method based on maximum likelihood estimation10. Liang et al. applied the MUSIC algorithm to 

single vector hydrophones and proposed an improved algorithm11. Addressing the issue of 
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inconsistent noise power between the sound pressure channel and the particle velocity channel in 

single vector hydrophones, Liu et al. proposed a MUSIC algorithm that eliminates false sources12. 

Chen et al. applied matrix filters to single vector hydrophones, enhancing the performance of the 

MUSIC algorithm13. 

Although traditional methods rely on single vector hydrophones to measure components of 

sound pressure and particle velocity to estimate the position of sound sources, these methods often 

face many challenges in complex environments, especially in multi-source environments and under 

noise interference. Due to the unique array orientation vector structure of single vector 

hydrophones, and the fact that, even without channel amplitude errors, the noise power received by 

the sound pressure and particle velocity channels in isotropic noise environments remains different, 

the existing algorithms widely used for array Direction of Arrival (DOA) estimation are difficult to 

apply directly to single vector hydrophones10–12. 

The development of sparse signal processing techniques has provided new solutions for DOA 

(Direction of Arrival) estimation methods. In recent years, algorithms related to sparse signal 

processing have been widely applied to array-based DOA estimation 14–18，utilizing the sparsity of 

spatial signals to improve the performance of target bearing estimation. These algorithms can 

effectively enhance the accuracy and resolution of estimations under the premise of unknown signal 

sparse distribution19–21. Recently, researchers have begun to explore the possibility of applying these 

algorithms to single vector hydrophones. Wang et al. has utilized a single vector hydrophone, 

employing the Sparse Asymptotic Minimum Variance (SAMV) algorithm for target bearing 

estimation 22. In recent years, gridless sparse methods, such as the Sparse and Parametric Approach 

(SPA) 16, have shown significant potential in the field of array signal processing. The application of 

these methods is currently mainly limited to Uniform Linear Arrays (ULA) and Sparse Linear Arrays 

(SLA). This limitation is mainly because these methods depend on specific mathematical structures, 
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such as the Vandermonde decomposition of the Toeplitz covariance matrix, which is easily satisfied 

in the case of ULA and SLA23–27. However, the signal processing model of single vector 

hydrophones does not directly conform to this structure, preventing gridless sparse methods from 

being directly applied to DOA estimation problems for single vector hydrophones. 

In order to facilitate the application of such algorithms on single vector hydrophones and 

inspired by the processing of combined channels of sound pressure and particle velocity in vector 

hydrophones28,29, this paper proposes a novel vector signal reconstruction method, distinct from the 

aforementioned approaches. Our method introduces complex operations and proposes a technique 

for vector signal reconstruction, restructuring the signal of a single vector hydrophone. It converts 

the covariance matrix of the single vector received signal into a Toeplitz structure suitable for such 

methods. Further, we introduce the Vector Signal Reconstruction Sparse and Parametric Approach 

(VSRSPA), which, compared to traditional algorithms, effectively enhances estimation accuracy and 

resolution probability in environments with multiple sources and low signal-to-noise ratio(SNR). 

The purpose of this article is to provide a detailed introduction to the theoretical foundations 

and implementation details of the vector signal reconstruction method, and to verify its effectiveness 

in practical applications through simulation results. Through comparative analysis, we will 

demonstrate the significant advantages of the VSRSPA algorithm over traditional DOA estimation 

methods in terms of direction estimation accuracy and resolution, especially highlighting its 

application potential in multi-source and low SNR environments. 

II. SINGLE VECTOR HYDROPHONE SIGNAL MODEL 

Consider a two-dimensional vector hydrophone composed of a sound pressure sensor and two 

vector velocity sensors that are perpendicular to each other on the horizontal plane. The output of 

the vector hydrophone contains three information channels: the sound pressure channel ( -



 5 

channel), the -axis velocity channel ( -channel), and the -axis velocity channel ( -channel). 

Assuming that there are  mutually independent far-field signals  within the 

spatial domain of the vector hydrophone, then the received signal model of the two-dimensional 

single vector hydrophone (which measures the sound pressure and the horizontal components of 

particle velocity) can be represented as: 

  (1) 

Here,  represents the signal received by the hydrophone at time . The direction vector 

 is a  dimensional vector, and . 

 denotes the received signal vector, and  is a  dimensional 

noise vector, assumed to be zero-mean additive Gaussian white noise. The signals and noise are 

considered to be uncorrelated. 

Assuming that DOA estimation is performed with  snapshots, then the received signal model 

can be represented as: 

  (2) 

,  and , 

the covariance matrix of  can be represented as: 
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  (3) 

Where , represents the signal power of the th source.  respectively 

represent the noise power of the sound pressure channel, the velocity  channel, and the velocity  

channel. The signal covariance matrix  and the noise covariance matrix  can be represented as 

follows: 

  (4) 

III. SPARSE AND PARAMETRIC ESTIMATION ALGORITHM BASED ON 

VECTOR SIGNAL RECONSTRUCTION 

The key advantage of the SPA algorithm lies in its ability to avoid parameter discretization, 

thereby reducing computational burden and modeling error. To adapt the SPA algorithm, vector 

signal reconstruction technology optimizes the traditional single vector signal model by transforming 

the covariance matrix into the required Toeplitz structure, solving the issue that the standard model 

does not meet this structural requirement. 
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A. Vector Signal Reconstruction Method 

Upon re-examining the structure of the signal covariance matrix , it does not fully satisfy all 

the requirements of a Toeplitz structure. Specifically, the definition of  is as follows: 

  (5) 

For a Toeplitz structure, its key characteristic is that the elements on each diagonal of the matrix 

should be the same. In , the off-diagonal elements are equal to the elements in symmetric 

positions to the diagonal, partially satisfying the characteristics of a Toeplitz structure. However, the 

diagonal elements of  are not uniform, for example, the main diagonal elements are , , 

and . The Toeplitz structure requires uniformity in the matrix's diagonal elements, which is 

not fully realized in . Thus, although  approximates a Toeplitz structure to some extent, it 

does not completely conform to the standard definition of a Toeplitz matrix. 

One of the key characteristics of a Toeplitz structure is that the elements on each diagonal of the 

matrix should be the same. In , despite the off-diagonal elements being equal to their 

symmetrical counterparts across the diagonal, showing certain symmetry, the diagonal elements of 

 are not uniform, such as the different presentations of , , and . Another 

characteristic of the Toeplitz structure is the requirement for uniformity in the diagonal elements, 

which is not exhibited in . Therefore, although  demonstrates certain symmetrical 

characteristics, it does not fully meet the definition of a Toeplitz matrix. 

Considering the requirements of the SPA algorithm, this paper proposes a method for vector 

signal reconstruction. This method utilizes a specific vector signal reconstruction matrix , which 

transforms the single vector received data  by left multiplication, aiming to reconstruct the 
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covariance matrix of the single vector received signal into a Toeplitz structure suitable for the SPA 

algorithm. The vector signal reconstruction matrix  is defined as follows: 

  (6) 

The construction of this matrix is achieved by combining the velocity  channel and the velocity 

 channel signal components of the single vector hydrophone to create a new complex signal 

representation. In practical applications, the matrix  performs a left multiplication operation on 

the single vector received data , thereby generating a new signal vector . This 

transformation not only retains the key information of the original data but also provides a suitable 

mathematical framework for further signal analysis and processing. 

  (7) 

By utilizing Euler's formula  and , the 

formula can be further simplified to yield the following expression: 
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  (8) 

Through vector signal reconstruction, the covariance matrix of the single vector data received 

can be represented as: 

  (9) 

Furthermore,  can be represented as: 

  (10) 

Where  and ,  is the steering vector after 

vector signal reconstruction of the single vector signal, which can be represented as: 

  (11) 
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In this processing, after the single vector received data undergoes vector signal reconstruction, 

its steering vector approximates that of a tri-element uniform linear array. This method not only 

preserves the key characteristics of the original signal but also provides a suitable mathematical 

structure for further signal processing and analysis.Assuming that DOA estimation is performed 

with  snapshots, then the received signal vector signal reconstruction model 

 can be represented as: 

  (12) 

B. SPA Method 

The SPA algorithm implements direction estimation using a reconstructed covariance matrix. 

This algorithm primarily solves the optimization problem of the covariance matrix through 

Semidefinite Programming (SDP) techniques. Notably, the SPA algorithm is suitable for covariance 

matrices with a Toeplitz structure, which is a key characteristic provided by the vector signal 

reconstruction method. 

1. Covariance Fitting Criteria and SDP Formulations 

The SPA method first estimates  by re-parameterizing the above equation, and then 

determines the related parameters, defined as: 

  (13) 

The sparse and parametric estimation method first estimates  by re-parameterizing the above 

equation, and then determines the related parameters, defined as: 

  (14) 

Therefore,  can be considered as a Hermitian-Toeplitz matrix composed of  complex 

numbers, expressed as , where . The specific form is: 
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  (15) 

Furthermore, the structure of the covariance matrix  can be described as: 

  (16) 

In the context of a Uniform Linear Array (ULA), the covariance fitting criterion is based on the 

following prior assumption: For a ULA with  elements, it can detect up to  sources at 

most. For the single vector model after vector signal reconstruction, where , it is thus 

assumed that the maximum number of detectable sources . 

The sample covariance matrix is defined as . Under the condition that both  

and  are invertible matrices, the covariance fitting criterion can be used for parameter estimation. 

  (17) 

Therefore, the covariance fitting problem is transformed into a semidefinite programming (SDP) 

problem. Then, we obtain the following equivalent relation: 

  (18) 

When ,  is a singular matrix, and an alternative covariance fitting criterion is used: 

  (19) 

Based on this, a semidefinite programming (SDP) problem similar to the above can be constructed, 

with the specific form as follows: 
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  (20) 

The constraint  is implicitly included in the constraints of the above equation. By 

solving one of the SDPs and given the solution , we can obtain . 

2. Direction of Arrival Solution 

After obtaining , the next step is to estimate the parameters . This study employs the 

Multiple Signal Classification (MUSIC) algorithm to address this issue: 

  (21) 

 represents the subspace formed by the eigenvectors corresponding to the larger eigenvalues, that 

is, the signal subspace. Conversely,  is composed of the eigenvectors corresponding to the 

smaller eigenvalues, forming the noise subspace. Ideally, the signal subspace and the noise subspace 

in the data space are orthogonal to each other. Therefore, the spectral estimation formula of the 

MUSIC algorithm can be expressed as: 

  (22) 

Here are the detailed implementation steps of the algorithm proposed in this article: 

1. Single vector received data: . 

2. Apply the vector signal reconstruction method to process the data, obtaining: . 

3. Based on the single vector signal after vector signal reconstruction, calculate the covariance 

matrix: . 

4. Optimize the reconstructed covariance matrix  using semidefinite programming 

techniques. 
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5. Employ the MUSIC algorithm for the estimation of target angles. 

IV. SIMULATION ANALYSIS 

Considering a single vector hydrophone receiving  far-field targets, the SNR for the th 

source under Gaussian noise is defined as: 

  (23) 

The Root Mean Square Error (RMSE) of estimated DOAs is used to evaluate the accuracy of 

DOA estimation, RMSE is defined as: 

  (24) 

Where  represents the DOA of the th source (true DOA) during the th Monte Carlo 

simulation,  represents the estimated value for . Assuming the number of sources  is known, 

the positions of the  largest peaks are chosen as the estimated DOA values . The RMSE 

is the average over  runs. 

A. Single-Target Simulation 

This section considers a single-target scenario, where the target's incidence angle is , and 

the background noise is signal-independent complex Gaussian white noise. In the simulation, the 

number of snapshots is 1000, and the Signal-to-Noise Ratio (SNR) is set to 10dB and 0dB, 

respectively. The azimuth search step is . This simulation compares the performance of 

Conventional Beamforming (CBF), Minimum Variance Distortionless Response (MVDR), MUSIC, 

Iterative Adaptive Approach (IAA) 30, SParse Iterative Covariance-based Estimation (SPICE) 31, 

SPICE+31 algorithms, and VSRSPA , as shown in FIG. 1. The vertical red dashed line represents the 
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actual direction of incidence of the target, and all algorithms effectively estimated the target's 

direction. Notably, the CBF algorithm has the widest main lobe, while the VSRSPA algorithm shows 

the narrowest main lobe width and the lowest sidelobe level, displaying the sharpest peak. These 

characteristics are more pronounced at an SNR of 0dB. 

 

(a)                                                 (b) 

FIG. 1. Spatial Spectrum Graphs of Different DOA Algorithms for a Single Target:(a) 

SNR=10dB (b) SNR=0dB) 

FIG. 2 shows the Root Mean Square Error (RMSE) curves of different DOA estimation 

algorithms under various SNR. In the context of a single target, the RMSE of azimuth estimation 

for all the aforementioned algorithms decreases as the SNR increases. When the SNR is less than -

5dB, the RMSE rapidly increases with the improvement of signal SNR. For SNRs greater than -5dB, 

except for the SPICE algorithm, the RMSE of azimuth estimation for the other algorithms is less 

than . When the SNR is above 0dB, except for the SPICE algorithm, the RMSE of azimuth 

estimation for the other methods is essentially consistent. When the SNR is below 0dB, the RMSE 

for the CBF, MVDR, IAA, SPICE+, and VSRSPA algorithms are basically the same, with the 

RMSE of the MUSIC algorithm being slightly higher than these algorithms. 
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FIG. 2. Comparative Analysis of RMSE Performance for a Single-Target Scenario 

B. Dual-Target Simulation 

Considering a scenario with two targets, where the incident angles are  and 

, and the background noise is signal-independent complex Gaussian white noise. In the 

simulation, the number of snapshots is 1000, with SNRs of 10dB and 0dB. The azimuth search step 

is . As shown in FIG. 3, in the context of dual targets, the azimuth spectra of CBF, MVDR, IAA, 

SPICE, and SPICE+ algorithms only display one peak, indicating that under these simulation 

conditions, these algorithms cannot distinguish between the two targets. However, at an SNR of 

10dB, both the MUSIC algorithm and the Vector Signal Reconstruction Sparse and Parametric 

Approach (VSRSPA) can accurately estimate the positions of the targets, with the VSRSPA 

algorithm showing sharper peaks. When the SNR drops to 0dB, the estimation results of the 

MUSIC algorithm deviate significantly, with estimated angles of -45° and 35°, markedly different 

from the preset target positions. Meanwhile, the VSRSPA method still manages to accurately 

estimate the positions of the targets. 
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(a)                                                 (b) 

FIG. 3. Spatial Spectrum Estimation Comparison of Various Algorithms:(a) SNR=10dB (b) 

SNR=0dB 

From the spatial spectrum above, it is evident that the CBF, MVDR, MUSIC, IAA, SPICE, and 

SPICE+ algorithms cannot distinguish between the two targets, hence the following images will not 

compare with the aforementioned algorithms. FIG. 4 shows the relationship between the RMSE of 

azimuth estimation and SNR for two targets using the MUSIC and VSRSPA algorithms. The 

MUSIC algorithm is represented by a blue dashed line, and below an SNR of -2dB, it cannot 

differentiate between the two targets, as the curve is not plotted for SNRs below -2dB. With 

increasing SNR, its RMSE significantly decreases, indicating improved estimation accuracy. 

Particularly, as the SNR increases from -10 dB to about 2 dB, the RMSE of the MUSIC algorithm 

rapidly decreases, then the decline rate slows but continues to decrease. The VSRSPA algorithm is 

represented by a green solid line, showing overall lower RMSE across all SNR levels compared to 

the MUSIC algorithm, indicating better performance within this test range. As the SNR increases, 

the RMSE of VSRSPA also shows a decreasing trend, and at high SNR values, its RMSE drops to 

near 0°, demonstrating higher positioning accuracy. It is evident from the graph that the 
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performance of both algorithms improves with increasing SNR, but the VSRSPA algorithm 

performs better than the MUSIC algorithm across the entire SNR range. 

 

FIG. 4. Comparative Analysis of RMSE Performance for a Dual-Target Scenario 

FIG. 5 shows the performance of the MUSIC algorithm and VSRSPA algorithm in terms of 

resolution probability at different SNR levels. The horizontal axis represents the SNR in decibels 

(dB), ranging from -10 dB to 10 dB. The vertical axis represents the resolution probability, from 0 to 

1. In the graph, the MUSIC algorithm is represented by a blue dashed line, with its performance 

improving as the SNR increases, but with slower performance growth under low SNR conditions. 

The VSRSPA algorithm is represented by a green solid line, displaying higher resolution probability 

across the entire SNR range, especially when the SNR is greater than -4dB, approaching 1, indicating 

superior performance compared to the MUSIC algorithm. 
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FIG. 5. Comparative Analysis of Resolution Probability for a Dual-Target Scenario 

V. CONCLUSION 

In this paper, we explored the application of single vector hydrophones in underwater acoustic 

signal processing for DOA estimation. Addressing the challenges faced by traditional DOA 

estimation methods, such as multi-source signals and noise interference, we proposed the VSRSPA 

algorithm. Through theoretical analysis and simulation experiments, we demonstrated that the 

VSRSPA algorithm can effectively improve the accuracy and resolution of DOA estimation, 

especially outperforming traditional methods in low SNR and multi-source environments. This study 

also facilitated the application and further research of sparse signal processing algorithms, such as 

atomic norm minimization, on single vector hydrophones by reconstructing the single vector signal 

model. 
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