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Abstract

The tidal problem is used to obtain the tidal deformability (or Love number) of stars. The
semi-analytical study is usually treated in perturbation theory as a first order perturbation
problem over a spherically symmetric background configuration consisting of a stellar interior
region matched across a boundary to a vacuum exterior region that models the tidal field. The
field equations for the metric and matter perturbations at the interior and exterior regions
are complemented with corresponding boundary conditions. The data of the two problems
at the common boundary are related by the so called matching conditions. These conditions
for the tidal problem are known in the contexts of perfect fluid stars and superfluid stars
modelled by a two-fluid. Here we review the obtaining of the matching conditions for the
tidal problem starting from a purely geometrical setting, and present them so that they can
be readily applied to more general contexts, such as other types of matter fields, different
multiple layers or phase transitions. As a guide on how to use the matching conditions, we
recover the known results for perfect fluid and superfluid neutron stars.
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1 Introduction

The purpose of this paper is to briefly review the matching conditions in perturbation theory to
first order involved in the even-parity tidal problem, and present them in a way that are readily
applicable to generalizations other than in the known perfect fluid [1–3] or two-fluid (to model
superfluid) stars [4] contexts.

The aim of studying the tidal problem is to obtain the Love number, or, equivalently, the tidal
deformability, of stars. The global problem consists of a region to model the stellar interior which
is matched to an exterior vacuum region that models a tidal field, produced e.g. by a companion
star. Using perturbation theory the model is built as a first order perturbation on top of a static
and spherically symmetric background configuration consisting of an interior region ball of radius
R∗ with a Schwarzschild exterior. The Love number is then determined from the value that
certain function of the first order metric perturbation, that depends only on the radial coordinate,
y−(r), takes at the outer surface (the surface as seen from the exterior) of the star, specifically
y−(R∗). That value is found by integrating an analogous function y+(r) in the interior region from
the origin outwards to obtain y+(R∗), and then use whatever information we have on the jump
[y] := y+(R∗)− y−(R∗) to determine y−(R∗) (see [5]).

In the context of perfect fluid models, it was argued in [1,2] that the jump is given by (see Eq. (15)
in [2])

[y] = κ

R3
∗

2M
E(R∗), (1)

where E is the energy density (of the background configuration), M is the mass of the star, and
we use κ for the gravitational coupling constant (κ = 8π in natural units G = c = 1). The
argument uses the fact that the function y(r) is defined as the quotient rH ′(r)/H(r), where H is a
function that describes part of the first order perturbation (that is the harmonic ℓ = 2 part of the
H0 function of the Regge-Wheeler decomposition [6]). The problem is set on the whole domain
r ∈ (0,∞), and H is implicitly assumed to be continuous at r = R∗, just as well as the rest of
the perturbation metric functions. The key idea is that the Einstein field equations (EFE) at first
order can be defined (in strict terms at least in a distributional sense), and H(r) thus satisfies a
second order ODE that contains a term with dE/dP , where P is the pressure of the background
configuration. Therefore, since P (r) must be continuous at the surface, if E(r) has a jump at
r = R∗, then dE/dP presents a Dirac delta term there proportional to E(R∗). As a result, the
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solution of H(r) yields a continuous function but discontinuous H ′(r) at r = R∗, with a jump [H ′]
proportional to E(R∗). Completing the chain [y] = [rH ′/H ] = R∗[H

′]/H(R∗) with the explicit
expression of [H ′] leads to (1).

Although the result is correct, the procedure has two drawbacks. The first comes from a practical
point of view. The procedure relies completely on the use of the EFEs for a perfect fluid at both
sides (vacuum taken as a trivial particular case). If one needs to consider other matter fields at
the interior, or even phase transitions in different regions, the derivation of [y] must be carried out
for each different case. Let us stress that after [1, 2] were published, several works on other types
of stellar interiors miss the derivation of [y] to properly justify that y is taken to be “continuous”.

The second drawback is conceptual, since the procedure also relies on the setting of the interior
and exterior problems as one single problem on a common domain, r ∈ (0,∞), and then implicitly
assumes that the perturbed metric functions have the continuity properties needed to devise the
EFEs in a distributional sense. This setting has its basis in the original Hartle-Thorne perturbative
framework [7, 8], where all the perturbed metric functions were assumed to be continuous in that
sense. However, the study of matchings in perturbation theory has shown that that construction is
not necessary, and not desirable in some cases of interest. In perturbed matching theory, the interior
and exterior first order problems (denoted with a + and − respectively) are more conveniently
treated as two separate (gauge field) problems with related boundary data at the common boundary
r+ = r− =: R∗, with basis on a purely geometrical construction. In fact, some of the functions
may indeed present jumps, that can be made to vanish by partially fixing the gauges, whereas
some others necessarily present jumps in general, as otherwise the setting becomes inconsistent.
In particular, the amendment needed to the original Hartle-Thorne model has consequences in the
computation of the stellar mass to second order [9].

Although perturbed matching theory may seem to be a mere mathematical artifact, apart from
providing firm and rigorous grounds to the results on perturbed matchings based on the Hartle-
Thorne framework (after the needed amendments), it provides, on the one hand, full control over
the gauges at either side independently (see [10]). This fact is key in the proofs of uniqueness and
existence of compact rotating configurations in GR in perturbation theory to second order [11,12].
On the other hand, the geometrical basis provides a direct way to generalize the derivation, in
particular, of [y] to any matter field content, even including different kind of layers and phase
transitions.

In this paper we review the matching conditions to first order in perturbation theory (based on
the works [9,12,13]) aimed at the tidal problem, starting from a pure geometrical setting, and thus
ready to be used to obtain the matching conditions for general stellar matter field contents. We
take the opportunity to include a formal way of dealing with multiple concentrically distributed
regions. To show how to use the conditions, we review the obtaining of the perturbed matching
conditions to first order for the tidal problem for perfect fluid stars [3], thus recovering (and putting
on firm grounds) the condition (1), and two-fluid superfluid stars [4]. For completeness, we also
provide in Sect. 4 the usual procedure to compute the Love number and how the jump [y] enters
the calculation.
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We include in the following subsection a brief account on the matching in perturbation theory to
set the grounds, provide some relevant references, and fix some notation.

1.1 Matching in perturbation theory

In essence, the problem of matching in perturbation theory to first order in General Relativity
starts with a set of two spacetimes with boundary (M+, g+,Σ+) and (M−, g−,Σ−) that have
been matched across Σ+ = Σ− =: Σ to create a single spacetime (M, g) with two regions, where
M = M+∪M− and g equals g+ or g− on each corresponding region. Each region is now endowed
with a symmetric tensor, K+

1 andK−

1 , which describe the metric perturbation on the corresponding
region. The perturbation parameter ε is chosen so that the families of metrics g±ε := g± + εK±

1

describe the metric to first order at each region. By taking the metric gε on M defined to be
g+ε on M+ and g−ε on M−, one can proceed to construct its Riemann tensor Riem(gε). We say
that the two regions of the given background (M, g) perturbed with K±

1 match (to first order)
when Riem(gε) to first order in ε can be constructed as a distribution and does not have a Dirac
delta term. The general treatment of the matching to first order, explicitly applicable in terms
of any gauge, was done in [14] and [15] (see e.g. [16] and [10] regarding treatments in terms of
gauge invariants). It was shown that the two perturbed regions match to first order if and only if
there exist a couple vectors Z±

1 defined at points on Σ so that a certain set of conditions on Σ are
satisfied, which depend on {g±, K±

1 , Z
±

1 }. We refer to those as the first order perturbed matching
conditions, and the normal part of Z±

1 to Σ, that we shall denote by Ξ±

1 , describe the deformation
of Σ (to first order) as seen from each side [13] in terms of the gauges (or class of gauges) chosen.

The second order problem is constructed analogously in terms of an extra symmetric tensor for
each region K±

2 to describe the second order perturbations, and the corresponding second order
matching conditions (found in [13]) demand the existence of two extra vectors Z±

2 such that a
certain set of conditions for {g±, K±

1 , K
±

2 , Z
±

1 , Z
±

2 } on Σ are satisfied.

The particularization to second order stationary and axially symmetric perturbations around static
and spherically symmetric backgrounds was performed in [9] (see also [12]). It must be stressed that
the perturbation tensor that suits the even-parity tidal problem scenario enters those constructions
at second order. The first order matching conditions suitable for the tidal problem correspond to
the conditions at second order with a vanishing first order problem in the treatment in [9, 12]
(see [3, 4]).

The local nature of the matching procedure allows us to trivially devise the (perturbed) matching
procedure needed for a stellar interior made up of layers with different matter contents. For the
sake of formality we consider a construction based on a set of N +1 regions {M(i)} with boundary
where i = 1, ..., N + 1, so that M(1) contains the origin and are ordered from inner to outer,
matched together across the matching hypersurfaces Σ(i) with i = 1, . . . , N to form a global static
and spherically symmetric background spacetime as depicted in Fig. 1.1. Note that one may
include Σ(N+1) to denote “infinity”. At any Σ(i) separating two regions, say M+ = M

(i)
(inner)

and M− = M(i+1) (outer), for any pair of functions f+ and f− defined on the corresponding
region, we will use [f ]i := f+|Σ(i)

−f−|Σ(i)
to denote the “jumps” of f there.
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Figure 1: Schematic representation of the matching between different manifolds. The i-th manifold
M(i) is matched to M(i+1) through the hypersurface Σ(i). At Σ(i) M(i) plays the role of the inner
part of the matching, M+ = M(i), and M(i+1) the outer part, so that M− = M(i+1). The
innermost and outermost regions, M(1) and M(N+1) are not linked to any other spacetime.

2 Geometrical perturbed matching conditions

In this section we set forth the perturbed matching conditions to first order for static and axially
symmetric even parity perturbations around a static and spherically symmetric background at any
hypersurface Σ(i) in purely geometrical terms. With the tidal problem in mind we restrict the
analysis, as usual, to the ℓ ≥ 2 sector. We refer to [4], based in turn on [12] and [9], for the proving
details.

In principle, each M(i) is endowed with the usual spherical coordinates {ti, ri, θi, φi}, and we may
indicate by fi that a function is defined on M(i). However, to avoid flooding all equations with i
indices, in what follows we only show explicitly the i-dependence at the jumps of functions.

2.1 Background

The metric of the background configuration in spherical coordinates is given by

g = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2)

(i-subindexes ommited in the functions and coordinates) on each M(i). Given the spherical sym-
metry of the whole configuration, the matching hypersurfaces Σ(i) inherit the symmetries and they
can be parametrized by common values of {t, θ, φ} at each side (see e.g. [17]). Then, the matching
conditions for the background configuration are [r]i = 0, that establishes that Σ(i) is defined by
the same value, say Ri, of the respective radial coordinates r, and

[λ]i = 0, [ν]i = 0, (3)

[ν ′]i = 0. (4)

Observe that the condition [ν]i = 0 is, in fact, a consequence of the choice of the t coordinate at
each side, which have been taken so that their values coincide on Σ(i). It is in that sense that we
say that the matching condition just serves to accommodate the choice of “gauges” on each side.
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2.2 First order

We take the first order perturbation tensor K1 describing the static, axially symmetric and even
parity tidal field as given in the Regge-Wheeler gauge, and decomposed in Legendre polynomials,

K1 =
∑

ℓ

{

eν(r)H0ℓ(r)dt
2 + eλ(r)H2ℓ(r)dr

2 + r2Kℓ(r)(dθ
2 + sin2 θdφ2)

}

Pℓ(cos θ), (5)

on each region. The matching conditions for ℓ ≥ 2 on each Σ(i) read [see Eqs. (37)-(39) in [4]]

[Kℓ]i = 0, [H0ℓ]i = 0, (6)

[H2ℓ]i −Ri[K
′

ℓ]i = e−λ(Ri)/2Ξℓi[λ
′]i, (7)

[H ′

0ℓ]i +
Ri

2
ν ′(Ri)[K

′

ℓ]i = −e−λ(Ri)/2Ξℓi[ν
′′]i, (8)

for some functions Ξℓi at each ℓ ≥ 2. As mentioned in the Introduction, the functions Ξℓi will
describe the deformation of the hypersurface Σ(i) in the class of gauges compatible with the problem
(and it is equal at both sides) [9, 12]. The first order problems for ℓ ≥ 2 will then match at Σ(i) if
and only if there exists a quantity Ξℓi such that Eqs. (6)-(8) are satisfied.

Although the matching conditions for ℓ = 0, 1 are irrelevant as far as the tidal problem is concerned,
they can be obtained from [9] or [12], and find, in particular, that the jumps become arbitrary
enough as to accommodate all the gauge freedom left at this point.

2.3 Matching conditions in terms of the Einstein tensor

Our goal now is to express the matching conditions in terms of the Einstein tensor of the background
geometry Gα

β := Ein(g)αβ. The only independent and nonzero components satisfy the relations
(we drop the r-dependence here, prime denotes derivative with respect to r)

λ′ = +
1− eλ

r
− reλGt

t, (9)

ν ′ = −1− eλ

r
+ reλGr

r, (10)

ν ′′ =
1

2r
(λ′ − ν ′)(2 + rν ′) + 2eλGθ

θ, (11)

on any region M(i). Computing the jumps of the above relations on any Σ(i) yields

[λ′]i = −Rie
λ(Ri)[Gt

t]i, (12)

[ν ′]i = +Rie
λ(Ri)[Gr

r]i, (13)

[ν ′′]i =

(

1 +
Riν

′(Ri)

2

)

[λ′]i
Ri

+ 2eλ(Ri)[Gθ
θ]i. (14)

As a result, using also that the mass function is given by

M(r) =
r

2

(

1− e−λ(r)
)

, (15)
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the matching conditions (3)-(4) can be rewritten as

[M ]i = 0, [ν]i = 0, (16)

[Gr
r]i = 0, (17)

while (6)-(8) read

[Kℓ]i = 0, [H0ℓ]i = 0, (18)

[H2ℓ]i − Ri[K
′

ℓ]i = −Rie
λ(Ri)/2Ξℓi[G

t
t]i, (19)

[H ′

0ℓ]i − [K ′

ℓ]i = −2eλ(Ri)/2Ξℓi[G
θ
θ]i −

(

1 +
Riν

′(Ri)

2

)

[H2ℓ]i
Ri

. (20)

3 Application to General Relativity

In this section we review how the above construction of the perturbed matching to first order
applies to problems in perturbation theory to first order in General Relativity (without cosmological
constant) in the present context for the tidal problem, i.e. perturbations of the form (5) around
static and spherically symmetric backgrounds. For any general case, anyway, the procedure consists
in the three following steps.

(i) As a first step, since only the Einstein tensor of the background geometry enters the perturbed
matching to first order, it suffices to introduce the Einstein field equations (EFE) at the
background level (we omit the i index for each region)

Gα
β = κT α

β, (21)

in the equations (16)-(20) to obtain the geometrical perturbed matching conditions in terms
of quantities related to the desired matter field contents of the model. We are using G =
Ein(g), T for the energy-momentum tensor at the background level, and κ for the gravita-
tional coupling constant.

(ii) The second step consists in using the EFEs at first order, together with the perturbed
matching conditions from the first step. This may provide additional conditions on the
jumps of the perturbation metric functions {H0ℓ, H2ℓ, Kℓ}.

(iii) The final step corresponds to the addition of the matter field matching conditions governing
the behaviour of the matter fields across layers, such as surfaces separating different media,
phase transitions, charged surfaces, etc...

Before we start with the first step, observe that the Einstein tensor of the background geometry
given by (2) only has (at most) three non-vanishing components Gt

t, G
r
r, and Gθ

θ = Gφ
φ (in all

regions). The form of the energy-momentum tensor compatible with that, c.f. (21), is many times
referred to as an “anisotropic fluid” with “radial pressure” T r

r = κ
−1Gr

r. Equation (17) thus states
that the radial pressure cannot have a jump on any matching hypersurface Σ(i). If the outermost
region is the exterior vacuum to a compact object, this condition establishes the value RN of the
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radial coordinate where the boundary common to the two problems is located. On the other hand,
notice, however, that neither [Gθ

θ]i nor [G
t
t]i are necessarily zero in general, and therefore neither

are [T θ
θ]i nor [T

t
t]i. If there are no equations for the matter fields, nor additional field matching

conditions for them, the necessary and sufficient conditions for “anisotropic fluids” to match at
first order are the background matching equations (16)-(17) plus the two first order conditions in
(18). Therefore, in that case, the jumps of H2ℓ and the derivatives of all the perturbation metric
functions are not constrained, a priori.

In the following we consider perfect fluid and two-fluid superfluid regions, using steps (i) and (ii)
to recover the known matching conditions in the tidal problem for neutron and quark stars (see
e.g. [1–3]) and superfluid neutron stars (see e.g. [18]).

3.1 Step (i): geometrical perturbed matching conditions using the
background field equations

Let us start by performing the first step (i) for perfect fluid and two-fluid regions.

Perfect fluid: To fix some notation, we write the energy-momentum tensor for a perfect fluid as

T α
β = (E + P )UαUβ + Pδαβ , (22)

for some unit fluid flow U , where E and P are the corresponding energy density and pressure,
respectively. Given the form of the Einstein tensor for (2), as mentioned above, the EFEs on the
background imply that U = e−ν/2∂t, and require only the equation

Gr
r = Gθ

θ. (23)

The energy density and pressure are then given by the relations

Gt
t = −κE, Gr

r(= Gθ
θ = Gφ

φ) = κP. (24)

The matching conditions (16)-(20) applied to a perfect fluid thus read

[M ]i = 0, [ν]i = 0, (25)

[P ]i = 0, (26)

[Kℓ]i = 0, [H0ℓ]i = 0, (27)

[H2ℓ]i −Ri[K
′

ℓ]i = κRie
λ(Ri)/2Ξℓi[E]i, (28)

[H ′

0ℓ]i − [K ′

ℓ]i = −
(

1 +
Riν

′(Ri)

2

)

[H2ℓ]i
Ri

. (29)

Observe that because of the field equations at the background level, c.f. (23), we now have
[Gθ

θ]i = 0 and therefore (20), that becomes (29), involves perturbation metric functions only.

If the outer region is vacuum, the jump of the energy is simply [E]i=N = E+(RN), where RN

satisfies P+(RN) = 0. In general, the values of the energy density at the matching hypersurfaces
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Σ(i), and thus the jumps [E]i, will be determined by the barotropic EOS E = E(P ) that govern
the stellar configurations on the different regions. In other cases with no barotropic EOS, such as
homogeneous stars [19] and some Skyrme stars [20], those values will be determined by whatever
relations used to close the system of equations.

Note that at this point the function H2ℓ may present jumps at the matching hypersurfaces (see
(29)). Later we are going to see how the perfect fluid equations at first order (in combination with
the rest of conditions) imply the vanishing of those jumps.

Superfluid: For completeness, let us introduce very briefly the two-fluid superfluid formalism, as
described in [21] (see also [22]). For brevity, we refer to this formalism simply as superfluid. The
flow of neutrons and protons is given by nα = nuα and pα = pvα, where n and p are the number
densities of neutrons and protons, respectively, and uα and vα are unit timelike vectors. All the
model is determined by the master function

Λ = Λ(n2, p2, x2),

where n2 := nαn
α, p2 := pαp

α, and x2 := −pαn
α is the interaction term. With the help of the

definitions
µα := Bnα +Apα, χα := Cpα +Anα,

with

A := −∂Λ(n2, p2, x2)

∂x2
, B := −2

∂Λ(n2, p2, x2)

∂n2
, C := −2

∂Λ(n2, p2, x2)

∂p2
,

and
Ψ := Λ− nαµα − pαχα, (30)

the energy-momentum tensor reads

T α
β = Ψδαβ + pαχβ + nαµβ. (31)

Similarly as in the perfect fluid case, staticity and spherical symmetry of the background geometry
requires that uα = vα. That induces (31) to take the form of a perfect fluid with E replaced by
−Λ. As a result, for this two-fluid model the perturbed matching conditions are given by the set
{(25), (27), (29)} plus

[Ψ]i = 0, (32)

[H2ℓ]i − Ri[K
′

ℓ]i = −κRie
λ(Ri)/2Ξℓi[Λ]i. (33)

Now, if the outer region is vacuum, then we have [Λ]i=N = Λ+(RN), where RN satisfies Ψ+(RN) =
0.

Superfluid and perfect fluid: Some models consider stellar configurations composed of different
kinds of fluids. For instance, in [23] a stellar model with a superfluid core and perfect fluid crust is
studied. In such case, the same arguments as those above for each side can be used to show that
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the perturbed matching conditions for an inner superfluid region and an outer perfect fluid region
are given by the set {(25), (27), (29)} plus

Ψ(Ri) = P (Ri), (34)

[H2ℓ]i −Ri[K
′

ℓ]i = −κRie
λ(Ri)/2Ξℓi (Λ(Ri) + E(Ri)) . (35)

If the star were composed of an inner perfect fluid and an outer superfluid (even though this might
not be physically realistic), Eq. (35) ought to be replaced by the same equation with a change of
sign at the right-hand side.

3.2 Step (ii): adding the field equations at first order

Let us recall how the EFEs at first order are derived from Gε := Ein(gε) and some ε-family of
energy-momentum tensors Tε such that Tε=0 = T . It suffices to consider the family of equations
Gε

α
β = κTε

α
β, that reduces to (21) for ε = 0.

The first order equations are thus given by

G(1)α
β = κT (1)α

β, (36)

where

G(1)α
β =

∂Gε
α
β

∂ε

∣

∣

∣

∣

ε=0

, T (1)α
β =

∂Tε
α
β

∂ε

∣

∣

∣

∣

ε=0

.

For the perfect fluid, one takes the form T α
ε β = (Eε + Pε)U

α
ε Uεβ + Pεδ

α
β , for some vector Uε unit

with respect to gε and such that Uε=0 = U , and corresponding energy density Eε and pressure Pε

satisfying Eε=0 = E, Pε=0 = P . If a barotropic EOS is given in the form E(P ), then it is imposed
that Eε = E(Pε). Similarly, for the two fluid one considers nε

α = nεuε
α, pε

α = pεvε
α and, given a

ruling master function Λ(n2, p2, x2), takes Λε = Λ(n2
ε, p

2
ε, x

2
ε) from where the rest of quantities are

constructed, following the formalism explained above, to form Tε
α
β = Ψεδ

α
β + pε

αχεβ + nε
αµεβ.

It is well known that given the form of K1 in (5), and thus of gε = g + εK1, the resulting G(1)

takes a form so that the equations (36) in both the perfect fluid and two-fluid cases for ℓ ≥ 2
yield [24, 25]

H2ℓ = H0ℓ, (37)

Kℓ
′ = H0

′

ℓ + ν ′H0ℓ, (38)

r2ν ′H0
′

ℓ = eλ (ℓ(ℓ+ 1)− 2)Kℓ +
(

r(λ′ + ν ′)− (rν ′)
2 − eλℓ(ℓ+ 1) + 2

)

H0ℓ, (39)

plus relations that involve the first order quantities relative to the matter fluids.

We can now take differences of these equations at either side of the matching hypersurfaces Σ(i)

and thus obtain relations between the jumps of the perturbation metric functions. The task is
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then to combine the perturbed matching conditions we already have with those relations.

Perfect fluid: The combination of the set of equations (25)-(29) with the differences of (37)-(39),
using the relations in (9)-(11), is equivalent to the set of equations [3]

[M ]i = 0, [ν]i = 0, (40)

[P ]i = 0, (41)

[H0ℓ]i = 0, [H2ℓ]i = 0, [Kℓ]i = 0, (42)

[H ′

0ℓ]i = [K ′

ℓ]i =
κeλ(Ri)

ν ′(Ri)
H0ℓ(Ri)[E]i, (43)

[E]i

(

Ξℓi +
eλ(Ri)/2

ν ′(Ri)
H0ℓ(Ri)

)

= 0, (44)

for ℓ ≥ 2.

Two comments are in order. First, these matching conditions, for ℓ ≥ 2, appeared already (without
proof) in an analogous context in Appendix B in [26]. There, the matching to all ℓ is included,
although the “continuity” of the ℓ = 0, 1 sector may need some partial gauge fixing [9,12]. Second,
it must be stressed that the background matching conditions (40) and (41), together with the
“continuity” conditions (42), plus the field equations (38) and (39) guarantee that the matching
condition (43) is satisfied. This fact, which was also already observed in [26], is the reason why
the discontinuity of [H ′

0] can be found using the EFEs provided that the functions involved are

asummed to be continuous.

Superfluid: For the two-fluid model it is easy to see that it suffices to replace E with −Λ and P
with Ψ in (32) and (33). As a result, the full set of perturbed matching conditions to first order
in this case is given by (40), (42) plus

[Ψ]i = 0, (45)

[H ′

0ℓ]i = [K ′

ℓ]i = −κeλ(Ri)

ν ′(Ri)
H0ℓ(Ri)[Λ]i, (46)

[Λ]i

(

Ξℓi +
eλ(Ri)/2

ν ′(Ri)
H0ℓ(Ri)

)

= 0, (47)

for ℓ ≥ 2.

Superfluid and perfect fluid: Likewise, for an inner superfluid model matching to an outer perfect
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fluid, the set is given by (40), (42) plus

Ψ(Ri) = P (Ri), (48)

[H ′

0ℓ]i = [K ′

ℓ]i = −κeλ(Ri)

ν ′(Ri)
H0ℓ(Ri) (Λ(Ri) + E(Ri)) , (49)

(Λ(Ri) + E(Ri))

(

Ξℓi +
eλ(Ri)/2

ν ′(Ri)
H0ℓ(Ri)

)

= 0, (50)

for ℓ ≥ 2.

Clearly, the same equations with a change of sign in E and Λ hold if the inner region is a perfect
fluid and the outer region is the superfluid.

4 Tidal problem and Love number

The Love number at each harmonic ℓ is obtained from the function H0ℓ and its radial derivative
H ′

0ℓ evaluated at the outermost boundary of the star in the vacuum exterior, that we denote by
M− with relative quantities also tagged with the minus sign. In the present setting and notation,
that is H−

0ℓ(RN) and H ′−

0ℓ(RN). The solution H0ℓ of the equations (38)-(39) for a vacuum region
are the associated Legendre functions P n

ℓ , Q
n
ℓ with n = 2

H−

0ℓ(r−) = aℓP P̂
2
ℓ

(r−
M

− 1
)

+ aℓQQ̂
2
ℓ

(r−
M

− 1
)

, (51)

where the Legendre functions have been normalized so that P̂ 2
ℓ (x) ≃ xℓ and Q̂2

ℓ(x) ≃ 1/xℓ+1 when
x → ∞, and are given by

P̂ 2
ℓ (x) :=

(

2ℓ√
π

Γ(ℓ+ 1/2)

Γ(ℓ− 1)

)−1

P 2
ℓ (x),

Q̂2
ℓ(x) :=

(√
π

2ℓ+1

Γ(ℓ+ 3)

Γ(ℓ+ 3/2)

)−1

Q2
ℓ(x).

The Love number is defined as

kℓ :=
1

2

(

M

RN

)2ℓ+1

aℓ, (52)

where M is the mass of the star M = M(RN ) (observe the mass function has no jumps, c.f. (40)),
and aℓ is the ratio between the two constants in (51)

aℓ :=
aℓQ
aℓP

= −∂r
−

P̂ 2
ℓ − (y−ℓ /RN)P̂

2
ℓ

∂r
−

Q̂2
ℓ − (y−ℓ /RN)Q̂2

ℓ

∣

∣

∣

∣

r
−
=RN

, (53)
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where yℓ := rH ′

0ℓ/H0ℓ. The leading order Love number, k2, is many times replaced (but often
called also Love number) by the tidal deformability λ2 = a2/3.

Computationally, one must fix some boundary conditions at the origin and integrate the EFE from
M(1) to M(N), respecting the matching conditions at each boundary, until reaching the outermost
boundary, Σ(N). Once the interior problem has been solved (and thus y+ℓ (RN ) is known), the value
of y−ℓ at the boundary, y−ℓ (RN), has to be obtained from the matching of the two regions,

y−ℓ (RN ) = y+ℓ (RN)− [yℓ]N

with

[yℓ]N =

[

rH ′

0ℓ

H0ℓ

]

N

=
RN

H0ℓ(RN)
[H ′

0ℓ]N , (54)

after using [H0ℓ]N = 0 in the last equality. Then, using (53) the tidal deformability, λ2 (and the
Love number k2 using also (52)) is computed.

Perfect fluid: For the perfect fluid case, using equations (42) and (43), together with the vacuum
solutions of λ(r) and ν(r),

e−λ(r) = eν(r) = 1− 2M

r
, (55)

equation (54) reads

[yℓ]N = κ

RN
3

2M
E(RN), (56)

thus recovering (1) for ℓ = 2 after denoting RN = R∗. Then,

aℓ = −∂r+P̂
2
ℓ − (y+ℓ /RN)P̂

2
ℓ + (κRN

2E(RN)/2M)P̂ 2
ℓ

∂r+Q̂
2
ℓ − (y+ℓ /RN)Q̂2

ℓ + (κRN
2E(RN )/2M)Q̂2

ℓ

∣

∣

∣

∣

r+=RN

, (57)

where we have recovered the + index in y+ℓ because y+ℓ 6= y−ℓ in general.

Superfluid: For the superfluid case, the analogous procedure shows that it suffices to replace E by
−Λ, so that [4]

[yℓ]N = −κ

RN
3

2M
Λ(RN), (58)

and

aℓ = −∂r+P̂
2
ℓ − (y+ℓ /RN)P̂

2
ℓ − (κRN

2Λ(RN)/2M)P̂ 2
ℓ

∂r+Q̂
2
ℓ − (y+ℓ /RN )Q̂2

ℓ − (κRN
2Λ(RN )/2M)Q̂2

ℓ

∣

∣

∣

∣

r+=RN

. (59)
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5 Conclusions

The set of geometrical matching conditions reviewed in this article serves as a basis for those works
that aim to study the tidal problem for non perfect fluid stellar configurations for which Eq. (15)
in [2] no longer applies as such. In this regard, although equations to first order for perfect fluid
and superfluid interiors appear to be analogous (in the matching conditions it is just a change
E → −Λ and P → Ψ), at second order this similarity is completely lost; compare, for instance,
the contribution of the mass at second order, δM , from Eq. (103) in [9] with that of Eq. (97)
in [18].

Even though we have restricted ourselves to the theory of General Relativity using the Einstein
field equations at some point, due to the geometrical nature of (16)-(20), which are a consequence
of imposing that the Riemann tensor has no Dirac delta terms, these equations may still hold as
a minimum set of matching conditions on alternative metric theories of gravity, as well as metric-
affine theories (except for one very particular case, see [27]). In those alternative theories one would
expect to need more conditions, as it happens when dealing with quadratic theories of gravity, see
e.g. [28] and references therein. Let us stress finally that the geometrical procedure in Sec. 2 is
suited to be applied to any stellar exterior, that is, regardless of whether the “vacuum” exterior of
some given theory is or is not Schwarzschild, see e.g. [29].
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