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Abstract

Recently, implicit neural representations (INR)
have made significant strides in various vision-
related domains, providing a novel solution for
Multispectral and Hyperspectral Image Fusion
(MHIF) tasks. However, INR is prone to los-
ing high-frequency information and is confined to
the lack of global perceptual capabilities. To ad-
dress these issues, this paper introduces a Fourier-
enhanced Implicit Neural Fusion Network (Fe-
INFN) specifically designed for MHIF task, target-
ing the following phenomena: The Fourier ampli-
tudes of the HR-HSI latent code and LR-HSI are
remarkably similar; however, their phases exhibit
different patterns. In FeINFN, we innovatively
propose a spatial and frequency implicit fusion
function (Spa-Fre IFF), helping INR capture high-
frequency information and expanding the receptive
field. Besides, a new decoder employing a complex
Gabor wavelet activation function, called Spatial-
Frequency Interactive Decoder (SFID), is invented
to enhance the interaction of INR features. Espe-
cially, we further theoretically prove that the Ga-
bor wavelet activation possesses a time-frequency
tightness property that favors learning the optimal
bandwidths in the decoder. Experiments on two
benchmark MHIF datasets verify the state-of-the-
art (SOTA) performance of the proposed method,
both visually and quantitatively. Also, ablation
studies demonstrate the mentioned contributions.
The code will be available on Anonymous GitHub
after possible acceptance.

1 Introduction
Hyperspectral imaging captures scenes across contiguous
spectral bands, offering intricate details compared to tradi-
tional single or limited-band images, and improving com-
puter vision application accuracy, such as target recogni-
tion, classification, tracking, and segmentation [Fauvel et
al., 2012; Uzair et al., 2013; Van Nguyen et al., 2010;
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Figure 1: Comparison of our method with other methods on the
CAVE(× 8) and Harvard(× 8) datasets. Closer to the top-right cor-
ner indicates better performance and the size of the circle indicates
the number of parameters in the model.

Tarabalka et al., 2009]. However, practical optical sen-
sors face challenges in balancing spatial resolution and spec-
tral precision. Images with over 100 bands often exhibit
lower spatial resolution, while those with fewer bands dis-
play higher spatial resolution. Efforts for MHIF are un-
derway to fuse high spatial-resolution multispectral images
(HR-MSI) with low spatial-resolution hyperspectral images
(LR-HSI) to finally obtain high spatial-resolution hyperspec-
tral images (HR-HSI). Actually, MHIF technology could fuse
hyperspectral images with multispectral images, extracting
information not detectable by HR-MSI to enhance richness
and precision. Recent MHIF literature explores model-based
approaches [Dian and Li, 2019; Dian et al., 2019; Xu et
al., 2022] and deep learning methods [Huang et al., 2022;
Dong et al., 2021; Cao et al., 2024]. While model-based
methods leverage image priors, challenges persist in ob-
taining high-fidelity, low-distortion HR-HSI due to the lack
of large-scale training datasets. Among deep-learning ap-
proaches, CNN-based networks for HR-MSI and LR-HSI
tend to be limited and lack interpretability for MHIF tasks
and Transformer frameworks [Hu et al., 2022a; Deng et al.,
2023a] address the small receptive field of CNN but bring
greater computational overhead.

In recent years, implicit representations of 3D scenes have
garnered significant attention from researchers. For instance,
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Neural Radiance Field [Wang et al., 2021] models 3D static
scenes by mapping coordinates to signals through a neural
network. Inspired by this, researchers have revisited image
representation for 2D tasks. Recent studies [Chen et al.,
2021; Lee and Jin, 2022; Sitzmann et al., 2020; Chen et al.,
2023] have achieved arbitrary-scale super-resolution (SR) by
replacing commonly used upsampling layers with local im-
plicit image functions. Though these methods demonstrate
superior performance in 2D tasks, they still have some draw-
backs. Firstly, INR calculates the RGB values of a queried
coordinate based on the relative distances to the surround-
ing four pixels, treating it as a local operation in space that
lacks consideration for global information. Additionally, the
MLP-ReLU structure used in traditional INR inherent high-
frequency information bias [Rahaman et al., 2019] which is
challenging to be eliminated during training.

To address these issues, we propose implicit fusion func-
tions tailored for the MHIF task as a novel fusion paradigm.
We first employ encoders to extract prior information from
LR-HSI and HR-MSI, which is then fed into the implicit
fusion functions in the form of latent codes. Unlike tradi-
tional INR, we transform latent codes into the Fourier domain
and simultaneously perform spatial and frequency fusion in a
unified network. This approach not only rectifies the high-
frequency insensitivity induced by the MLP but also effec-
tively extends the receptive field, encompassing a more com-
prehensive scope of global information. To integrate spatial
and frequency domain representations efficiently, we design a
decoder with time-frequency tightness, mapping features on
both domains to pixel space. The contributions of this work
are three folds:

• We define a novel fusion framework based on INR,
which innovatively extracts information from the spa-
tial and Fourier domains, effectively enhances the repre-
sentation ability of high-frequency information, and ex-
pands the receptive field.

• We propose a new decoder employing a Gabor wavelet
activation function to enhance the interaction of INR
features. Furthermore, we theoretically prove that the
complex Gabor wavelet activation possesses a time-
frequency tightness property, which facilitates the de-
coder in learning the optimal bandwidths.

• The proposed network reaches state-of-the-art (SOTA)
performance on the MHIF task across two widely used
hyperspectral datasets at various fusion ratios. Fig. 1
provides a fair comparison with other SOTA methods.

2 Related works
2.1 Implicit Neural Representation (INR)
Unlike traditional discrete representations, neural implicit
representation (INR) provides a more elegant and continu-
ous parameterized approach. Initially applied in 3D mod-
eling tasks, NeRF [Wang et al., 2021] revolutionized 3D
computer vision by representing intricate three-dimensional
scenes with just 2D pose images. This line of work extends
to the 2D imaging domain, where INR performs a weighted

average on adjacent sub-codes to ensure output value conti-
nuity. LIIF [Chen et al., 2021] recently introduces a local im-
plicit image function for SR, leveraging MLP to sample pixel
signals across the spatial domain. Several improvements fo-
cus on decoding networks; for example, UltraSR [Xu et al.,
2021] incorporates residual networks, merging spatial coordi-
nates and depth encoding. DIINN [Nguyen and Beksi, 2023]
utilizes a dual-interactive implicit neural network to decou-
ple content and position features, improving decoding ca-
pabilities. JIIF [Tang et al., 2021] proposes joint implicit
image functions for multimodal learning, extracting priors
from guided images. Regarding activation functions in the
MLP, SIREN [Sitzmann et al., 2020] recommends utilizing
periodic activation functions for continuous INR to fit com-
plex signals. On the other hand, WIRE [Saragadam et al.,
2023] further employs continuous complex Gabor wavelet
activation functions to activate non-linearity, focusing more
on spatial frequencies. However, there is limited research
dedicated to designing INR architectures specifically for the
MHIF task. The unique characteristics of hyperspectral im-
ages pose challenges for INR networks, in their insensitivity
to high-frequency information.

2.2 Latent Enhancement by Fourier Transform
Fourier transform is a commonly used time-frequency anal-
ysis technique in signal processing, which converts signals
from the time domain to the frequency domain. The Fourier
domain has global statistical properties, and in recent years,
many researchers have focused on processing frequency do-
main information in Fourier space. Many works use the
Fourier transform to enhance the representation ability of
neural networks. For example, FDA [Zhao et al., 2023]
proposes exchanging amplitude and phase components in
Fourier space between images to enhance and adjust fre-
quency information. FFC [Chi et al., 2020] introduces a novel
convolution module that internally fuses cross-scale informa-
tion to capture global features in Fourier space. Similarly,
GFNet [Rao et al., 2021] uses 2D discrete Fourier transform
and inverse transform to extract features, implements learn-
able global filtering, and replaces the self-attention layer in
Transformer. UHDFour [Li et al., 2023] embeds Fourier
transform into the image enhancement network to model
global information. Together, these studies demonstrate the
utility of frequency domain information in improving perfor-
mance on visual tasks. We exploit the architecture of FeINFN
to transform latent codes into the frequency domain, implic-
itly integrating representations of amplitude and phase com-
ponents, and enhancing high-frequency injection.

2.3 Motivation
[Rahaman et al., 2019] finds that most neural networks ex-
hibit a phenomenon of spectral bias through Fourier analysis.
This includes neural networks such as MLP, which tend to
learn low-frequency information during the early stages of
training and are insensitive to high-frequency information.
Moreover, we found this issue occurs in the MHIF task ac-
cording to an experimental analysis as shown in Fig. 2, where
HR-HSI and LR-HSI were concatenated with HR-MSI and
fed into a trained encoder to obtain latent codes. These codes



Figure 2: The amplitude of latent code from the encoder fed by HR-
HSI and LR-HSI (combined with HR-MSI) share a similarity, but
the phases differ from each other. Eψ∗ is a trained encoder.

were transformed into the frequency domain to visualize the
amplitude and phase. It can be observed that the amplitudes
from HR-HSI and LR-HSI are very similar, while the phases
differ significantly. The phase of HR-HSI should naturally
contain more texture than LR-HSI, a hypothesis validated by
the visualized phase maps. Based on this finding, we trans-
formed the latent codes into the Fourier domain to separately
process amplitude and phase, to enhance the global learning
of high-frequency information in the images.

3 Methodology
In this section, we first present the preliminary of INR and
then provide the proposed framework tailored for MHIF task.
Subsequently, we elaborate on the implementation details of
the composited modules of the proposed FeINFN.

3.1 Preliminary: Implicit Neural Representation
Neural Radiance Fields [Wang et al., 2021] is represented by
integral construction scenes. The value of a pixel in a cer-
tain viewing angle image is regarded as the integral of the
characteristics of the sampling point from the proximal end
to the far end of the ray. During actual training, the integral
needs to be discretized. Extended to 2D image representa-
tion [Chen et al., 2021], it is sampled pixel by pixel from the
vicinity of the query target. Taking the low-resolution (LR)
image I ∈ Rh×w×3 upsampling to the high-resolution (HR)
image Î ∈ RH×W×3 as an example, the process of generat-
ing the RGB values of the target coordinates xq ∈ R2 can be
regarded as interpolation form, expressed as:

Î(xq) =
∑
i∈Nq

wq,ivq,i, (1)

where vq,i ∈ R4×4×3 is the interpolation pixel of i interpo-
lated by q’s surrounding pixels Nq ∈ R4 and wq,i ∈ R sig-
nifies the interpolation weight. In the implicit representation
of local image features, the weights wq,i = Si/S, where Si
represents the area formed by q and i in the diagonal region
and S denotes the total area enclosed by the set Nq .

The interpolation value vq,i is effectively generated by a
basis function:

vq,i = ϕθ(zi,xq − xi), (2)

where ϕθ is typically an MLP, zi is the latent code gen-
erated by an encoder for the coordinates xi, and xq − xi
represents the relative coordinates. From the above equa-
tions, it can be inferred that the interpolation features can be
represented by a set of local feature vectors in the LR do-
main. Typically, interpolation-based methods [Press, 2007;
Keys, 1981] achieve upsampling by querying xq − xi in the
arbitrary SR task. See more details in [Chen et al., 2021].

3.2 Overview of the FeINFN Framework
In this work, we propose the FeINFN, which adopts a novel
framework for simultaneously performing neural implicit
representation in both the spatial and frequency domains to
execute the MHIF task. Fig. 3 provides an overview of
the proposed framework, designed to fuse LR-HSI ILR ∈
Rh×w×S and HR-MSI IHR ∈ RH×W×s to generate HR-HSI
images Ĩ ∈ RH×W×S based on a given upsampling scale r.

Initially, the LR-HSI is fed into encoderEχ to extract spec-
tral features Zspe ∈ Rh×w×C . Simultaneously, the con-
catenated bicubic interpolation LR-HSI ILRup ∈ RH×W×S

and IHR, are fed into encoder Eψ to extract spatial features
Zspa ∈ RH×W×C . Additionally, the pixel’s central position
is represented as the coordinate point. The coordinate map
is normalized into a two-dimensional grid [−1, 1] × [−1, 1],
obtaining a HR normalized 2D coordinate map XHR ∈
RH×W×2. The extracted Zspe and Zspa, along with the 2D
coordinates of IHR, are forwarded to Spatial-Frequency Im-
plicit Fusion Function (Spa-Fre IFF), outputting spatial do-
main features Es ∈ RH×W×S and frequency domain features
Ef ∈ RH×W×S . The Es and Ef serve as inputs to a pixel
space mapping decoder which generates the residual image
IHRr ∈ RH×W×S . Finally, the residual image IHRr is com-
bined with the bicubicly upsampled image ILRup via element-
wise addition, yielding the ultimate fusion image Ĩ.

3.3 INR Encoder Networks
Analogous to local implicit representation functions [Chen
et al., 2021; Lee and Jin, 2022; Sitzmann et al., 2020;
Chen et al., 2023], the initial step involves extracting latent
code representations. For the MHIF task, we address the chal-
lenges of both upsampling and fusion simultaneously, em-
ploying implicit neural representations as the solution. The
INR encoders try to extract spatial and spectral latent codes
Zspa ∈ RH×W×C ,Zspe ∈ Rh×w×C : one is extracted from
ILR, serving as the carrier for spectral information; the other
is encoded from the concatenation of ILRup and IHR, aiding in
spatial information during the fusion process. This process
can be denoted as:{

Zspe = Eχ(I
LR),

Zspa = Eψ
(
Cat(ILRup , I

HR)
)
,

(3)

where Eχ is the spectral encoder parameterized by χ, Eψ is
the spatial encoder parameterized by ψ, and Cat(ILRup , I

HR)
denotes the concatenation along the channel dimension. In
practice, we utilize EDSR [Lim et al., 2017] as INR encoder
networks.



Figure 3: The flowchart of the FeINFN framework which is composed of a spectral encoder Eχ, a spatial encoder Eψ , MHIF task-designed
spatial and Fourier domains implicit fusion functions, and a pixel space mapping decoder. Please note that ILR is the LR-HSI, IHR is the
HR-MSI, ILRup is the bicubic interpolation LR-HSI, and XHR is the HR normalized 2D coordinate map. zspe, zspa, zhp, δx correspond to
individual pixel units, A and P represents amplitude and phase, respectively.

3.4 Spatial-Frequency Implicit Fusion Function
To address the mentioned issues 2.3, we propose Spatial-
Frequency Implicit Fusion Function, dubbed Spa-Fre IFF
which is a dual-branch fusion function and utilized for com-
puting the fusion feature of Zspe and Zspa in the spatial and
frequency domains, respectively. Given a queried HR coor-
dinate xq ∈ XHR of a pixel unit q, Spa-Fre IFF estimates
spatial feature vector εs ∈ R1×1×S (εs ∈ Es) and frequency
feature vector εf ∈ R1×1×S (εf ∈ Ef )as follows:

εs, εf = Spa-Fre IFF(zspe, zspa, δx), (4)

where zspe ∈ R1×1×C represents the spectral latent code vec-
tor corresponding to xq , and zspa ∈ R4×4×C is the spatial
latent code vector. δx denotes the set of local relative coordi-
nates, expressed by the following formula:

δx = {xq − xq,i}i∈Nq
, (5)

where xq,i refers to the coordinates most proximate to the
query coordinate xq , representing the four corner pixels clos-
est to q in the HR space.
Spatial Implicit Fusion Function: The Spatial Implicit Fu-
sion Function aims to leverage the powerful representation
capabilities of INR to achieve implicit fusion in the spatial
domain, as shown in Fig. 3 (see branch “Spatial Domain”).
Specifically, we employ high-pass operators H to filter the
spectral latent codes, as a complement to the high-frequency
information on the spectrum:

zhp = H(zspe), (6)

where zhp ∈ R1×1×C represents the high-frequency latent
code of ILR. Also, we suggest frequency encoding for rela-
tive positional coordinates as follows:

γ(δx) =[sin(20δx), cos(20δx), · · · ,
sin(2L−1δx), cos(2L−1δx)],

(7)

Figure 4: 3× 3 convolution would suffer from the issue of spectrum
leakage, which can be alleviated by 1× 1 convolution.

where L is a hyperparameter, in practice, we set L to 10. Ad-
ditionally, leveraging the graph attention mechanism [Tang
et al., 2021], we parameterize the solution for interpolation
weights wq,i ∈ R1×S , and the implicit fusion function simul-
taneously outputs fusion interpolation values vq,i ∈ R4×4×S

and interpolation weights wq,i. The implicit fusion function
is specifically expressed as:

wq,i,vq,i = ϕθ(zspe, zspa, zhp, γ(δx)), (8)

where ϕθ is an MLP parameterized by θ. The spatial implicit
fusion interpolation, as shown in Eq. (1), yields the fused spa-
tial feature εs ∈ R1×1×S and can be described as follows:

εs =
∑
i∈Nq

wq,i ∗ vq,i. (9)

Frequency Implicit Fusion Function: From Fig. 2, we ob-
served characteristics in the frequency features between LR-
HSI and HR-HSI. Hence, we design a frequency implicit
fusion function to express global features continuously in
the Fourier domain. Notably, directly applying static kernel
convolution in the frequency domain would only enhance a



specific frequency range, which is inappropriate for the fu-
sion task. However, by learning feature content to generate
weights, INR can be seen as a dynamic interpolation method
in continuous space, adaptively enhancing information in the
frequency domain without overly altering the frequency dis-
tribution. Therefore, introducing INR into the Fourier domain
is reasonable. Since amplitude and phase exhibit different
forms, as shown in Fig. 2, we handle them separately.

With the considerations mentioned above, as illustrated in
Fig. 3 (see branch “Fourier Domain”), we initially employ
FFT to transform latent codes zspe and zspa from the spatial
domain to the frequency domain, obtaining fspe ∈ R1×1×C

and fspa ∈ R4×4×C . After the transformation, we further
obtain amplitude components A(fspe) and A(fspa), as well
as phase components P(fspe) and P(fspa).

For the amplitude, as shown in Fig. 4, the amplitude dis-
tribution of LR-HSI and HR-HSI are very similar, and the
non-point-wise convolution (e.g. Conv 3 × 3) causes an is-
sue of spectrum leakage, confusing channel information. In
contrast, point-wise convolution does not span multiple loca-
tions in the frequency domain and has no overlap allowing it
to capture information across channels effectively. Thus the
fusion function for amplitude components is more suitable
when applying point-wise convolution:

wA
q,i,v

A
q,i = ϕAα (A(fspe),A(fspa), δx), (10)

where wA
q,i ∈ R1×S and vA

q,i ∈ R4×4×S are the weights and
interpolated values for the corresponding amplitude compo-
nent, and ϕAα is a simple network composed of two layers
of point convolutions parameterized by α. Similar to op-
erations in the spatial domain, implicit fusion interpolation
is performed after obtaining interpolated values vA

q,i and the
normalized weights wA

q,i:

A′
f =

∑
i∈Nq

wA
q,i ∗ vA

q,i, (11)

where A′
f ∈ R1×1×S is the integrated amplitude component.

For the phase, which encapsulates information such as tex-
ture details, LR-HSI and HR-HSI often have different phase
information. It is known that point convolutions fail to cap-
ture sufficient spatial representations. Therefore, we use a
3 × 3 convolution to learn phase information. Additionally,
small changes in the frequency domain may result in signif-
icant variations in the spatial domain. We still consider us-
ing the form of INR interpolation for phase learning. The
handling of the phase components P(fspe) and P(fspa) are
formally similar to Eqs. (10) and (11):

wP
q,i,v

P
q,i = ϕPβ (P(fspe),P(fspa), δ(x)), (12)

P ′
f =

∑
i∈Nq

wP
q,i ∗ vP

q,i. (13)

The simple network ϕPβ consists of two layers of 3 × 3 con-
volutions parameterized by β. P ′

f ∈ R1×1×S represents the
integrated phase component.

Finally, IFFT is applied to map the frequency features A′
f

and P ′
f back to the image space, obtaining the frequency do-

main feature εf ∈ Ef . Since in frequency space, one fre-
quency point may correspond to multiple pixels at different

Figure 5: Detailed composition of the proposed SFID.

positions in the spatial domain, the receptive field of INR in
the frequency domain is enlarged in the spatial domain.

3.5 Spatial-Frequency Interactive Decoder
After obtaining the spatial feature map and frequency domain
feature map, it is essential to consider how to integrate them
seamlessly. Firstly, our decoder needs to have dual input and
interactive capabilities. Secondly, it is necessary to focus on
representing images in the spatial-frequency domain. With
this in mind, we introduce the complex Gabor wavelet activa-
tion function with good time-frequency tightness and propose
the Spatial-Frequency Interactive Decoder (SFID). Specifi-
cally, SFID consists of three layers, taking spatial and fre-
quency domain features as inputs. The outputs IHRr and IHRup
contribute to the final fused image I. The decoding process is
illustrated in Fig. 5. The complex Gabor wavelet function is
defined as:

G(x) = ejω0xe−|υ0x|2 , (14)

where ω0 is the center frequency in the frequency domain, υ0
is a constant that is considered as the standard deviation of
the Gaussian function, and x is a vector in the time (or spa-
tial) domain. In what follows, we provide a theorem below
that this Gabor wavelet activation has time-frequency tight-
ness [Blu and Lebrun, ], which is helpful for the decoder’s
information interaction.
Theorem 1. The complex Gabor wavelet activation in
Eq. (14) has the time-frequency tightness property. Moreover,
from the perspective of signal spectrum analysis, this activa-
tion helps the decoder learn the optimal bandwidths.
Proof: The detailed proof can be found in the Supplementary.

4 Experiments
Datasets: To evaluate the efficacy of our model, we con-
ducted experiments using the CAVE and Harvard datasets.
The CAVE dataset comprises 32 Hyperspectral Images
(HSIs) with 31 spectral bands spanning from 400 nm to 700
nm at 10 nm intervals. We randomly selected 20 images
for training and used the remaining 11 for testing. The Har-
vard dataset consists of 77 HSIs depicting indoor and outdoor
scenes, covering the spectral range from 420 nm to 720 nm.
We standardized the data by cropping the upper left sections
of 20 Harvard images, with 10 for training and the rest for
testing. Details can be found in the Supplementary.
Implementation details: We implement the proposed meth-
ods FeINFN with Pytorch [Paszke et al., 2019] on a worksta-
tion with an Intel I9 CPU and two 3090 GPUs. The optimizer



Methods CAVE ×4 Harvard ×4

PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params

Bicubic 34.33±3.88 4.45±1.62 7.21±4.90 0.944±0.029 − 38.71±4.33 2.53±0.67 4.45±1.81 0.948±0.027 −
CSTF-FUS [Li et al., 2018] 34.46±4.28 14.37±5.30 8.29±5.29 0.866±0.075 − 39.15±3.45 6.93±2.69 4.66±1.81 0.914±0.049 −

LTTR [Dian et al., 2019] 35.85±3.49 6.99±2.55 5.99±2.92 0.956±0.029 − 40.88±3.94 4.01±1.27 4.03±2.18 0.957±0.035 −
LTMR [Dian and Li, 2019] 36.54±3.30 6.71±2.19 5.39±2.53 0.963±0.021 − 42.06±3.56 3.51±0.99 3.59±2.03 0.970±0.020 −
IR-TenSR [Xu et al., 2022] 35.61±3.45 12.30±4.68 5.90±3.05 0.945±0.027 − 40.47±3.04 4.36±1.52 5.57±1.57 0.963±0.014 −
ResTFNet [Liu et al., 2020] 45.58±5.47 2.82±0.70 2.36±2.59 0.993±0.006 2.387M 45.94±4.35 2.61±0.69 2.56±1.32 0.985±0.008 2.387M
SSRNet [Zhang et al., 2020] 48.62±3.92 2.54±0.84 1.63±1.21 0.995±0.002 0.027M 48.00±3.36 2.31±0.60 2.30±1.42 0.987±0.007 0.027M
HSRNet [Hu et al., 2022b] 50.38±3.38 2.23±0.66 1.20±0.75 0.996±0.001 0.633M 48.29±3.03 2.26±0.56 1.87±0.81 0.988±0.006 0.633M

MogDCN [Dong et al., 2021] 51.63±4.10 2.03±0.62 1.11±0.82 0.997±0.002 6.840M 47.89±4.09 2.11±0.52 1.89±0.82 0.988±0.007 6.840M
Fusformer [Hu et al., 2022a] 49.98±8.10 2.20±0.85 2.50±5.21 0.994±0.011 0.504M 47.87±5.13 2.84±2.07 2.04±0.99 0.986±0.010 0.467M
DHIF [Huang et al., 2022] 51.07±4.17 2.01±0.63 1.22±0.97 0.997±0.002 22.462M 47.68±3.85 2.32±0.53 1.95±0.92 0.988±0.007 22.462M
PSRT [Deng et al., 2023a] 50.47±6.19 2.19±0.64 2.06±3.71 0.996±0.003 0.247M 47.96±3.21 2.18±0.55 1.89±0.86 0.988±0.006 0.247M
3DT-Net [Ma et al., 2023] 51.38±4.18 2.16±0.70 1.14±1.00 0.996±0.003 3.464M 47.78±4.42 2.04±0.51 1.98±0.86 0.989±0.006 3.464M
DSPNet [Sun et al., 2023] 51.18±3.92 2.15±0.64 1.13±0.82 0.997±0.002 6.064M 48.29±3.16 2.30±0.55 1.93±0.93 0.988±0.006 6.064M
BDT [Deng et al., 2023b] 52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.001 2.668 M 48.83±3.45 2.07±0.49 1.83±0.81 0.989±0.007 2.668 M

FeINFN(Ours) 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.002 3.165 M 49.06±3.15 2.10±0.53 1.78±0.75 0.989±0.007 3.165 M

Table 1: The average and standard deviation calculated for all the compared approaches on 11 CAVE examples and 10 Harvard examples
simulating a scaling factor of 4. The best results are in bold, second-best in underline. “M” refers to millions.

is chosen as AdamW [Kingma and Ba, 2014] and we use a
Cosine anneal learning rate scheduler. The base channel num-
ber of the encoder is 128, that of the proposed implicit fusion
function is 32 and in the decoder, the channel number is 31.
Benchmark: To evaluate FeINFN’s performance, we com-
pare it with MHIF methods on the CAVE and Harvard
datasets. The bicubic-interpolated result of the upsampled
LR-HSI in Tab. 1 serves as our baseline. Various model-
based techniques, including the CSTF-FUS [Li et al., 2018],
LTTR [Dian et al., 2019], LTMR [Dian and Li, 2019],
and IR-TenSR [Xu et al., 2022] approaches, are consid-
ered. Additionally, we compare our approach with vari-
ous deep learning methods, such as SSRNet [Zhang et al.,
2020], ResTFNet [Liu et al., 2020], HSRNet [Hu et al.,
2022b], MoGDCN [Dong et al., 2021], Fusformer [Hu et
al., 2022a], and DHIF [Huang et al., 2022], PSRT [Deng
et al., 2023a], 3DT-Net [Ma et al., 2023], DSPNet [Sun et
al., 2023], BDT [Deng et al., 2023b]. We compare our
method with other methods using different image quality met-
rics to validate the image fusion capability of our model, in-
cluding SAM [Yuhas et al., 1992], ERGAS [Wald, 2002],
PSNR [Horé and Ziou, 2010], and SSIM [Wang et al., 2004].
Results on CAVE Dataset: In this section, we evaluate
the effectiveness of FeINFN on the CAVE dataset and com-
pare it with five traditional methods and some state-of-the-
art deep learning-based approaches. As shown in Tab. 1
on the left, our method achieves optimal performance in the
tasks of ×4 in all metrics. In the ×4 experiment, compared
to currently leading methods such as DSPNet [Sun et al.,
2023], 3DT-Net [Ma et al., 2023], and BDT [Deng et al.,
2023b], our approach demonstrates improvements in PSNR
by 1.29dB/1.09dB/0.17dB, respectively. The ×8 experiment
is detailed in the Supplementary. To illustrate the advantages
of our method, we provide visual comparisons in Fig. 6, in-
cluding close-ups and error maps to highlight specific details.
Our fusion results closely match the ground truth, achieving
the best quality. In comparing error maps, the darker colors
indicate closer proximity to the original image. In contrast to
other excellent methods, the error maps of FeINFN distinctly

Methods PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑)

Bilinear 52.23±4.40 1.92±0.60 1.03±0.86 0.997±0.0021
Bicubic 52.22±4.31 1.95±0.61 1.02±0.82 0.997±0.0021
Pixel Shuffle 52.26±4.37 1.90±0.59 1.02±0.85 0.997±0.0022
Our 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015

Table 2: Quantitative comparisons with other upsampling methods
on the CAVE (×4) dataset.

exhibit superior restoration effects on details.
Results on Harvard Dataset: In Tab. 1, the right columns
present the comparison results of our FeINFN with other
methods on the Harvard dataset at scale factors 4. Our
method performs exceptionally well, with only SAM be-
ing slightly surpassed by 3DT-Net [Ma et al., 2023] and
BDT [Deng et al., 2023b]. FeINFN exhibits significant
gains in PSNR/ERGAS/SSIM metrics compared to the cur-
rent state-of-the-art [Deng et al., 2023b], with improvements
of 0.14dB/0.16/0.001, respectively. The results with a scale
factor of 8 can be found in the Supplementary. As depicted
in Fig. 1, our model outperforms others, highlighting the cru-
cial role of FeINFN’s continuous representation capability in
high-scale factor scenarios. To better visualize the perfor-
mance gap, Fig. 6 illustrates the fused images and error maps,
confirming that our FeINFN maintains high fidelity in recov-
ering the texture details of the images.

4.1 Ablation Studies
Upsampling methods: Implicit image representation can be
seen as an advanced interpolation algorithm, offering addi-
tional spatial information and parameterized weight gener-
ation. In this section, we compare INR with other upsam-
pling methods. We replace INR with pixel-shuffle [Shi et al.,
2016] and traditional CNN interpolation methods, presenting
a comparative analysis. As seen in Tab. 2, our approach out-
performs other methods in MHIF tasks.
Spatial domain and Fourier domain: To assess the dual-
domain model’s efficacy, we performed model reduction, pre-
serving spatial and Fourier domains independently. As shown
in Tab. 3, FeINFN excels by using both spatial and Fourier



Figure 6: The upper and lower parts respectively showcase the results of “Chart and Stuffed Toy” from the CAVE dataset and “Backpack”
from the Harvard dataset using pseudo-color representation. Green rectangles depict some close-up shots. The second and fourth rows show
the residuals between the ground truth (GT) and the fusion products.

S F PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑)

52.11±4.22 1.95±0.59 1.04±0.82 0.998±0.0017
47.86±3.42 3.49±1.30 1.67±1.13 0.995±0.0020
52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015

Table 3: Quantitative comparisons with reduced models on the
CAVE (×4) dataset. S & F mean the domain difference.

Nonlinear PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑)

ReLU 52.03±3.84 2.00±0.59 1.02±0.74 0.998±0.0013
GELU 51.96±3.88 2.01±0.60 1.03±0.75 0.998±0.0014
Leaky ReLU 51.98±3.92 2.01±0.60 1.03±0.76 0.998±0.0014
Our 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015

Table 4: Quantitative comparisons with different activation func-
tions in SFID on the CAVE (×4) dataset.

domains concurrently, underscoring the positive impact of
Fourier domain integration on overall network performance.

Spectral deviation occurs during training, where the net-
work tends to prioritize low-frequency information, captur-
ing high-frequency details only in later stages. To validate
our resolution of this issue, we remove the “Fourier Domain”
from Spa-Fre IFF, or retain it, and the corresponding train-
ing data is illustrated in Fig. 7. Our FeINFN, which incor-
porates Fourier domain fusion, leads to faster PSNR conver-
gence and overall higher efficiency. The visual comparison
of high-frequency details in “chart and stuffed toy” from the
cave dataset at 80k iterations further supports the significant
improvement achieved with our results.
Decoder with Different Nonlinear: In this section, we eval-
uate the impact of different activation functions in SFID,
aiming to match SFIFF. Our dual-input decoder incorpo-
rates a complex Gabor wavelet activation function to facil-
itate the fusion of spatial and frequency domain features.

Figure 7: Changes in PSNR on the CAVE dataset of our FeINFN
over iterations with and without the “Fourier Domain”. The Fre-
quency IFF can help the network learn the high-frequency details
and converge faster.

Through experiments, we replaced the Gabor wavelet acti-
vation with other activations, presenting the results in Tab. 4.
The findings distinctly demonstrate the enhanced fusion qual-
ity achieved with the complex Gabor wavelet activation. This
emphasizes the critical role of wavelet activation in promot-
ing robust and reliable learning in SFID.

5 Conclusion
Inspired by the distinct behaviors of LR-HSI and HR-HSI in
the Fourier domain, we introduce a novel Fourier-enhanced
Implicit Neural Fusion Network (FeINFN) based on INR.
Through Fourier transformation, latent features are converted
into the frequency domain, allowing the modeling of fre-
quency components to enrich high-frequency information in
images. Additionally, we propose a spatial-frequency decod-
ing module, achieving a unified representation of both spatial



and frequency domains using a time-frequency-tight activa-
tion function. Thanks to the unique design of our network,
it outperforms state-of-the-art methods in MHIF with appeal-
ing efficiency. We desire that our work will inspire future
research on frequency fusion-based MHIF methods.
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