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Abstract—In the rapidly evolving field of artificial intelli-
gence, multimodal models, e.g., integrating vision and language
into visual-language models (VLMs), have become pivotal for
many applications, ranging from image captioning to multi-
modal search engines. Among these models, the Contrastive
Language–Image Pre-training (CLIP) model has demonstrated
remarkable performance in understanding and generating nu-
anced relationships between text and images. However, the
conventional training of such models often requires centralized
aggregation of vast datasets, posing significant privacy and data
governance challenges. To address these concerns, this paper
proposes a novel approach that leverages Federated Learning and
parameter-efficient adapters, i.e., Low-Rank Adaptation (LoRA),
to train VLMs. This methodology preserves data privacy by
training models across decentralized data sources and ensures
model adaptability and efficiency through LoRA’s parameter-
efficient fine-tuning. Our approach accelerates training time by
up to 34.72×, and requires 2.47× less memory usage than full
fine-tuning.

I. INTRODUCTION

In recent years, the fields of computer vision and natural
language processing have witnessed remarkable advancements
fueled by the power of deep learning models [1]–[3]. Vision-
language models (VLMs) [4], in particular, have gained
significant attention due to their ability to bridge the gap
between visual and textual information, enabling a wide range
of applications such as image captioning, visual question
answering, and text-to-image synthesis. However, the success
of VLMs heavily relies on the availability of vast amounts
of labeled data for training. Collecting and annotating large-
scale datasets can be time-consuming, resource-intensive, and
potentially privacy-sensitive. Additionally, centralizing all data
in a single location for training poses challenges such as
data privacy, communication costs, and scalability. Federated
learning (FL) has emerged as a promising approach to address
these limitations. Federated learning allows training models
across a distributed network of devices, where each device
holds its data and collaboratively learns a shared model while
keeping the data locally. This decentralized approach respects
data privacy and reduces the communication overhead in
transmitting raw data to a centralized server.

This paper delves into the domain of FL with a particu-
lar focus on fine-tuning VLMs. By adapting the fine-tuning
techniques to a federated setting, we seek to harness the dual

strengths of vision-language pre-training and distributed learn-
ing. Our method utilizes the LoRA (Low-Rank Adaptation) [5]
technique to fine-tune the CLIP model, aiming to update only
a small subset of the model’s parameters while keeping the
bulk of the pre-trained weights intact.

Figure 1 illustrates the overarching process. We investi-
gate efficient strategies for federated optimization, employing
LoRA as a mechanism to perform fine-tuning that respects
the limitations of data privacy and the necessity for reduced
communication overhead. Our approach relies on the inherent
alignment capabilities of the CLIP model, fine-tuning it to
enhance its performance on tasks involving federated datasets.
We investigate novel techniques for collaborative model train-
ing and federated optimization strategies that enable VLMs to
learn from distributed data sources while preserving privacy
and minimizing communication costs.

Through rigorous experimental evaluations, we strive to
exhibit the effectiveness of federated fine-tuning, positing that
our methodology achieves competitive performance on several
benchmarks. The implications of our work extend to the
advancement of FL techniques and open new pathways for
the development of collaborative, privacy-aware VLMs.

This paper embarks on an in-depth examination of federated
fine-tuning learning’s potential to revolutionize VLMs, ad-
dressing critical concerns such as data privacy, communication
efficacy, and scalability in decentralized environments.

Our contributions are outlined as follows:

• We pioneer the application of LoRA to VLMs within a
FL framework, particularly focusing on the fine-tuning of
the CLIP model’s text encoder.

• Our adaptation of the LoRA adapter into the CLIP
model’s text encoder projection layers not only refines
the model’s specificity to textual nuances but also results
in up to a 4766× reduction in communication overhead
during federated training—a significant stride towards
practical FL deployment.

• Our methodology, FLORA, has been rigorously evaluated
across datasets with varying characteristics, leading to
performance gains of up to 30% in accuracy metrics
compared to traditional federated learning baselines, un-
derscoring the robustness and versatility of our approach.
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Fig. 1: This schematic illustrates the critical steps in federated
learning. In each round of federated learning, clients first
downloads the transferred model from the server and indepen-
dently train models on their own data (step ➊). Then, locally-
trained models are then sent to a central server (step ➋). After
that, the server aggregates these models to form a average
global model (step ➌), which is subsequently redistributed to
the clients for further training or inference (step ➍).

Algorithm 1: FLORA Client Update
Input : N : number of clients, ρ: client sample ratio,

L: Loss function, δ: local learning rate, Θt

previous global model
Output: local model Θt+1

1 , . . . ,Θt+1
N

Θt → local models
Di → local data of client i ∈ [1, N ]
Clients incorporate Θt into ΘCLIP
for CLIENT i ∈ [1, ρ×N ] do

▷ Local training
Θt+1

i ← Θt
i − δ▽ [L(Θt

i;Di)]
▷ Uploading
Client i sends Θt+1

i to the server

• Our research includes an extensive ablation study, metic-
ulously investigating the optimal integration points and
methods for the LoRA adapter within the CLIP model.
This investigation is pivotal in optimizing performance
within the FL context, ensuring that our approach en-
hances efficiency and maximizes the efficacy of the
model’s learning capabilities.

In subsequent sections, we outline related work, delineate
our methodology, present experimental results, and discuss the
broader impact and future trajectory of federated fine-tuning
for VLMs.

II. RELATED WORK

The synthesis of FL and VLMs has garnered substantial
attention in recent times. This section encapsulates seminal
contributions to these fields, laying the groundwork for our
investigation into federated fine-tuning of VLMs.

Algorithm 2: FLORA Server Update
Input : T : number of communication rounds, N :

number of clients, ρ: client sample ratio
Output: Global model Θt

if t == 0 then
▷ Initial stage
Initialize Θ0

Server receives Θt
i from client i ∈ [1, N × ρ]

for ITERATION t = 1, . . . , T do
▷ Averaging weights
Θt ←

∑⌊N×ρ⌋
i=1

|Di|∑⌊N×ρ⌋
j=1 |Dj |

Θt
i

▷ Downloading
Server sends Θt to all clients i ∈ [1, N ]

A. Federated Learning

Federated learning, introduced by McMahan et al. [6],
has emerged as a powerful approach for training models
collaboratively across distributed devices while preserving data
privacy. Various studies have explored the application of FL
in different domains, including computer vision and natural
language processing. McMahan et al. [6] proposed federated
averaging (FedAvg), a communication-efficient algorithm for
training deep learning models in a decentralized manner. Li
et al. [7] extended FL to handle large-scale datasets through
hierarchical aggregation and compression techniques.

B. Vision-Language Models

Vision-language models serve as a conduit between the
visual and linguistic realms, paving the way for multifaceted
applications. Early innovations were predominantly in image
captioning, as exemplified by the work of Vinyals et al. [8]
and Xu et al. [9]. Subsequent models like ViLBERT [10] and
LXMERT [11] capitalized on extensive pre-training to set new
benchmarks across various VLMs.

C. Contrastive Language Image Pre-training (CLIP)

The CLIP model, unveiled by OpenAI [4], marked a
paradigm shift by leveraging contrastive pre-training over
a vast corpus of image-text pairs. It encodes images and
text into a shared vector space, facilitating versatile zero-
shot capabilities. This property has allowed CLIP to deliver
impressive results across diverse datasets, even outperforming
models fine-tuned on specific benchmarks such as ImageNet
and its variants [12].

D. Federated Learning for Vision-Language Models

Bridging FL with VLMs remains an emergent research
domain. Notable are the work by Guo et al. [13], [14], which
proposes a privacy-centric federated framework for image clas-
sification. Yet, the fusion of FL with the complexity of vision-
language tasks necessitates further exploration. Qiu et al [15]
proposed FedTPG, a method that tailors pre-trained VLMs
to FL by employing task-specific prompt generation. This
technique enhances the relevance of the generated prompts to
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Fig. 2: Different methods for local model update. The clients download the transferred model from the server, train locally with
the local data, and upload it to the server. FLORA: only transfer LoRA Adapter; FedAA: only transfer Attention Adapter;
FedLC: only transfer Linear Classfier; FedVM-LC: only transfer Vision Model and Linear Classfier; FedFFT: transfer the
whole CLIP model (full fine-tuning). Our method (FLORA) is highlighted in the green box. The figure is best viewed in
color.

each client’s data, thereby improving the model’s performance
on localized tasks. However, FedTPG’s prompt generation
process still relies on the exchange of prompt-related param-
eters, which could be optimized to reduce communication
costs further. Another one by Lu et al. [16] demonstrates the
feasibility of adapting CLIP to federated settings, yet it leaves
room for efficiency improvements, particularly in communi-
cation overhead and model adaptability. Our work extends
these efforts, integrating FL with the fine-tuning of VLMs,
eschewing traditional prompt learning for a focused adaptation
using LoRA. The process is visualized in Figure 1, marking
a significant stride toward privacy-conscious, efficient, and
scalable vision-language model training, especially in terms
of reducing the bandwidth required for transmitting updates
and ensuring the model remains flexible to the nuances of
distributed datasets.

1) Client-Side Training: In our framework, client-side
training involves local updates using a LoRA-adapted CLIP
model, where Adam optimizer [17] aids in gradient-based
optimization. This process, outlined in Algorithm 2, ensures
that updates are focused and computationally frugal.

2) Server Aggregation: Our approach employs a server that
orchestrates the aggregation of updates from clients, utilizing
a weighted averaging mechanism akin to FedAvg [6]. This
strategy balances the contributions across diverse datasets,
promoting an egalitarian learning process. Details of this
implementation are provided in Algorithm 1.

E. Low-Rank Adaptation for Vision-Language Models

Low-Rank Adaptation (LoRA) [5] presents a novel and
efficient approach to fine-tuning deep learning models, par-
ticularly in the context of VLMs. This technique, by focus-

⍺A
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Fig. 3: Schematic diagram of LoRA finetuning Mechanism.
This figure demonstrates the LoRA fine-tuning process applied
to a pre-trained model. Input x is processed through low-
rank matrices A and B, which are the core components of
the LoRA approach. These matrices modify the pre-trained
weights W by a scaling factor α, allowing for precise ad-
justments to the model without the need to retrain the entire
network. This targeted fine-tuning strategy leads to efficient
adaptation and output generation.

ing on modifying only a small subset of model parameters,
significantly reduces the computational overhead and memory
requirements traditionally associated with training large neural
networks. In the realm of vision-language tasks, where models
must capture complex, multimodal relationships, LoRA offers
a path to enhance model adaptability and performance without
necessitating extensive computational resources.

LoRA operates by introducing trainable low-rank matrices
into specific layers of a pre-trained model. These matrices
serve as adapters, adjusting the model’s behavior to better
suit the task at hand with minimal interference to the pre-
trained parameters. This approach is particularly beneficial
in FL environments, where computational resources are dis-



persed and data privacy is of paramount importance. Figure 3
demonstrates the mechanism of LoRA. This methodology is
premised on the addition of low-rank matrices, denoted as
A and B, which are applied to the input x in conjunction
with the original weight matrix W . The key operation can be
succinctly represented as

W ′ = (W + α.A.B) (1)

where W ′ is the new updated weight matrix, while α, the
scaling factor and the rank r are our hyperpamaters. The rank
r is a hyperparameter that controls the inner dimension of
the matrices A and B. Then the output can be obtained as:
x.W ′ during inference. This formulation effectively separates
the low-rank matrices from the original weights, facilitating
a unique adaptation mechanism that is both memory-efficient
and flexible. Note that if W ∈ Rd×k, then A ∈ Rd×r and
B ∈ Rr×k.

The adoption of LoRA within FL frameworks endows
clients with the capacity for localized, efficient model updates,
which is a cornerstone for collaborative learning that upholds
the sanctity of data privacy. Recent studies have ventured into
integrating LoRA specifically within the fully connected layers
of deep neural networks in a FL context. For instance, Wu
et al. [18] examined the implementation of LoRA adapters
to fine-tune fully connected layers, while Yi et al. [19]
explored the prospects of personalized FL through parameter-
efficient LoRA updates. These approaches underscore the
growing interest and potential in enhancing model adaptability
and efficiency, crucial for FL’s scalability and practicality.
Of late, parameter-efficient low-rank adapters have benefited
from Neural Architecture Search (NAS) techniques that can
discover high-performing configurations in a search space of
elastic LoRA adapters [20], [21].

The application of LoRA to VLMs, such as the CLIP model,
allows for nuanced and efficient adaptation to diverse datasets
encountered in federated networks. By selectively updating
parameters through low-rank matrices, the model can quickly
adjust to new visual and textual information, enhancing its
ability to generate accurate and contextually relevant outputs.
This capability is especially valuable in scenarios where data
distributions vary significantly across clients, a common chal-
lenge in FL settings.

Furthermore, LoRA’s parameter-efficient fine-tuning aligns
with the core principles of FL by enabling clients to contribute
to a global model without the need for extensive computational
power or bandwidth. This approach not only mitigates the
risk of data privacy breaches but also democratizes access
to advanced AI technologies, allowing entities with limited
resources to participate in the collaborative development of
robust, multimodal AI systems.

III. METHODOLOGY

In this section, we present the methodology employed in our
study on federated fine-tuning learning for VLMs. We outline
the framework and techniques used to enable collaborative

TABLE I: The test accuracy (%) of the image classification
tasks in IID setting with N = 10.

Dataset FedFFT FedLC FedVM-LC FedAA Ours

F-MNIST 79.69 70.13 82.39 81.63 89.89
CIFAR-10 87.26 89.69 86.31 89.57 94.49

CIFAR-100 64.88 60.61 61.52 66.68 79.98
TINY 59.77 60.30 59.77 64.46 75.99

OxfordPets 80.66 81.62 81.41 84.13 91.21
Flowers102 85.5 53.5 53.5 67.0 98.0

Aircraft 16.66 16.66 19.29 21.49 56.14
Cars 44.85 46.81 44.85 50.0 85.53
DTD 55.30 44.69 43.18 46.21 85.60

EuroSAT 86.11 50.15 89.04 78.08 95.67
FER2013 41.14 37.40 52.61 66.33 74.06

Caltech101 84.65 79.36 78.83 83.06 97.88
Food101 77.30 77.30 77.30 76.99 82.62

Country211 18.56 18.69 18.56 18.06 27.94
SUN397 65.97 66.58 65.64 68.67 81.22
R-SST2 97.42 75.53 80.68 91.41 82.40

training across distributed devices while incorporating fine-
tuning for enhanced performance and privacy preservation.

A. Baseline fine-tuning methods

1) Full fine-tuning (FFT): In full fine-tuning, we update
the whole CLIP model, i.e., both image and text encoder, by
minimizing the cross-entropy loss on labeled downstream data.

2) Linear classifier (LC): We learn a linear classifier
hclass ∈ Rd×k on top of frozen image embedding f̄(I) by
minimizing the cross-entropy on downstream data [4]. The
text encoder is not involved during this process. As Wortsman
et al. [22] have suggested, instead of randomly initialing
the linear classifier, the zero-shot weights of the CLIP’s text
encoder are applied to it.

3) Fine-tune vision model with linear classifier (VM-LC):
Inspired by Goyal et al. [23], in VM-LC, we update both a
linear head and the parameters of the image encoder Θimg
(initialized at the pre-trained value) by minimizing the cross-
entropy loss on labeled downstream data. The text encoder
is not involved during this process. Similar to the previous
method, we initialize the linear head the same as the pre-
trained weights of the text encoder.

4) Attention Adapter (AA) [16]: Here, we integrate an
attention adapter after the image encoder to perform a fine-
tuning process. The whole CLIP model is kept frozen during
training.

B. Approach

Our approach innovatively adapts the CLIP model, lever-
aging its powerful pre-trained representation for image and
text embeddings within a FL framework. At the core of our
strategy lies the integration of LoRA fine-tuning, which allows
for efficient model adaptation across distributed clients while
preserving the intrinsic knowledge captured during CLIP’s
extensive pre-training.

Given a pre-trained CLIP backbone, the input to the text
encoder is crafted in the form ”a photo of a [class]”, where
[class] denotes the category of the image within the dataset [4].
Leveraging CLIP’s ability to predict image-text matchings, the



TABLE II: The test accuracy (%) of the image classification
tasks in practical non-IID setting with N = 10 (method names
omitted the word ”Fed” for saving space).

Dataset β FFT LC VM-LC AA Ours

F-MNIST 0.1 63.88 63.88 63.88 59.96 84.30
1.0 75.36 63.88 72.12 77.82 89.38

CIFAR-10 0.1 79.73 85.42 79.73 81.10 93.06
1.0 88.27 88.27 88.27 91.06 94.39

CIFAR-100 0.1 60.61 60.74 60.61 62.10 74.04
1.0 62.31 62.31 62.31 66.45 77.09

TINY 0.1 59.77 59.77 59.77 61.52 71.67
1.0 59.59 59.59 59.59 61.90 71.29

OxfordPets 0.1 80.66 81.21 80.66 77.46 87.13
1.0 80.66 81.00 80.66 81.82 90.74

Flowers102 0.1 53.5 54.0 53.5 47.5 91.99
1.0 65.11 66.46 65.11 67.86 95.11

Aircraft 0.1 16.66 16.66 16.66 18.42 44.29
1.0 17.84 17.84 19.25 21.05 44.75

Cars 0.1 44.85 46.81 44.85 50.0 86.76
1.0 47.51 47.85 47.51 52.48 75.84

DTD 0.1 40.15 40.90 40.15 40.90 65.15
1.0 48.84 41.13 43.26 43.61 70.92

EuroSAT 0.1 43.20 49.38 43.20 37.96 92.43
1.0 65.38 45.18 68.59 68.96 94.44

FER2013 0.1 39.40 37.15 37.15 40.39 62.84
1.0 40.41 44.88 40.67 44.78 64.79

Caltech101 0.1 78.30 78.30 78.30 79.89 94.58
1.0 88.18 88.24 88.18 87.49 95.96

Food101 0.1 77.30 77.30 77.30 74.79 78.02
1.0 79.59 79.59 79.59 79.62 82.79

Country211 0.1 18.56 18.56 18.56 17.68 25.73
1.0 15.13 15.13 15.13 15.20 23.05

SUN397 0.1 65.64 65.64 65.64 66.78 77.58
1.0 59.54 61.56 59.54 61.12 73.39

R-SST2 0.1 97.42 97.42 97.85 92.27 88.84
1.0 60.19 60.19 60.19 54.31 68.00
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Fig. 4: The data distribution of all clients on CIFAR-10 in IID
and non-IID setting with varying β. The size of a circle means
the number of data samples.

classification loss and logits can be calculated by aligning
the embedding spaces for images and textual descriptions
corresponding to ”[class]”.

Formally, let I(·) denote the image encoder, and T (·) the
text encoder, which remains fixed except for the low-rank
adaptations through LoRA. For a given class i, let ti be
the word embedding vector of the class label [class]i, with
i ∈ [1,K] and K representing the number of classes.

We utilize the cosine similarity function cos[·|·], as em-

ployed by CLIP, to measure the similarity between the image
and text features. The classification prediction probabilities
and logits for an image x against a class i are calculated as
follows:

p(y = i|x) = exp(cos[I(x), T (ti))/τ ])∑K
j=1 exp(cos[I(x), T (tj))/τ ])

(2)

where τ is the temperature coefficient learned by CLIP. The
text encoder’s LoRA parameters are the only variables updated
during local backpropagation and subsequently aggregated by
the federated server. The image encoder, the main body of
the text encoder, and the word embedding ti is kept frozen
to preserve the foundational knowledge embedded within the
pre-trained CLIP model.

In this framework, the loss function for a batch of images
and their associated classes is the cross-entropy loss between
the predicted probabilities p(y = i|x) and the ground truth
labels. By minimizing this loss, we perform selective fine-
tuning of the model’s textual understanding to better align
with the domain-specific data encountered in each client’s
local dataset while capitalizing on the pre-trained multimodal
embeddings of the CLIP model.
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Fig. 5: Learning curve for DTD dataset in different settings.

IV. EXPERIMENTS

TABLE III: The number of parameters and size of transferred
models for each method. For FedLC and FedVM-LC, there
are ranges of trainable parameters and size depending on the
dataset.

Number of trainable parameters Size (MB)

FedFFT 151,277,313 577.078
FedLC 1026 – 203661 0.004 – 0.777

FedVM-LC 87,457,026 – 87,659,661 333.622 – 334.395
FedAA 525,312 2.004

Ours 24,576 0.094

We conduct comprehensive experiments to evaluate the
effectiveness of our federated fine-tuning approach.

A. Datasets and Experimental Setting

1) Datasets: We use publicly available vision datasets:
Fashion-MNIST (F-MNIST) [24], CIFAR-10, CIFAR-
100 [25], Tiny-ImageNet (TINY) [26], Oxford-IIIT
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Fig. 6: Comparison of computation and communication over-
head in selected datasets to reach target accuracies. FLORA
requires fewer communication rounds while having signifi-
cantly less communication cost and training time compared
to the second best method.

Pet (OxfordPets) [27], Oxford 102 Flower (Flowers102) [28],
FGVC-Aircraft (Aircraft) [29], Stanford Cars (Cars) [30],
Describable Textures Dataset (DTD) [31], EuroSAT [32],
[33], FER2013 [34], Caltech101 [35], Food101 [36],
Country211 [4], SUN397 [37], [38], and Rendered SST2 (R-
SST2) [4].

To simulate the practical pFL setting, we evaluate the
model on the same testing data, 20% of the total dataset. The
remaining 80% data is used for training which is partitioned
for all clients in different settings.

FedFFT FedLC FedVM-LC FedAA FedLoRA

GB

29.3

10.89

23.24

11.0 11.84

GPU Memory Usage

Fig. 7: Memory usage of all methods.

B. Experimental setting

We train all methods for 50 rounds with one local epoch.
Total number of client is N = 10, the sample rate ρ = 1
with batch size equal to 128. For Adam optimizer, learning
rate is 5 × 10−5, ϵ = 10−6, and 0.2 weight decay. All
the experiments are done using 1 GPU A6000 with 48 GB.
The pre-trained CLIP model is utilized with Vit-B/32 [39]
as the base image encoder. For LoRA paramters, we set the
rank r = 2 and scaling factor α = 32. We create two
popular statistically heterogeneous settings to simulate the FL
environment: balanced IID [6] and label skew practical non-
IID [40]–[42].

1) Homogeneous setting: Data on each client are separated
in IID fashion [6].

2) Practical heterogeneous setting: The second scenario
is the practical heterogeneous setting [40], [41], which is
controlled by the Dirichlet distribution, denoted as Dir(β).
The smaller the β is, the more heterogeneous the setting is. We
set β = 0.1 and β = 1.0 for the heterogeneous setting [40],
[43]. Figure 4 illustrates the distribution of training data on
CIFAR-10 dataset.

3) Evaluation Metrics: Our evaluation focuses on task-
specific performance metrics such as top-1 accuracy. Addi-
tionally, we analyze communication efficiency, memory con-
sumption and few-shot evaluation.

C. Learning Analysis

In our comprehensive assessment of federated learning
methods for image classification, FLORA —our proposed
method—stands out for its efficient parameter updates and
effective learning from decentralized data. Empirical evalu-
ations across diverse datasets have demonstrated FLORA’s
superior performance, particularly in IID settings with N = 10
clients, and its robust adaptability to varied classification tasks.
Notably, except for the binary classification dataset R-SST2,
FLORA outshines other baseline methods, as depicted in
Table I.

In Table II, we delve into the performance of various FL
methods under non-IID data distribution, which presents a
more practical and challenging scenario. The table reflects
test accuracy percentages for different values of β, where β
represents the degree of data distribution skewness among the
clients. We aim to evaluate the resilience of each method to
data heterogeneity, an aspect critical to FL applications.



The results across datasets highlight the varying ability of
each FL method to cope with non-IID data. Our method
demonstrates consistent performance superiority across almost
all datasets and β settings, emphasizing its robustness and
suitability for practical FL deployments.

The learning curves for the DTD dataset, as visualized in
Figure 5, corroborate these findings, where FLORA achieves
faster convergence and maintains high accuracy with sig-
nificantly fewer communication rounds compared to other
methods. This rapid and robust performance, particularly in
non-IID conditions, highlights FLORA’s potential for practical
federated deployments, offering a well-suited solution for
diverse and distributed data environments. Notice that all of
the methods start at almost the same accuracy (as in zero-
shot classification thanks to the strong generalization of the
pre-trained CLIP model), but other time only FLORA show
significant improvement and maintain it’s performance through
the training.

TABLE IV: The distribution of classes across clients in few
short learning pathalogical experiment.

# classes of each client
Dataset Σ class N 1th → (N − 1)th Nth

F-MNIST 10 5 2 2
CIFAR-10 10 5 2 2
CIFAR-100 100 10 10 10

TINY 200 10 20 20
OxfordPets 37 6 6 7
Flowers102 102 6 17 17

Aircraft 100 10 10 10
Cars 196 7 28 28
DTD 47 7 6 11

EuroSAT 10 5 2 2
FER2013 7 3 2 3

Caltech101 101 10 10 11
Food101 101 10 10 11

Country211 211 10 21 22
SUN397 397 10 39 46

SST2 2 2 1 1
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Fig. 8: Average results of few-shot learning on various
datasets.

D. Efficiency Analysis

In FLORA, a key attribute is that we incorporate a LoRA
adapter independent of the datasets. Hence, it only commu-
nicates the tiny size network through training and inference,
resulting in lower communication costs than FL algorithms
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Fig. 9: Result of few-shot learning on selected datasets.

that use whole models for aggregation. We evaluate the
communication cost in way such that we train all the models
to a target accuracy and calculate the communication cost. The
communication cost is represented by:

N × ρ× cost per round, (3)

where the cost per round is 2× the size of the exchanged model
(for downloading and uploading the transferred model). The
transferred model size details are given in Table III.

As demonstrated in Figure 6, our method, FLORA, achieves
the target accuracies in fewer communication rounds while
substantially reducing both the communication and train-
ing costs, as analyzed for the CIFAR-10, Flowers102, and
FER2013 datasets. Notably, in the IID setting for CIFAR-10,
FLORA requires just one communication round—significantly
fewer than the 15 rounds required by competing methods like
FedLC. This efficiency carries over to non-IID settings, where
FLORA also outperforms in communication costs and training
time, suggesting rapid convergence capabilities and suitability
for practical federated learning deployments.

Figure 7 further reveals that FLORA maintains a lower
GPU memory usage of 11.84 GB, offering an optimal balance
between resource economy and model performance. This is
attributed to the strategic integration of LoRA adapters, which
refine a small yet impactful subset of model parameters,
enhancing computational efficiency—a crucial advantage for
deploying advanced machine learning on devices with con-
strained resources.

The efficiency gains from FLORA suggest the model’s
potential to facilitate federated learning in environments where
minimizing resource use is as important as maintaining data
privacy and reducing bandwidth. These findings underscore the
viability of FLORA as an effective solution to the challenges
of scalability and communication overhead in distributed
learning contexts.



E. Few-Shot Evaluation

Few-shot learning is a challenging machine learning
paradigm where models must learn from a very limited amount
of data. This is particularly relevant in FL, where each client
may only have a small number of examples.

In addition to IID scenario, we create pathological hetero-
geneous setting to simulate the FL environment [6], [44]. For
the pathological label skew setting, we sample data with a
fraction of total label amount for each client on each dataset
from their total of categories, with disjoint data and different
numbers of data samples. The details of the number of classes
per client in the pathological setting are presented in Table IV.

1) Homogeneous setting: Each client will have n−shot
training samples of each class (each client has every class).
There is a common testing set by randomly selecting 20% of
the total number of samples. The data for testing is selected
from the remaining samples after allocating the training data,
ensuring there is no overlap between training and testing sets.
The experiment will be carried up to 16− shot. Due to the
limited total number of samples of serveral datasets, we are
only able to do as few as 4− shot learning.

2) Pathological heterogeneous setting: Here, each client
owns k disjoint classes with n-shot training samples of each
of these k classes if the number of classes is divisible by the
number of clients (N ) to evenly distribute k classes per client.
For the cases where the number of classes is not perfectly
divisible by the number of clients, we distribute the remainder
of the classes to the last client. The experiment will be carried
up to 16− shot.

In the analysis of few-shot learning, FLORA emerges as
a strong method in federated learning contexts. It outshines
established baselines across 16 datasets, exhibiting a robust
capability to generalize well and optimize performance even
with limited data availability, as depicted in Figure 8. The
empirical data show that FLORA not only thrives in IID
settings, consistently delivering high top-1 accuracy as the
number of per-client training examples increases, but it also
maintains a competitive edge in pathological settings that
mimic real-world non-IID conditions.

Despite the inherent challenges presented by few-shot
learning, FLORA’s performance suggests a particular profi-
ciency in managing data scarcity and distribution variability.
While other methods like FedFFT and FedVM-LC plateau
or falter, especially when faced with highly skewed data,
FLORA’s consistent accuracy—even with minimal training
examples—underscores its potential in practical applications
that must contend with diverse and imbalanced datasets. Fig-
ure 9 shows the results of two selected datasets with relatviely
big number of classes, SUN397 and TINY. These insights
reinforce the relevance of FLORA for few-shot federated
learning and underscore its potential impact on the broader
deployment of machine learning solutions in data-constrained
environments.
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Fig. 10: Different configurations of LoRA adapters placed on
projection layers on CLIP’s text encoder in non-IID setting
(β = 0.1).

V. ABLATIONS

The ablation study we conducted rigorously evaluates the
impact of varying LoRA hyperparameters—scaling factors and
ranks—on the performance of the CLIP model’s text and
image encoders within a non-IID federated learning setting.
As delineated in Figures 10 and 11, the study dissects the
individual and synergistic effects of these hyperparameters
on the top-1 accuracy across four distinct datasets, with a
particular focus on a non-IID setting characterized by β = 0.1.

The study explores a range of scaling factors
(1, 4, 8, 16, 32, 64) and ranks (1, 2, 4, 8, 16, 32) to understand
their individual and combined impact on model performance.
The scaling factor likely pertains to the amplification of the
projection layer’s adjustments, while rank could represent the
number of modifications within the adapter that are allowed
to vary.

Our findings, summarized in Table V, reveal that a LoRA
adapter with a rank of 2 strikes a strategic balance, signifi-
cantly reducing the number of trainable parameters to 24, 576
for the text encoder and to 36, 864 for the image encoder, while
preserving competitive accuracies. This balance showcases the
potential for achieving considerable model performance with a
reduced computational footprint—a key factor in the resource-
constrained environments typical of federated learning.

Notably, the integration of the LoRA adapter into the text
encoder consistently outperforms the image encoder inte-
gration while simultaneously maintaining a lower parameter
count. This indicates a clear preference for text encoder
adaptation in scenarios where both performance optimization
and resource efficiency are desired.



TABLE V: Different configurations of LoRA within CLIP. We have selected r = 2 because it offers a good tradeoff between
accuracy and number of trainable parameters. The scalaing factor α does not affect the number of trainable parameters.

Text Encoder Image Encoder

Rank r = 1 r = 2 r = 4 r = 8 r = 16 r = 32 r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

LoRA size 12,288 24,576 49,152 98,304 196,608 393,216 18,423 36,864 73,728 147,456 294,912 589,824

The conclusive evidence from our study attests to the
rank 2 LoRA adapter’s role in bolstering federated learning
efficiency. By adopting this configuration, FedLoRA presents
as an optimized framework that promises not only swift model
convergence and communication efficacy but also practical
applicability across various federated learning contexts, espe-
cially those with stringent resource limitations.

Our ablation study examined a series of scaling factors,
finding that a judicious selection of α is essential for achieving
the best trade-off between model accuracy and computational
efficiency. While a larger α may potentially lead to greater im-
provements in accuracy by allowing more pronounced updates
to the model, it also risks overfitting and straying too far from
the valuable features learned during pre-training. Conversely,
a smaller α ensures that the updates remain subtle, preserving
the pre-trained model’s generalizability but may not capture
the nuances of the new task as effectively.

The empirical results from our study suggest that a moderate
scaling factor offers the most effective balance, allowing for
sufficient adaptation to the target task without overwhelming
the pre-existing strengths of the model. By carefully cali-
brating α, we enable FedLoRA to adapt to new data while
maintaining the integrity of the original CLIP architecture,
thus ensuring that our approach is not only resource-conscious
but also retains the rich representational capabilities of the
foundational model.

Incorporating LoRA within the CLIP model presents a
wealth of potential beyond the scope of this paper, such as
adapting LoRA to other components like the query, value, key,
and multi-layer perceptron elements, as well as across different
heads within the model’s architecture. Each of these elements
offers a unique set of possibilities for parameter-efficient
adaptation with varying ranks and scaling factors. While our
current study does not extend to these configurations, they
represent intriguing avenues for future investigation. Exploring
these alternatives could further illuminate the ways in which
federated learning can benefit from LoRA’s efficient fine-
tuning, potentially leading to even more sophisticated and
resource-aware federated learning models.

VI. CONCLUSION

In this paper, we have rigorously evaluated the efficacy of
federated learning (FL) techniques for fine-tuning the CLIP
model via LoRA adapters across a spectrum of IID, non-IID,
and few-shot learning settings. Our proposed methodology,
FLORA, consistently surpasses conventional FL benchmarks,
demonstrating superior accuracy and adaptability to diverse
datasets and learning environments.
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Fig. 11: Different configurations of LoRA adapters placed on
projection layers on CLIP’s Image Encoder in non-IID setting
(β = 0.1).

The significant performance gains of FLORA are high-
lighted in our extensive evaluations, which reveal its remark-
able competence in handling both data abundance and scarcity.
Ablation studies further distill the critical hyperparameters that
underpin the success of multimodal FL models, ensuring both
adaptability and computational efficiency.

Ultimately, our investigation into FLORA advances the
field of FL by showcasing a method that not only enhances
model performance in distributed settings but also offers a
strategic blueprint for efficient multimodal model fine-tuning.
The results of our work suggest promising directions for future
FL systems poised to navigate the complexities of practical
data challenges.

In conclusion, this paper presents a step forward in FL,
proposing a method that improves the accuracy of models
trained across decentralized data and introduces a framework
for efficiently fine-tuning multimodal models in a federated
context. Our findings open up new avenues for research
into adaptive FL systems, which can handle real-world data
intricacies while maintaining user privacy and minimizing
communication costs.
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