
PIVOT- Input-aware Path Selection for Energy-efficient ViT
Inference

Abhishek Moitra, Abhiroop Bhattacharjee and Priyadarshini Panda
Yale University, New Haven, CT, 06511, USA

ABSTRACT
The attention module in vision transformers(ViTs) performs in-
tricate spatial correlations, contributing significantly to accuracy
and delay. It is thereby important to modulate the number of at-
tentions according to the input feature complexity for optimal
delay-accuracy tradeoffs. To this end, we propose PIVOT - a co-
optimization framework which selectively performs attention skip-
ping based on the input difficulty. For this, PIVOT employs a hardware-
in-loop co-search to obtain optimal attention skip configurations.
Evaluations on the ZCU102MPSoC FPGA show that PIVOT achieves
2.7× lower EDP at 0.2% accuracy reduction compared to LVViT-
S ViT. PIVOT also achieves 1.3% and 1.8× higher accuracy and
throughput than prior works on traditional CPUs and GPUs. The
PIVOT project can be found at this Github link.

KEYWORDS
Vision Transformers, Systolic Array Accelerators, Energy-efficiency

1 INTRODUCTION
Vision Transformers (ViT) have demonstrated remarkable accuracy
in large-scale image classification tasks [3, 5, 6]. The success of ViTs
can be attributed to the attention module shown in Fig. 1a which uti-
lizes the self-attention mechanism to perform sophisticated spatial
correlation operations [6]. However, the attention module, involves
computationally intensive operations, including matrix multiplica-
tions and non-linear functions like softmax [3, 6]. Hence, as seen in
Fig. 1b, the attention module (QKV+QK𝑇 +SM+(SMxV)+Proj com-
bined) contributes 77.5% to 81.9% of the total ViT inference delay.

Recently, there have been several ViT inference optimization
works that focus on reducing the attention delay overhead. These
mainly fall under two categories 1) Attention sparsification [8, 17]
2) Token pruning techniques [4, 11, 15]. Attention sparsification
techniques exploit the sparsity in the QK𝑇 and (SMxV) layers [8, 17]
(Fig. 1a). In [8], the authors algorithmically investigate the effect
of structured sparsity in the attention heads on ViT accuracy. In a
more recent work [17], the authors propose an accelerator co-design
framework that performs sparse-dense attention decomposition
and develop a sparse accelerator to exploit the attention sparsity.
The objective of token pruning is to selectively reduce the number
of tokens in the ViT. In [11, 15], the authors use predictor net-
works to compute the global-local token importance to eliminate
redundant tokens. In HeatViT [4], the authors use predictor net-
works to score the token importance based on the information
in each attention head. Along with the predictor networks, the
authors use a token packaging technique wherein unimportant
tokens are combined into one token to maintain a good accuracy-
efficiency tradeoff. Although, attention sparsification and token
pruning works [4, 8, 11, 17] achieve good accuracy at reduced com-
putation, they have two major problems. Firstly, the portion of

M
LP

Q

K

V

Q
KT

So
ft

m
ax

 (S
M

)

SM
 x

 V

Pr
oj

ec
tio

n
(P

ro
j)

Attention Module(a)

70.2%

22.5%

74.2%

18.1%
7.7%

QKV+Proj+SM QKT+(SMxV) MLP

(b)

Easy Image -> Less Attentions Difficult Image -> More Attentions

(d)

(c)

DeiT-S Baseline HeatViT ViTCOD PIVOT

GPU CPU

7.3%
7.7%

Figure 1: (a) Figure showing the encoder architecture of a vision transformer.
Q-Query, K-Key and V-Value. (b) Delay distribution across different ViT
modules for DeiT-S (left) and LVViT-S (right) ViTs. Note, Attention delay
is QKV+SM+QK𝑇 +(SMxV)+Proj. (c) Throughput of PIVOT compared with DeiT-
S Baseline (a standard DeiT-S [14] ViT), prior token pruning (HeatViT [4])
and attention sparsification (ViTCOD [17]) techniques implemented on GPUs-
Nvidia V100, RTX2080ti, Jetson Orin Nano and CPUs- Intel Xeon and Rasp-
berry Pi 4. (d) PIVOT’s input difficulty-aware inference

delay optimized by these works is small. For example, attention
sparsification works are only able to optimize 7.3-7.7% of the overall
delay since they target the QK𝑇 and (SMxV) layers as shown in
Fig. 1b. The second problem is that attention sparsification and
token pruning approaches require nuanced hardware support to
achieve optimal efficiency. For example, attention sparsification
works require sparse matrix multiplication hardware to fully ex-
ploit sparse computations. Similarly, token pruning works require
custom hardware design to efficiently implement the token score
predictor modules. Thus, as shown in Fig. 1c, when implemented
on general purpose platforms (GPPs) such as CPUs and GPUs, they
do not achieve any inference delay benefits and, in fact, result in
lower throughput compared to a dense baseline.

Another missing consideration in prior ViT optimization litera-
ture is the input difficulty awareness. Interestingly, different images
have different feature complexity. For example, an easy image will
contain simple, low-level features compared to a difficult imagewith
intricate feature representations [16]. Since attention modules are
responsible for capturing different levels of feature representations
in the image, it is therefore imperative to modulate the number
of attentions in a ViT according to the input difficulty (Fig. 1d).
Modulating the number of attentions according to input difficulty
will ensure minimal attention activation to achieve high accuracy at
low inference delay. There have been several input difficulty-aware

ar
X

iv
:2

40
4.

15
18

5v
1 

 [
cs

.A
R

] 
 1

0 
A

pr
 2

02
4

https://github.com/Intelligent-Computing-Lab-Yale/PIVOT


Abhishek Moitra, Abhiroop Bhattacharjee and Priyadarshini Panda
Yale University, New Haven, CT, 06511, USA

network optimization works in the CNN literature [1, 10, 16]. How-
ever, there are no works that analyze the co-dependency between
the number of attentions and input difficulty from the perspective
of accuracy and ViT inference delay.

To this end, we propose PIVOT, a hardware-algorithm co-design
framework that modulates the number of attentions in the ViT ac-
cording to the input difficulty. The goal of PIVOT is to achieve high
classification accuracy by using the minimum number of attentions
in the ViT. As shown in Fig. 1d during inference, PIVOT uses two
kinds of ViTs - 1) Low Effort and 2) High Effort ViT. The low effort
ViT entails more attention skips compared to the high effort and
classifies the easy images. While the high effort ViT is used for
classifying the difficult images. An iterative hardware-in-the-loop
co-search is applied to obtain the optimal low and high effort ViTs
according to the user-provided delay constraints. For evaluation,
we implement PIVOT on various GPPs such as CPUs and GPUs. Ad-
ditionally, we also evaluate PIVOT on Xilinx ZCU102-implemented
systolic array accelerator [12]. Unlike token pruning and atten-
tion sparsification works, PIVOT does not require any application-
specific hardware and can achieve 1.3×-2× higher throughput than
baseline across various GPPs as shown in Fig. 1c.

In summary, the key contributions of our work are:

(1) We propose PIVOT- a hardware-algorithm co-optimization
framework that leverages input difficulty-aware attention
skipping in ViTs to overcome the high inference delay over-
head of the attention module. During attention optimiza-
tion, PIVOT uses PIVOT-Sim, a cycle-accurate simulator for
ViT implemented on a Xilinx ZCU102 FPGA-based systolic
array accelerator. PIVOT-Sim will be made open-source and
can benchmark different state-of-the-art ViTs.

(2) Using PIVOT-Sim, we find that PIVOT achieves 1.73× (2.7×)
lower energy-delay-product (EDP) at merely 0.4% (0.2%) ac-
curacy reduction compared to DeiT-S [14] (LVViT-S [7])
baselines. End-to-end evaluations using PIVOT-Sim show
that PIVOT is able to achieve more than 1.7× energy reduc-
tion across different resources in the Xilinx ZCU102 FPGA
such as the ZynQMPSoC PS, systolic array, on-chip buffers,
and communication/memory controller circuits.

(3) Through extensive experiments we show the overheads in-
troduced by prior ViT co-optimization works [4, 17] when
implemented on GPPs such as GPUs and CPUs. As PIVOT
does not require nuanced hardware support, when imple-
mented on GPPs, it achieves 1.8× higher throughput at
0.4-1.3% higher accuracy compared to prior works.

2 BACKGROUND ON VISION TRANSFORMER
A Vision Transformer (ViT) comprises multiple cascaded encoders,
and each encoder follows the architecture depicted in Fig. 1a. In
each encoder, the inputs of dimensions 𝑡 × 𝑑 undergo QKV oper-
ations wherein, weights𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are multiplied with the
input to generate the Query (Q), Key (K) and Value (V) matrices. The
attention module uses the multi-head self-attention (MHSA) mech-
anism, that captures close relationships between different image
features [7, 11, 14]. For this, the Q, K and V outputs are partitioned
into multiple smaller attention heads (𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ), where 𝑖 denotes a
head of MHSA.

The attention is computed using Equation 1. In each head matrix
multiplications between𝑄𝑖 ,𝐾𝑇𝑖 (𝑄𝐾𝑇 ) is performed followed by the
softmax (SM) and matrix multiplication with𝑉𝑖 (SM×V) operations
[13]. The softmax is computed using Equation 2.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾

𝑇
𝑖√
𝑑

)𝑉𝑖 , (1)

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖 ) =
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥∑
𝑖 𝑒
𝑥𝑖−𝑥𝑚𝑎𝑥

. (2)

Next, the attention outputs are concatenated resulting in a 𝑡 × 𝑑
output attention matrix. Following this, the projection and MLP
layers project the information into a higher dimension feature
space. Each encoder outputs a 𝑡 × 𝑑 vector that is forwarded to the
subsequent encoder.

3 PIVOT METHODOLOGY
3.1 PIVOT Inference with Low and High Efforts
During PIVOT’s inference, we use the entropy metric to determine
the number of attentions required to classify an input [9]. The
entropy, 𝐸 (𝑥), for an input 𝑥 (belonging to a dataset with 𝐾 classes)
is calculated using Equation 3. Here, 𝜋 (𝒚 |𝒙) is the logit output of
the ViT. The term 1/log𝐾 normalizes the final entropy to (0, 1].

𝐸 (𝒙) = − 1
log𝐾

𝐾∑︁
𝑖=1

𝜋 (𝒚𝑖 |𝒙) log𝜋 (𝒚𝑖 |𝒙). (3)

The entropy measures the confidence of prediction. For example, if
all classes have an equal probability of 1

𝐾
, the entropy value will be

1, implying uncertainty in the prediction. Whereas, if one class’s
prediction probability reaches 1 while the other classes attain 0
probability, the entropy reaches 0 implying confident prediction.

As shown in Fig. 2a, during inference, PIVOT uses a combination
of two efforts: 1) Low Effort and 2) High Effort. Here, Effort is
defined as the number of active attention modules (attentions that
are not skipped) in the ViT. First, all inputs are inferred with the low
effort resulting in the logit outputs (𝜋 (𝒚 |𝒙)) and the entropy values
(𝐸 (𝑥)). For inputs with entropy values lower than the threshold
(𝑇ℎ), the 𝜋 (𝒚 |𝒙) from the low effort ViT are used for class prediction.
For inputs with 𝐸 (𝑥) > 𝑇ℎ, an additional inference is performed
with high effort and then, all inputs are inevitably classified. In Fig.
2a, 𝐹𝐿 and 𝐹𝐻 are defined as the fraction of inputs classified by low
(𝐸 (𝑥) < 𝑇ℎ) and high effort (𝐸 (𝑥) > 𝑇ℎ), respectively. Additionally,
the number of inputs correctly (incorrectly) classified with low and
high efforts are denoted as 𝐶𝐿 (𝐼𝐿) and 𝐶𝐻 (𝐼𝐻 ), respectively. The
𝐶𝐿 and 𝐶𝐻 values are used to compute the accuracy.

Re-computation Overhead: During inference, some of the
inputs that are unclassified with the low-effort are re-inferred with
the high effort which entails re-computation overhead that needs
to be managed to obtain a tradeoff between accuracy vs. efficiency.

3.2 PIVOT Phase1: Optimal Path Selection
PIVOT uses a two-phase hardware-in-the-loop search to design the
multi-effort ViT. In Phase1, we select the optimal path for different
efforts for a given ViT. Each effort contains multiple Paths. For
example, as shown in Fig. 2b, a ViT with 5 encoders and Effort=3
entails

(5
3
)
= 10 possible paths. Here, a Path is uniquely defined by



PIVOT- Input-aware Path Selection for Energy-efficient ViT Inference

Path 1 = 𝓢! Path 2 = 𝓢"

Path 9 = 𝓢# Path 10 = 𝓢!$

Train Optimal Path
𝐿 = 𝐿!" + 𝐿#$%&$'' + 𝐿"(

Optimal Path With
Highest Path-Score

Trained Optimal 
Path For Effort = 3

Obtained

…

(b) Phase 1

Effort 3Effort 2

Effort 4 Effort 5
Trained Optimal Path 

of Different Efforts

Sample High & Low Effort

PIVOT Inference
Compute 𝐶), 𝐶* , 𝐹), 𝐹*

Choose 
Threshold

If FL >= LEC No?

(c) Phase 2

Compute 𝐷%and 𝐷&
Delay = 𝐹%𝐷% + 𝐹&(𝐷& +𝐷%)

If Delay 
Met? No?

Choose a 
Different 

Effort Combo

PIVOT 
Optimized ViT

Inference with Low Effort

Low Effort
𝜋(𝑦|𝑥) 𝐸(𝑥)

𝐸
(𝑥
)

High Effort

𝜋(𝑦|𝑥)

Threshold (Th)
Inference with High Effort

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	 (𝑪𝑯 +𝑪𝑳) 𝑻𝒐𝒕𝒂𝒍	𝑰𝒎𝒂𝒈𝒆𝒔⁄𝑭𝑳 = 𝟒 𝟔⁄ ; 𝑭𝑯 = 𝟐 𝟔; 𝑪𝑳 = 𝟑; 𝑰𝑳 = 𝟏; 	𝑪𝑯 = 𝟏; 𝑰𝑯 = 𝟏;⁄

Compute Prediction
& Entropy Values

Inference with Low and High Effort(a)

Attention Inactive; MLP Active

Attention Active;   MLP Active

User-provided 
Delay

Compute 
Accuracy

Yes

ViT 
Params

Systolic 
Array 

Params

Low(ConIig%) and High 
(ConIig&) Efforts Configs

PIVOT-Sim

Figure 2: Figure showing (a) Input difficulty-aware inference procedure with PIVOT (b) PIVOT’s Phase 1 (b) Phase2 Methodology. 𝐿𝐸𝐶 denotes the user-provided
low effort constraint which implies the fraction of inputs that must be classified by the low effort ViT. For PIVOT-Sim, ViT params include embedding dim size,
mlp ratio etc. and systolic array params include array size, dataflow, etc.

(b)
1-

2-
3-

4-
5-

6-
7-

8-
9-
10-

11-

- - - - - - - - - - -2 3 4 5 6 7 8 9 10 11 12(a)

𝑀
𝐿𝑃

!

𝐴!"#

Attn

Encoder 2

MLP
𝐴$

Attn

Encoder 1

MLP
𝑀𝐿𝑃#

Attn

Encoder 2

MLP
𝐴$

Attn

Encoder 1

MLP
𝑀𝐿𝑃#

Low 𝐶𝐾𝐴 𝑀𝐿𝑃# , 𝐴$ −	Attention Active

High 𝐶𝐾𝐴 𝑀𝐿𝑃# , 𝐴$ −	Attention Skip

0

1

0.5

Figure 3: (a) 𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥 computed between the MLP output of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑖
(𝑀𝐿𝑃𝑖 ) and Attention output of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑖+1 (𝐴𝑖+1) for the DeiT-S ViT (b) Higher
𝐶𝐾𝐴(𝑀𝐿𝑃𝑖 , 𝐴𝑖+1 ) suggests data redundancy and the attention can be skipped.

the position of encoders with active and inactive attention modules.
Having large number of paths for each effort increases the search
space size in Phase2. Therefore, we define a Path-Score (shown
in Algorithm 1) metric to single-out the Optimal Path (shown in
yellow) corresponding to each effort. The path with the highest
Path-Score (S) is chosen as the Optimal Path and trained with the
loss function shown in Fig 2b. The loss function contains cross-
entropy loss 𝐿𝐶𝐸 , and the distillation loss 𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙 between the final
layer features of the teacher and student ViT. The 𝐿𝐶𝐸 and 𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙
are commonly used in prior works to train high performance ViTs
[7, 14]. In PIVOT, to improve the prediction confidence, we add the
regularization term 𝐿𝐸𝑛 that lowers the entropy for the correctly
classified inputs. 𝐿𝐸𝑛 is the mean of the entropy values for the
correctly classified inputs. Lowering the entropy ensures increased
confident classifications with low efforts and thereby improves the
inference efficiency.

CKA Matrix Fig. 3a shows the center kernel alignment matrix
(𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥) comprising of the CKA values computed between
MLP outputs (𝑀𝐿𝑃𝑖 ) and attention outputs (𝐴𝑖+1) of ViT encoders

𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑖 and 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑖+1, respectively. CKAmeasures the similarity
between two matrices [2]. A high 𝐶𝐾𝐴(𝑀𝐿𝑃𝑖 , 𝐴𝑖+1) value implies
high similarity in 𝑀𝐿𝑃𝑖 and 𝐴𝑖+1 outputs, thus suggesting that
output𝑀𝐿𝑃𝑖 can be directly forwarded to𝑀𝐿𝑃𝑖+1 by skipping𝐴𝑖+1
as shown in Fig. 3b (top). Contrarily, for a low 𝐶𝐾𝐴(𝑀𝐿𝑃𝑖 , 𝐴𝑖+1)
value, the attention cannot be skipped as shown in Fig. 3b (bottom).

Algorithm 1: Path-Score Computation Algorithm
Input: Effort Configuration (𝐶𝑜𝑛𝑓 𝑖𝑔), #Encoders in ViT (𝐷),

𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥 .
Output: Path-Score (S)

1 S = 0;
2 for 𝑖 𝜖 𝐶𝑜𝑛𝑓 𝑖𝑔 do
3 for 𝑗 𝜖 (𝑖 + 1, 𝐷) do
4 if (𝐴 𝑗 is 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒) then
5 S = S +𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥 (𝑖, 𝑗);
6 else
7 break;

Path-Score (S): Algorithm 1 shows the methodology to com-
pute S. Algorithm 1 requires the 𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥 (shown in Fig. 3a)
and the effort configuration (𝐶𝑜𝑛𝑓 𝑖𝑔), containing encoder locations
with active and inactive attention. The 𝐶𝐾𝐴 𝑀𝑎𝑡𝑟𝑖𝑥 is generated
for a small batch of 256 images. For a given 𝐶𝑜𝑛𝑓 𝑖𝑔, S is computed
by summing up the CKA values between the MLP outputs (𝑀𝐿𝑃 ) of
the encoders with active attention and the attention outputs (𝐴) of
the encoders with inactive attention. For example, S for 𝐶𝑜𝑛𝑓 𝑖𝑔 =

[1,2,3,4,5,6,7,8,9,10,11,12], where encoder indices of inactive atten-
tions are denoted by cyan can be computed as 𝐶𝐾𝐴[𝑀𝐿𝑃2, 𝐴3] +



Abhishek Moitra, Abhiroop Bhattacharjee and Priyadarshini Panda
Yale University, New Haven, CT, 06511, USA

(a) (b) ×10!

3x

2x

DeiT-S 
Efforts 3-9

LVViT-S 
Efforts 4-12

(c)

𝓢 ↑= Accuracy ↑

Figure 4: (a) Path Accuracy vs. Path-Score (S) corresponding to Effort = 6 for DeiT-S ViT. (b) Design space size if random search is performed in Phase2, without
selecting optimal path for each effort in Phase1 (size normalized to PIVOT’s design space size) (c) GPU hours for training DeiT-S, LVViT-S and PIVOT Efforts
(normalized to GPU hours required for training DeiT-S from scratch).

𝐶𝐾𝐴[𝑀𝐿𝑃2, 𝐴4] +𝐶𝐾𝐴[𝑀𝐿𝑃8, 𝐴9] +𝐶𝐾𝐴[𝑀𝐿𝑃8, 𝐴10]. A high S
signifies that the path contains highly redundant attentions that
can be easily pruned out. Fig. 4a shows the positive correlation
between S and path accuracy. As high 𝑆 paths ensure pruning the
most redundant attention blocks, they attain higher accuracy.

3.3 PIVOT Phase2: Selecting Optimal Effort
Combinations

In Phase2, given a set of efforts with optimal paths (shown in blue in
Fig. 2c), PIVOT determines the right effort combination to achieve
optimal accuracy while meeting the user-provided delay require-
ment. 1) First, we start with a pair of low and high efforts (say, Effort
9 and Effort 12). 2) Next, the threshold values 𝑇ℎ for the low effort
inference is chosen. The 𝑇ℎ values are iterated in an incremental
manner. 3) A small batch of data (randomly sampled batch of 256 im-
ages from the training set) is inferred with the low and high efforts.
This generates the𝐶𝐿 ,𝐶𝐻 , 𝐹𝐿 and 𝐹𝐻 values. 4) Following this, the
accuracy calculator uses 𝐶𝐿 and 𝐶𝐻 to compute the accuracy (Fig.
2a). The thresholds are iterated until the condition 𝐹𝐿 ≥ 𝐿𝐸𝐶 is met.
Higher 𝐿𝐸𝐶 value ensures more inputs classified by the low effort
ViT. 5) The low (𝐶𝑜𝑛𝑓 𝑖𝑔𝐿), high (𝐶𝑜𝑛𝑓 𝑖𝑔𝐻 ) effort configurations,
𝐹𝐿 and 𝐹𝐻 values are passed to the PIVOT-Sim framework for delay
computation. The PIVOT-Sim platform first computes the delays
of low and high efforts (𝐷𝐿 and 𝐷𝐻 , respectively) using 𝐶𝑜𝑛𝑓 𝑖𝑔𝐿 ,
𝐶𝑜𝑛𝑓 𝑖𝑔𝐻 , ViT and systolic array parameters (Refer Section 3.4).
Then, it computes the delay of the effort combination using 𝐷𝐿 ,
𝐷𝐻 , 𝐹𝐿 and 𝐹𝐻 . If the delay lies within 5% of the user-provided
delay constraint, the optimal effort combination is obtained. If the
delay constraint is not met, a new effort combination (say, Effort
6 and Effort 9) is selected. In order to achieve high accuracy, the
sampling starts with efforts containing maximum active attentions.
In each iteration, a smaller effort combination is sampled than the
previous iteration until the desired delay is obtained.

Benefit of CKA Score-based Optimal Path Selection In Fig.
4b, we compare the Phase2 design space size of random and PIVOT-
based search. Since PIVOT uses the Path-score to single out the
optimal path for each effort, there exists only one path for each
effort combination. Whereas, Phase2 with random search entails
multiple paths due to the absence of optimal path selection. For
example, in random search as shown in Fig. 4b, effort combinations
[3,6] can contain

(12
3
)
×
(12
6
)
= 2.03 × 105 possible paths for the

DeiT-S ViT. For the DeiT-S ViT Phase2 with random search, the
search space size is ∼ 105× higher than PIVOT’s search space size.

GPU Hours for Training all Efforts: Fig. 4c shows that the
combined GPU hours required for training all efforts (see Section
4.1) for DeiT-S (LVViT-S) ViTs in PIVOT is 3× (2×) less compared
to training the DeiT-S (LVViT-S) ViT from scratch. This is because,
the training time reduces with reduction in the ViT effort.

3.4 PIVOT-Sim Platform

DRAM

ZynQ
MPSoC PS

WT
M
E
M

GB

OP MEM

IP MEMZynQ MPSoC PL

PE

PE Array

PE

PE

PE
PE

PE

PE
PE

PE

Delay Combo 
𝐹!𝐷! + 𝐹"(𝐷" +𝐷!)

Energy Combo 
𝑃𝑜𝑤𝑒𝑟	×	𝐷𝑒𝑙𝑎𝑦

Compute 𝐷! and 𝐷"

Figure 5: Figure showing the PIVOT-Sim Platform.

Fig. 5 shows the overall architecture of the PIVOT-Sim platform.
PIVOT-Sim performs cycle-accurate delay estimation for a given
ViT effort mapped on a Xilinx ZCU102 MPSoC FPGA-based systolic
array accelerator. Like the ZynQ MPSOC FPGA, PIVOT-Sim con-
tains two systems: 1) ZynQ MPSoC Processing System (PS) and 2)
ZynQ MPSoC programmable logic (PL). All the linear matrix mul-
tiplication layers (QKV, QK𝑇 , SMxV, Proj and MLP) are executed
in the PL-implemented systolic accelerator. Inputs and weights are
first loaded from the PS DRAM to the global SRAM buffer (GB) in
the PL. Then the weights and inputs are fetched from GB to the
Weight SRAM (WTMEM) and Input SRAM (IPMEM), respectively.
Then, the weights from the WTMEM are loaded in to the PE ar-
ray in a streaming fashion following which, the inputs are fetched
from the IPMEM in a streaming fashion column by column. The
multiply-and-accumulate (MAC) outputs are stored in the output
SRAM (OPMEM). The outputs are pushed to the GB and finally to
the DRAM. The non-linear operations such as softmax, entropy
and GeLU are implemented using the ZynQ MPSoC PS.

The PIVOT-Sim framework requires the ViT parameters (embed-
ding dimension size, number of tokens, mlp ratio and attention head
count) and systolic array parameters (array dimensions, dataflow,
SRAM memory sizes, and the clock frequency) and the low (high)
effort configurations 𝐶𝑜𝑛𝑓 𝑖𝑔𝐿 (𝐶𝑜𝑛𝑓 𝑖𝑔𝐻 ) (discussed in Section 3.2)
to compute the low (high) effort delays 𝐷𝐿 (𝐷𝐻 ). Additionally, it
also computes the delay of low-high effort combination using the
𝐹𝐿 , 𝐹𝐻 , 𝐷𝐿 and 𝐷𝐻 values as shown in Fig. 5. The 𝐷𝐿 × 𝐹𝐻 term in
the delay computation accounts for the re-computation overhead.



PIVOT- Input-aware Path Selection for Energy-efficient ViT Inference

The energy is obtained by multiplying the power with the delay of
the effort combination.

Entropy Computation OverheadWe find that entropy compu-
tation (Equation 3) in the ZynQ MPSoC PS takes 0.03ms per image
which is < 0.05% of the inference delay and thus, can be ignored.

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup
Datasets and ViTs: We benchmark all our results on the stan-
dard Imagenet-1K dataset using state-of-the-art efficient ViTs such
as DeiT [14] and LV-ViT [7]. Baseline: For all experiments, the
baseline is a ViT model without any effort modulation i.e., all ViT
attention modules will be activated irrespective of the input diffi-
culty. PIVOT-Optimized ViTs: For ease of expression, throughout
the text, we will refer to PIVOT-optimized DeiT-S and LVViT-S ViT
as PVDS and PVLS, respectively.

Traning Details: In PIVOT, for the DeiT-S and LVViT-S ViTs,
we create 7 (3, 4, 5, 6, 7, 8 and 9) and 9 (4, 5, 6, 7, 8, 9, 10, 11, 12)
efforts, respectively. Each effort is finetuned for 30 epochs with
the full training data. The ViTs are trained with 8-bit quantization.
Training all the efforts is 3× (2×) more efficient than training a
DeiT-S (LVViT-S) ViT from scratch (see Fig. 4c). For training we
use Pytorch 1.3.1 with a single Nvidia V100 GPU backend.

Hardware Evaluation:All baselines and PIVOT-optimized ViTs
(PVDS and PVLS) are evaluated using the PIVOT-Sim framework.
The FPGA implementation parameters for PIVOT-Sim are shown
in Table 1. The FPGA implementation requires 4566 LUTs, 20668
Registers, 48 Block RAMs and 2304 digital signal processing cores.

FPGA Board Xilinx ZCU102
Global SRAM (GB) Size 16KB

IPMEM, WTMEM, OPMEM 64Kb, 64Kb, 64Kb
PE Array Size 64×36

Clock Frequency 125MHz
Dataflow Input Stationary

Table 1: Table showing the FPGA implementation parameters.

4.2 Results on DeiT-S and LVViT-S ViTs

Table 2: Table comparing the performance of DeiT-S and PIVOT-optimized
DeiT-S ViTs (PVDS-𝑁 ) sampled at delay=𝑁 .

Model Energy
(J)

Delay
(ms)

Power
(W)

EDP
(J×ms) FPS/W Accuracy

(%)
DeiT-S 0.47 59.66 7.92 28.19 2.14(1×) 79.8
PVDS-50 0.38 (1.23×) 48.47 (1.23×) 7.92 16.21 (1.73×) 2.7(1.23×) 79.4
PVDS-35 0.292 (1.62×) 36.9 (1.61×) 7.92 10.5 (2.6×) 3.4(1.61×) 78.2

Table 3: Table comparing the performance of LVViT-S and PIVOT-optimized
LVViT-S ViTs (PVLS-𝑁 ) sampled at delay=𝑁 .

Model Energy
(J)

Delay
(ms)

Power
(W)

EDP
(J×ms) FPS/W Accuracy

(%)
LVViT-S 0.63 79.55 7.92 50.8 1.57(1×) 82.8
PVLS-50 0.410 (1.57×) 50 (1.6×) 7.92 20.13 (2.7×) 2.51(1.6×) 82.6
PVLS-35 0.312 (2.17×) 36.5 (2.17×) 7.92 10.57 (4.5×) 3.4(2.17×) 81.1

Table 2 and Table 3 compare the delay, energy-delay-product
(EDP), energy efficiency (FPS/W) and the accuracy of different PVDS
and PVLS ViTs searched at different target delays lesser than the
baseline. Evidently, as seen in Table 2 the PVDS-50 (PVLS-50) ViTs

achieve 1.73× (2.7×) EDP reduction, 1.23× (1.6×) higher FPS/Wwith
merely 0.4% (0.2%) accuracy reduction compared to the baseline
DeiT-S (LVViT-S). At a slightly higher accuracy reduction of 1.6%
(1.7%) the PVDS-35 (PVLS-35) yields 2.6× (4.5×) lower EDP and
1.62× (2.17×) higher FPS/W compared to baseline.

DeiT-S
PVDS-50

LVViTT-S

PVLS-50

Attention MAC Softmax MLP

↓1.23x ↓1.6x

(a)

En
er

gy
 (J

)

0.25

0.50

0

D
el

ay
 (m

s)

0

50

(b)

PS PE Array Periphery SRAM

DeiT-S
PVDS-50

LVViTT-S

PVLS-50

Figure 6: (a) Delay breakdown across encoder modules for different ViTs (b)
Energy breakdown across the PE Array, Periphery and SRAM (part of the
ZynQ MPSoC PL) and the PS (ZynQ MPSoC PS).

Fig. 6a shows the delay distributions across the Attention MAC
(QKV, QK𝑇 , (SMxV) and Proj), Softmax and MLP modules (refer
Fig. 1a). Interestingly, the softmax module consumes 60% (63%) of
the overall delay in the DeiT-S (LVViT-S) ViTs. With PIVOT, the
softmax overhead reduces to 43% (48%) for the PVDS-50 (PVLS-50)
ViTs. Similarly, the Attention MAC overhead reduces to 13% (14%)
in the PVDS-50 (PVLS-50) ViTs compared to 18% (19%) in DeiT-S
(LVViT-S) ViTs. Note, since PIVOT does not skip MLP modules, the
delay overhead of MLP in PVDS-50 (PVLS-50) increase by 21% (19%)
compared to the baselines due to the re-computation overhead (refer
Section 3.1). However, due to high delay reduction in softmax and
attention MACmodules, PIVOT achieves an overall delay reduction.

Energy Reduction across FPGA Resources: As seen in Fig.
6b, delay reduction in PVDS-50 and PVLS-50 ViTs lead to an energy
reduction across the ZynQMPSoC PS and PL systems. PVDS-50 and
PVLS-50 ViTs achieve around 2× energy reduction in the PS and
1.6×, 1.7× and 1.8× energy reduction in the PE-Array, SRAMmemo-
ries and peripheral circuits, respectively implemented on the ZynQ
MPSoC PL (See Section. 3.4). The peripheral circuits (periphery)
include PS-PL interconnects, reset and memory controllers.

4.3 Comparison with Prior Works

Table 4: Performance comparison of ViTCOD [17], HeatViT [4] and PVDS-50.
Work ViTCOD [17] HeatViT [4] PIVOT (Ours)

ViT Backbone DeiT-S DeiT-S DeiT-S
Effort Modulation Constant Constant Input-aware

Prediction Norm Head Entropy
Mechanism Score Level Metric
Quantization 8-bits 8-bits 8-bits
Accuracy 78.1% 79.1% 79.4%

GPP Compatible × × ✓

Table 4 performs a holistic comparison between PIVOT and prior
state-of-the-art algorithm-hardware co-design frameworks [4, 17].
Soft token pruning in HeatViT [4] achieves a high token pruning
ratio of 40%, 74% and 87% in encoders 4-6, 7-9, and 10-12, respec-
tively, while achieving 79.1% accuracy. ViTCOD [17] achieves 90%
attention sparsity ratio at 78.1% accuracy. Accuracy advantage
in PIVOT: HeatViT [4] and ViTCOD [17] do not modulate their
efforts based on the input difficulty (token and attention sparsity
ratios remain constant for all inputs). Therefore, at high token and



Abhishek Moitra, Abhiroop Bhattacharjee and Priyadarshini Panda
Yale University, New Haven, CT, 06511, USA

(a) (b)
Compute

Baseline

Overhead
Compute
Overhead

ViTCOD HeatViT PIVOT
Figure 7: Compute and overhead delay breakdowns for DeiT-S baseline,
HeatViT [4], ViTCOD [17] and PIVOT (PVDS-50) across (a) Nvidia V100, NVidia
RTX2080ti and Nvidia Jetson Orin Nano (b) Intel Xeon and Raspberry Pi 4.

DeiT-S

LEC=100
LEC=90
LEC=80
LEC=70
LEC=60

PVDS-55
PVDS-52
PVDS-50

(a) (b)

Low Effort High Effort Overhead

Figure 8: Figure analysing the effect of different 𝐿𝐸𝐶 on the EDP and accuracy
for different effort combinations. (b) EDP distribution between the low effort,
high effort and the re-computation overhead (Overhead) for the PVDS-50 ViT.

attention pruning ratios, the accuracy suffers as difficult images
are wrongly classified. Whereas, due to input-awareness, PIVOT
(PVDS-50) achieves the highest accuracy of 79.4%.

Evaluation on GPPs: As HeatViT [4] and ViTCOD [17] require
special hardware support for efficient implementation, we perform
the delay comparison on GPPs such as CPUs- Intel Xeon, Raspberry
Pi, and GPUs- Nvidia V100, Nvidia RTX2080ti and Nvidia Jetson
Orin Nano for a fair comparison. As seen in Fig. 7a and Fig. 7b, the
PIVOT (PVDS-50) achieves around 1.2-1.5× lower delay compared
to the baseline across all GPPs. Since ViTCOD requires sparse
matrix multiplication support, the delay on GPP is similar to the
baseline. Due to hefty predictor networks and token packaging
modules for soft token pruning, HeatViT [4] entails significant delay
overhead when implemented on GPPs. PIVOT is general purpose
and entails a small overhead of 6% in the delay. This delay is majorly
contributed by the re-computation overhead. The contribution of
entropy computation (Equation 3) is negligibly small (< 0.05%).

4.4 Analysis with 𝐿𝐸𝐶 Constraints
From Fig. 8 we find that 𝐿𝐸𝐶 = 70 and 𝐿𝐸𝐶 = 80 attain the best EDP
and accuracy tradeoff across different PVDS ViTs. At low 𝐿𝐸𝐶 = 60,
the EDP is high as merely 60% of the inputs are classified by the
low effort. Additionally, 𝐿𝐸𝐶 = 90 entails 90% of the inference with
low effort but this leads to a significant accuracy degradation.

The EDP is contributed by the low effort and high effort inference,
and the re-computation overhead (Section 3.1). At low 𝐿𝐸𝐶 values,
both high-effort and re-computation EDPs are high while the low
effort EDP is less. As the 𝐿𝐸𝐶 value increases, the low effort EDP
increases marginally while the high effort and re-computation EDP
reduce significantly leading to overall low EDPs.

Need for Input difficulty awareness As seen in Fig. 8a for
𝐿𝐸𝐶 = 100, all inputs are inferred by the low effort. This leads to low
EDP at the cost of accuracy since the efforts are not modulated for

difficult inputs. Therefore, PIVOT’s input-aware effort modulation
achieves optimal accuracy-efficiency tradeoffs.

4.5 Efforts Combinations for Different Delays

Effort 6

Effort 12

Effort 6

Effort 9

Effort 3

Effort 12

Effort 3

Effort 8PV
D

S-
25

PV
D

S-
35

PV
D

S-
45

PV
D

S-
50

1 2 3 4 5 6 7 8 9 10 11 12

Attention Active Attention Inactive Low Effort High Effort

Attention Skipping ↑; D
elay↓  

Figure 9: Different PVDS ViTs sampled by PIVOT at different delay constraints.

As seen in Fig. 9, reduction in the delay requirement lowers the
number of active attentions in the ViT. The efforts shown here
represent the optimal path with the highest Path-score for each
effort. Interestingly, we observe that across all efforts, attentions
skipping is preferred in the deeper layers as the 𝐶𝐾𝐴(𝑀𝐿𝑃,𝐴)
value is higher in the latter layers.

5 CONCLUSION
PIVOT motivates ViT attention optimization in an input difficulty-
aware manner. PIVOT’s input-awareness yields 0.4%-1.3% higher
accuracy compared to prior token pruning and attention sparsifi-
cation works. Unlike prior works, PIVOT is GPP compatible and
yields 1.2-1.5× higher throughput compared to baseline ViT across
different CPU/GPU platforms. Additionally, PIVOT-Sim- an end-to-
end open source FPGA-based evaluation platform is developed that
will motivate future ViT-hardware co-optimization works.

ACKNOWLEDGEMENT
This work was supported in part by CoCoSys, a JUMP2.0 center
sponsored by DARPA and SRC, the National Science Foundation
(CAREER Award, Grant #2312366, Grant #2318152), and the DoE
MMICC center SEA-CROGS (Award #DE-SC0023198)

REFERENCES
[1] Bhattacharjee et al. 2022. MIME: adapting a single neural network for multi-task

inference with memory-efficient dynamic pruning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 499–504.

[2] Cortes et al. 2012. Algorithms for learning kernels based on centered alignment.
The Journal of Machine Learning Research 13, 1 (2012), 795–828.

[3] Dehghani et al. 2023. Scaling vision transformers to 22 billion parameters. In
International Conference on Machine Learning. PMLR, 7480–7512.

[4] Dong et al. 2023. Heatvit: Hardware-efficient adaptive token pruning for vi-
sion transformers. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 442–455.

[5] Dosovitskiy et al. 2020. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[6] Han et al. 2022. A survey on vision transformer. IEEE transactions on pattern
analysis and machine intelligence 45, 1 (2022), 87–110.

[7] Jiang et al. 2021. All tokens matter: Token labeling for training better vision
transformers. Advances in neural information processing systems 34 (2021), 18590–
18602.

[8] Kim et al. 2021. Rethinking the self-attention in vision transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3071–3075.

[9] Li et al. 2023. Input-aware dynamic timestep spiking neural networks for efficient
in-memory computing. In 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.



PIVOT- Input-aware Path Selection for Energy-efficient ViT Inference

[10] Panda et al. 2016. Conditional deep learning for energy-efficient and enhanced
pattern recognition. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 475–480.

[11] Rao et al. 2021. Dynamicvit: Efficient vision transformers with dynamic token
sparsification. Advances in neural information processing systems 34 (2021),
13937–13949.

[12] Samajdar et al. 2018. Scale-sim: Systolic cnn accelerator simulator. arXiv preprint
arXiv:1811.02883 (2018).

[13] Stevens et al. 2021. Softermax: Hardware/software co-design of an efficient
softmax for transformers. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 469–474.

[14] Touvron et al. 2021. Training data-efficient image transformers & distillation
through attention. In International conference on machine learning. PMLR, 10347–
10357.

[15] Wang et al. 2021. Spatten: Efficient sparse attention architecture with cascade to-
ken and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 97–110.

[16] Wu et al. 2018. Blockdrop: Dynamic inference paths in residual networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
8817–8826.

[17] You et al. 2023. Vitcod: Vision transformer acceleration via dedicated algo-
rithm and accelerator co-design. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 273–286.


	Abstract
	1 Introduction
	2 Background on Vision Transformer
	3 PIVOT Methodology
	3.1 PIVOT Inference with Low and High Efforts
	3.2 PIVOT Phase1: Optimal Path Selection 
	3.3 PIVOT Phase2: Selecting Optimal Effort Combinations
	3.4 PIVOT-Sim Platform

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Results on DeiT-S and LVViT-S ViTs
	4.3 Comparison with Prior Works
	4.4 Analysis with LEC Constraints
	4.5 Efforts Combinations for Different Delays

	5 Conclusion
	References

