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Abstract— Embodied reasoning systems integrate robotic
hardware and cognitive processes to perform complex tasks
typically in response to a natural language query about a
specific physical environment. This usually involves changing
the belief about the scene or physically interacting and changing
the scene (e.g. Sort the objects from lightest to heaviest). In
order to facilitate the development of such systems we introduce
a new simulating environment that makes use of MuJoCo
physics engine and high-quality renderer Blender to provide
realistic visual observations that are also accurate to the
physical state of the scene. Together with the simulator we
propose a new benchmark composed of 10 classes of multi-
step reasoning scenarios that require simultaneous visual and
physical measurements. Finally, we develop a new modular
Closed Loop Interactive Reasoning (CLIER) approach that
takes into account the measurements of non-visual object
properties, changes in the scene caused by external disturbances
as well as uncertain outcomes of robotic actions. We extensively
evaluate our reasoning approach in simulation and in the real
world manipulation tasks with a success rate above 76% and
64%, respectively.

I. INTRODUCTION

The research efforts in developing systems capable of
high-level perception and reasoning [1], [2], [3], [4], [5], [6]
have been increasing in recent years. Many robotics systems
include an agent that is required to perform a task with a
specified goal given visual observations or instructions in
natural language [7], [8], [1], [4], [9]. Such tasks requires
a simulation environment for generating data, or on-line
agent training, together with an evaluation process. Existing
environments [10], [11] differ in terms of physics simulation
engines and the quality of visual observations. High com-
putational load of realistic rendering forces a compromise
between real-time physics calculation and visual quality of
the simulation. Realistic synthetic visual data are crucial for
development of robotics systems but the collection of such
data is often restricted by a cumbersome setup process and
real time robot operations [12]. More powerful simulators,
datasets and benchmarks are needed for a closed-loop setup
where changes to the world or physical measurements (e.g.,
weight, elasticity, occlusions, etc.) should be accounted for
as directly affecting the next step in action planning.
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In this paper, we emphasise the following contributions1:
◦ We introduce MuBlE, a novel modular environment

for simulating and executing interactive manipulation tasks
characterised by high-quality visual rendering and accurate
physics calculation. It employs MuJoCo for physics and
Blender for rendering, which we refer to with MuBlE
(MuJoCo+Blender Environment). It can generate multimodal
data based on scene specification and instruction templates.
An example scene and task that can be executed in this
environment is shown in Fig. 1. We believe to be the first
work focusing on task planning in robotics manipulation
while preserving accurate physics modelling between the
bodies, in contrast to discrete action spaces such as in
ManipulaThor [8] and ALFRED [4].

◦ We propose SHOP-VRB2, a new benchmark for eval-
uating embodied closed loop reasoning systems for robotic
manipulation. It includes 10 types of benchmarking tasks
for single- and multi-step tabletop manipulations that require
combined reasoning between visual observations (recognis-
ing attributes of objects and their relations) and physical
measurements (acquiring properties obtainable through in-
teraction only, such as weight or stiffness). SHOP-VRB2
extends [13] with a challenging combination of various
modalities (language, vision, and manipulation) for bench-
marking Visual Reasoning, VQA (e.g. [14]) (language +
vision), and Embodied question answering (EQA) (e.g. [6],
[15]) (language + vision + navigation) approaches.

◦ We propose a closed-loop neuro-symbolic interactive
reasoning approach (CLIER), that can plan, evaluate and
execute a given task (e.g., Place the heaviest mug on the
box). The highlight of our approach is that it can plan for
perception of invisible object properties (e.g., weight or stiff-
ness) and account for new measurements to adjust the plan.
Our reasoning agent is able to recover from a wide range
of manipulation failures caused by external disturbances and
uncertain outcomes of manipulation actions.

◦ We evaluate our proposed Closed Loop Interactive
Embodied Reasoning (CLIER) within MuBlE using the
proposed SHOP-VRB2 synthetic benchmark and validate it
via comparative experiments between simulated and real-
world YCB [16] objects.

In the remainder of this paper, we first review the existing
simulators and justify the need for a new environment. We
then present the proposed MuBlE and CLIER in Sec. III.
Sec. IV introduces our SHOP-VRB2 benchmark. Results and
discussion are presented in Sec. V.

1The environment, the benchmark and the reasoning approach are released
on the project webpage https://michaal94.github.io/CLIER
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Place the red object on top of the food box.
move[1]START

open_gripperlower[2]lift[1]

approach[1]

move[2]

close_gripper

Fig. 1. An example task presenting capabilities of the proposed environment: synthetic scene generation, instruction generation, execution of symbolic
actions for manipulation followed by physics calculation and realistic rendering. Symbolic actions with corresponding targets marked in the image. Best
viewed zoomed.

II. RELATED WORK

Simulation environments for manipulation focused on
combined visual and language robotic tasks. State-of-
the-art simulators ManipulaTHOR [8] (extension of AI2-
THOR [10]), CoppeliaSim [19], or iGibson [20] provide
non-photorealistic rendering, lacking accurate shades and
reflections. This is in contrast to Blender that can generate
photorealistic scenes with procedural object models. ISAAC-
Sim [11] is a resource-intensive, closed-source simulator
with limited customisation. ThreeDWorld [17] also makes
use of a commercial renderer and does not provide the in-
frastructure for robotics manipulation tasks, including motion
planners. Unlike prior works, we pay particular attention
to conditional action planning and execution in robotics
manipulation while preserving accurate physics modelling
between the bodies, and offer both continuous and discrete
action spaces, in contrast to discrete action spaces such as in
ThreeDWorld [17] and ManipulaThor [8], or pure continuous
control of the robot as seen in Robosuite [18]. For example,
ManipulaThor [8] considers grasping as a discrete action,
while we enable to execute sequences of various custom
primitive actions (e.g., approach, gripper closing, lifting, etc.)
or continuous control of the robot. From these simulators,
only iGibson offers non-kinematic continuous and discrete
object states e.g. temperature or burned. Our MuBlE envi-
ronment differs from the aforementioned manipulator simu-
lators by a unique and open-source combination of 1) high-
quality visual data and realistic physics modelling, which is a
key advantage when attempting sim2real transfers (as shown
in our experiments), 2) ability to select between operating on
continuous action space or usage of primitive actions, and 3)
considering both visible and non-visible continuous object
states (e.g., weight, or stiffness). We present a comparison
between different simulators in Table I.
Benchmarks for language-conditioned manipulation. The
advantages of MuBlE environment enabled us to prepare a
unique benchmark for closed-loop embodied reasoning
(SHOP-VRB2) that extends SHOP-VRB [13]. SHOP-VRB
is a dataset closely related to the robotic manipulation
scenarios considered in this work. It features various ob-
jects suitable for robotic manipulation that can be easily
obtained. There are many high quality 3D models of var-
ious instances of these objects which make them suitable
for generating synthetic scenes via Blender rendering that

includes procedurally generated materials rather than simply
texturing the mesh. We therefore extend it to a dataset
and a benchmark SHOP-VRB2 that enables development
and testing of systems capable of reasoning on non visual
attributes and performing interactive tasks.Compared to other
benchmarks, such as ALFRED [4] (based on RoboTHOR), a
benchmark for understanding natural language instructions in
robotics, VLMbench [21], based on RLbench [22] and Cop-
peliaSim [19], that adds linguistic commands and realises
automatic complex tasks builders, IKEA Furniture Assem-
bly [23], that provides a benchmark for various assembly
tasks and CALVIN benchmark [24] offering natural lan-
guage instructions for long-horizon manipulation tasks, our
SHOP-VRB2 benchmark requires long-horizon closed-loop
embodied reasoning, that involves manipulation of the world
to acquire knowledge about non-visual object properties in
order to complete the task or answer a query.
Symbolic approaches gained interest in visual reasoning
tasks and several deep learning systems incorporate neuro-
symbolic programs. CLEVR-IEP [25] suggested predicting
symbolic programs to be executed on disentangled scene
representation, and was followed by NS-VQA [26], and
NS-CL [27]. V2A [28] introduced a symbolic approach for
robotic tasks using only the initial state of the scene, and
was evaluated in a real robotic environment [6], however,
only open-loop single-step tasks were demonstrated. Sym-
bolic approaches were also considered in Task and Motion
Planning systems (TAMP) that were often based on the
formal language PDDL [29]. Classic TAMP approaches rely
on predefined rules and known dynamic models [30], [31],
[32] but learning based methods are increasingly replacing
handcrafted heuristics in TAMP methods [33], [34], [35].
PDDLStream [36] extends PDDL to add any sub-symbolic
model in a black-box way, which also opens it to the use
of learning-based methods. However, it works only on a
symbolic level and does not close the loop with the real
world. Deep Visual Reasoning [37] directly predicts task
plans by considering initial observation only. Regression
Planning Networks (RPN) [38] propose a task planning
model which performs regression in symbolic space using
neural networks. RPN are expanded in [39] by utilising re-
gression planning on scene graph representations to estimate
the next subgoal based on the current scene and a given scene
graph, i.e. solving only subpart of the overall task that our
method deals with. The interaction with the real world that



TABLE I
COMPARISON OF THE MUBLE’S CAPABILITIES WITH THE RELATED SIMULATORS FOR THE ROBOTIC EXPERIMENTS. OUR MUBLE CAN BE CHARACTERISED BY HIGH

QUALITY RENDERING WITH BLENDER, ACCURATE PHYSICS WITH MUJOCO, INCLUDED VISIBLE AND NON-VISIBLE STATES, VARIOUS ACTION SPACES AVAILABLE,

TARGETING TABLETOP MANIPULATION, MODULAR AND EASILY EXTENDABLE.

Simulator
Rendering Physics Motion

planner
Non-kin.

states
Non-visible

states Action space Speed Scale Open-source
library material quality library supports

AI2-THOR [10] Unity textures ++ Unity rigid dyn./animation ✗ D ✗ Discrete + room D
ManipulaTHOR [8] Unity textures ++ Unity AI2THOR+manip. ✗ ✗ ✗ Discrete + room D
ThreeDWorld [17] Unity/V-Ray (off.) Configurable +++ Unity+FLEX rigid/particle dyn. ✗ ✗ ✗ Continuous ++ house ✗

Robosuite [18] MuJoCo/NVISII Configurable ++ MuJoCo rigid/artic. dyn. D ✗ ✗ Continuous ++ tabletop D
ISAACSim [11] Omniverse RTX Configurable ++ PhysX rigid/artic. dyn. D ✗ ✗ (Disc.)&Cont. ++ house ✗

Habitat 2.0 [9] Magnum 3D scans/PBR + PyBullet rigid/artic. dyn. ✗ ✗ ✗ Continuous +++ house D
CoppeliaSim [19] OpenGL Gouraoud shad. + PyBullet rigid/artic. dyn. D ✗ ✗ (Disc.)&Cont. ++ room ✗

iGibson [20] PyRender/OpenGL PBR shad. + PyBullet rigid/artic. dyn. D D ✗ Continuous ++ house D
MuBle (ours) MuJoCo/Blender procedural +++ MuJoCo rigid/artic. dyn. D D D Disc.& Cont. + tabletop D
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Fig. 2. A diagram of CLIER reasoning and MuBlE environment including
interaction between the two, and use of SHOP-VRB2 benchmark. Symbols
for transferred data: T - text of the query, ~G - prediction of scene graph
elements, G - current scene graph, S - subgoal (symbolic program requiring
physical measurements), I - image, P - physical observations, C - control
signal, A - primitive action to take, R - returned result.

follows a linguistic query (e.g.measure the weight of the mug,
find the sofa) is explored in embodied question answering
approaches [15], [6], [40]. In [6], language-conditioned
visual reasoning is combined with manipulation. Navigation
of agents based on vision and language was investigated
in VLN [1]. However, both approaches considered tasks
that do not react to incoming measurements, i.e. reasoning
is not conditioned on new observations. Recently, several
works utilised large-langauge models (LLMs) to generate
action plans for robot manipulation tasks (eg., [41], [42]).
While they show impressive versatility and adaptability to
novel environments, they suffer from lack of explainability,
verifiability, and repeatability. LLMs require careful prompt
engineering and filtering of outputs before the robot can

execute them. Furthermore, such approaches do not capture
the task and trajectory details and do not enable fast-loop
reactiveness. These problems have to be resolved to broadly
deploy LLMs for embodied reasoning. Using data created
with MuBlE environment, we train and evaluate a novel
CLIER reasoning agent that can act on a natural language
query in a real scene. Moreover, we present closed-loop
reasoning experiments in simulation and real tabletop scenes.
A highlight of our approach is that it plans for perception
of invisible object properties, e.g. when stacking objects by
weight. Moreover, unlike classical methods, our reasoning
agent is executed on every key frame, which allows it to
recover from a wide range of manipulation failures (e.g., un-
successful grasping, or falling object during manipulation).

III. MUBLE ENVIRONMENT AND CLIER REASONING

In this section, we present our MuBlE environment for
simulating manipulation tasks and reasoning CLIER ap-
proach that makes use of this environment. The main mod-
ules and data flow are presented in Fig. 2.

MuBlE is built on robosuite [18] which is a simulation
framework suitable for creating robotic environments inside
the physics engine MuJoCo. We equip our environment with
high quality rendering powered by Blender. It is designed for
a generic tabletop scenario with a single robotic manipulator
and a gripper. We use the same set of robots and grippers as
robosuite. We provide a set of object models in MuJoCo
and their counterparts in Blender along with templates to
create new items.

We first introduce the scene graph in Sec. III-A and
action planning in Sec. III-B that is a part of CLIER.
We then present two main components of the environment
and reasoning approach: action (render) loop in Sec. III-C,
and physics loop in Sec. III-D. Sec. III-E summarises our
reasoning pipeline.

A. Scene Graph

A real scene can be captured by a camera or a synthetic
one can be rendered by Blender based on a detailed scene
description. Scene graph G is generated for each key frame
I starting from the first image of the scene. A keyframe is
rendered after a motion corresponding to the primitive action



Place the bowl on the 
wooden object.

Pick up the lightest of the 
glass objects.

What is the weight of the 
red object?

Fig. 3. (Left) Examples of visual observations (selected frames) generated for the actions corresponding to the instruction: Stack the lightest of metal
objects on the yellow object. Note that metal cans were initially picked up to measure their weight. Further, according to the measurement taken, the heavier
of the cans was put down and the lighter one was picked up and stacked on the yellow plate. (Right) Example scenes and corresponding instructions in
natural language generated with MuBlE (in the dataset, instructions left to right belong to tasks 7, 3, and 1 in Tab. II).

is finished e.g. moving from object 1 to object 2, approaching
grasping pose, closing the gripper, etc. We have chosen the
keyframe based approach as it allows us to use Blender for
rendering frames, which have sufficient quality for sim2real
transfer, and sufficient speed to allow for recovering from
failures with the closed loop approach.

To parse the scene into a set of objects with attributes ~G we
apply an instance segmentation with Mask R-CNN [43], fol-
lowed by classification of object attributes with ResNet [44]
and pose regression with CosyPose [45]. Scene graph is a
sequence of feature vectors corresponding to each object in
the scene including whether the object is in the gripper or
whether the gripper is closed. We use simple geometrical
heuristics to create or update the scene graph G for keyframe
I, similarly to [39].

High-quality rendering of every frame can be used for
training but it is too slow for real-time experiments. However,
many tasks are achievable with low rate visual reasoning
and fast feedback loops from other sources of information
(e.g. force control). Example key frames rendered during
execution of a task are presented in Fig. 3 (Left).

B. Symbolic program generator and action planner

As the reasoning method we propose a multi-staged
approach inspired by Neural Symbolic VQA approaches
[13], [26]. Symbolic program generator is implemented as
a Seq2Seq network [46] that given translates the natural
language query T into a sequence of symbolic programs that
are evaluated on the scene graph G for keyframe I, producing
a subgoal S for the task e.g. measuring weight. We employ a
transformer as the action planner to predict the next primitive
action A and its target, given the current scene graph G and
subgoal S.

To enable planning of various manipulation tasks we
design a set of primitive actions A that can be easily extended
in MuBlE:

• move – moves the end effector towards a given target
(e.g. another object or part of the table),

• approach – positions the end effector in a grasping
position with respect to the target object

• close gripper, open gripper – to grasp or release,
• lift, lower – lifts or lowers the end effector,
• weigh – weighs the object in the gripper,
• squeeze – squeezes the object in the gripper to measure

its stiffness.
Non visual states, such as weight or stiffness are encoded in
the scene graph after measurements, however the transformer
is provided only a binary flag indicating whether the property

was measured or not and the sorting reasoning is performed
once all the measurements are completed.

C. Action (render) loop
Scene graph and action planner make part of the ac-

tion (renderer) loop in Fig. 2. Primitive action controller
implements a control that can execute action A on target
object in MuJoCo physics engine or real robot. Physics
loop, discussed in more details in Sec. III-D), calculates
physics and collects observations P (e.g. pose of end effector,
physical measurement, force in the gripper, etc.). A control
signal is generated in every step of the physics loop, until
the path is completed. After the execution, a new key frame
is captured in real-world setup or rendered in simulation.

Primitive action execution with obstacle avoidance require
the positions and orientations P of the objects in the scene.
Every primitive action, including gripper closure, generates
a desired trajectory (position and orientation) P for the end
effector. The action of approaching to the grasp position
entails a set of pre-coded grasp sequences. We implement
grasping of cylindrical objects (depending on their position
and size), grasping by the edge, grasping by the handle etc.
We use a simplified model as simulated grasping is often
not reliable and inconsistent with real grasping. Whenever
grasping pads on all gripper fingers are in contact with
the same object, it is considered as grasped. Thereafter,
the object’s pose is fixed with respect to the end effector.
Further, whenever the gripper starts to open, the object is
detached from the gripper body with an initial velocity of
0. More details can be found on GitHub page: https:

//michaal94.github.io/CLIER

D. Physics loop
The physics are calculated with the use of MuJoCo engine

which makes part of MuBlE and is used by CLIER as shown
in Fig. 2. With a user defined timestep, the control signal C
is applied to the manipulator, the corresponding forces are
calculated and applied to all objects in the scene. Similarly
to robosuite, the control signal takes the form of the
displacement of the end effector, i.e. position and orientation
change, along with binary signal for opening and closing
of the gripper. By default, the control signal is translated to
desired joint forces by the Operational Space Controller [47],
which can be customised. A control signal to the environment
can be provided by the user directly or can be obtained from
the primitive action controller, which calculates the error of
current end effector pose and the planned trajectory.

Every step of applying the control C affects the physics
of the scene and generates a set of observations P, which

https://michaal94.github.io/CLIER
https://michaal94.github.io/CLIER


Place the heaviest of all metal
objects on the left part of the table.

filter_material[metal] ➜
filter_weight[heaviest] ➜ move_to[left]

thermos
pos: (0.6, 0.1, 0.0)

ori: (0.0, 0.0, 0.35, 0.9)
colour: purple
material: metal

shape: cylindrical

eefpos: (0.5, 0.0, 0.2)
ori: (1.0, 0.0, 0.0, 0.0)

POSE

VISUAL

SENSOR

filter_material[metal]

filter_weight[heaviest]

move_to[left]

move[3]

open_gripper

approach[3] close_gripper lift[3] lower

move[4] approach[4] close_gripper lift[4]

Completion assesment

lift[4] lower

open_gripper

Completion assesment SUCCESS

Fig. 4. An example task from the proposed dataset demonstrating the
CLIER pipeline. Blue colour denotes execution of symbolic programs,
the output targets from programs are shown in the green, yellow denotes
executing sequence of primitive actions after having received a trigger from
program (blue). Note that actions in yellow result in updates of the scene
graph depicted in the top middle.

include: position and orientation of the end effector, joint
positions and velocities, status of the gripper closure. Obser-
vations of measured non-visual properties, such as stiffness,
weight, or elasticity, are also included. Additionally, mea-
surements related to all objects in the scene may be collected,
such as positions, orientations, bounding boxes, indication
whether the object is currently in the gripper. Any custom
sensor can be added to MuBlE as in robosuite.

E. Reasoning pipeline

CLIER starts by parsing the visual scene to create or
update its semantics and geometry scene graph. Simultane-
ously, a symbolic program in the CLEVR-IEP [25] format is
extracted from a natural language instruction. The program
is then executed on the scene graph to select the subgoals
that have to be achieved on the scene, e.g. measuring the
weight of the target when the graph node of the target’s
weight is empty. Further, action planning regresses the task
to a sequence of primitive actions for the current state of
the scene. It reevaluates the next step at every pass of the
action (render) loop. The reasoning is completed when either
the answer is obtained from the program, or the state of the
scene matches the target in task completion modules. The
components of the pipeline are presented in Fig. 2 and an
example task in Fig. 4.

IV. SHOP-VRB2 DATASET

We introduce SHOP-VRB2 dataset created in MuBlE for
training and benchmarking. The dataset includes a set of
scenes with instructions to perform various tasks (e.g. Stack
metal objects from heaviest to lightest). Tasks are designed to
enforce reasoning simultaneously on the visual observations
(recognising attributes of objects and their relations) and
continuous physical measurements, taking the feedback loop
into account. Every example is accompanied with a ground
truth sequence of actions for successful execution, along
with visual observations and detailed scene graphs. Some

examples can be found in Fig. 3 and 4. We include weight
measurement as a representative example of estimating non
visual object properties through manipulation due to the ease
of repeatability for other researchers but we also demonstrate
stiffness measurements. Other properties such as roughness
are also possible but require another template for training
and an implementation of the control. We first discuss the
tools we provide in MuBlE that can be used to generate a
scene and natural language instructions Sec. IV-A. We then
introduce our SHOP-VRB2 benchmark in Sec. IV-B.

A. Data generation tools

Scene generator is a tool in MuBlE that can procedurally
generate data for training models. We provide a template
scene that is compatible with the renderer within the frame-
work. The procedural algorithm takes a set of object models,
which can be customised, and randomly places them on the
tabletop. Desired properties of the objects such as colour,
material, and size can also be randomised. We check for
collisions between meshes, unlike previous approaches that
check only bounding boxes. Afterwards, a maximal desired
level of occlusion is ensured. Finally, we render an im-
age of the scene, generating full ground truth, including
segmentation masks for all the objects, the robot, and the
tabletop, as well as a depth map. Fig. 3 (Right) presents
some example scenes generated with MuBlE. Objects in the
scene are described in Sec. IV.
Instruction generator is another tool in MuBlE that
given the scene, generates natural language instructions or
tasks that require reasoning and interaction. We propose a
template-based algorithm where we improve upon CLEVR
and SHOP-VRB, which are time-consuming and scale poorly
when more adjectives are introduced in the templates. This
is due to evaluating all possible combinations of describing
words, and validating the descriptions with respect to the
given scene. Instead, we implement an efficient rejection
mechanism. We first generate all combinations of short de-
scriptions for all scene objects. Short descriptions of objects
are more natural than in [48], [13]. Next, we evaluate the
descriptions using scene constraints e.g. the target of the
instruction has to satisfy the constraint of being pickupable
otherwise the description is rejected. The instruction targets
are randomly selected from the validated descriptors and
used to generate ground truth symbolic program. We au-
tomatically produce the ground truth actions by reasoning
backwards with predefined pairwise relations e.g. lifting an
object requires grasping it, grasping requires approaching
to the grasping position, etc.). Fig. 3 presents example
instructions generated for the given scenes using templates
that are described in Sec. IV.

B. Benchmark data

SHOP-VRB2 scenes include 12000 realistically ren-
dered scenes split to train, validation, and test sets:
10000:1000:1000. The scenes contain typical household ob-
jects which are easily accessible. Following [13], various



TABLE II
INSTRUCTION TEMPLATES CORRESPONDING TO THE BENCHMARKING TASKS IN

THE PROPOSED DATASET.

No. Instruction Templates

1. Measure the weight of the OBJ1.
2. What is the weight of all OBJ1s?
3. Pick up the WS1 of all OBJ1s.
4. Place the OBJ1 on the TP1 part of the table.
5. Remove all OBJ1s from the TP1 part of the table.
6. Place the WS1 of all OBJ1s on the TP1 part of the table.
7. Stack the OBJ1 on top of the OBJ2.
8. Place the WS1 of all OBJ1s on top of the OBJ2.
9. Stack the OBJ1 on top of the OBJ2 on top of the OBJ3.

10. Stack all OBJ1s from heaviest to lightest.

instances of objects are included: baking trays, bowls, chop-
ping boards, food containers, glasses, mugs, plates, soda
cans, thermoses, and wine glasses. The scenes are generated
with 4 to 5 objects per scene (their respective distribution
is 47.3% and 52.7%). We make sure the randomization of
the materials (plastic, metal, glass, rubber, wood) is realistic.
Out of 54317 placed objects, a subset was selected randomly,
with 1330 instances of the least common (big chopping board
model due to many possible collisions), and 3486 instances
of the most common model (bowl – less prone to collisions).
YCB scenes include 30 simulated benchmarking scenes with
9 YCB-Video [49] objects and 3 randomly generated scenes
for each of the benchmarking tasks described below. 9 YCB
objects were selected so that the objects share various types
of visual/physical attributes (cleanser, mustard, mug, bowl,
tomato can, Cheez-it, sugar box, meat can, foam brick).
Benchmarking tasks We assign one instruction to each
scene to introduce more diversity in visual observations. We
designed 10 classes of benchmarking tasks revolving around
moving and stacking objects based on their visual (colour,
material, shape), and physical properties (weight). Example
templates are presented in Tab. II. The task types are closely
related to the instruction templates in Tab. II and involve 1)
measuring weight of a single object, 2) measuring weight of
multiple objects, 3) picking up based on weight, 4) moving
single object 5) moving multiple objects 6) moving based on
weight 7) stacking objects 8) stacking objects according to
weight 9) stacking 3 objects 10) ordering objects according
to their weight. OBJx refers to a description of an object
consisting of a set of visual properties (chosen randomly and
validated), e.g. the red object presented in Fig. 1. Note that
tasks may refer to either one, specific unique object, or a set
of objects sharing a certain property e.g. template 1 and 2 in
Tab. II. Further, TPx specifies a part of the table e.g. the left
and the right part. Finally, WSx refers to weight specifier, i.e.
distinction whether the lightest or the heaviest object from
the set is the target of the instruction. The length of the
instructions ranges between 5 and 16 words. The resulting
sequences contain between 5 (measure the weight of the
single object) and 46 (stacking several items according to
weight) primitive actions. All instructions are accompanied
with symbolic programs in CLEVR-IEP [25] format and task
specifications with respect to the scene graph.

TABLE III
(LEFT) SUCCESS RATES FOR CLIER METHOD ON SHOP-VRB2 (VRB, SIM) AND

YCB DATASET (SIM/REAL). (RIGHT) EXECUTION OUTCOMES ON SHOP-VRB2,

INCL. SUCCESSES (BOLD) AND TYPE OF FAILURES. SEE THE WEBPAGE LINKED IN

SEC. I FOR MORE DETAILS AND VIDEO ILLUSTRATION.

Success [%] VRB YCB Perc[%] VRB
Task type Sim Sim Real Exit code Sim

Weight single 74.0 66.7 88.9 Correct answer 13.9
Weight multi 65.0 100 66.7 Task success 30.0
Pick up weight 49.0 100 88.9 Task failure 0.1
Move single 76.0 66.7 100 Execution err 14.4
Move multi 47.0 100 44.4 Loop detected 10.8
Move weight 23.0 100 100 Physics err 3.5
Stack 56.0 66.7 66.7 Program err 4.5
Stack weight 31.0 33.3 22.2 Recognition err 9.6
Stack three 0.0 66.7 0.0 Output error 0.6
Order weight 18.0 66.7 100 Scene inconsistent 12.6

Overall 43.9 76.7 64.4 Total 100%

Ground truth for visual and physical observations are pro-
vided for every scene and its benchmarking instruction. An
observation is taken after every primitive action is executed
and contains: position and orientation of end effector, grip-
per status, weight measurement, ground truth scene graph,
segmentation masks, and action with its target.

V. BENCHMARKING AND RESULTS

In this section we provide benchmarking results for
CLIER. We show results for two datasets: 1) in simulation
for SHOP-VRB2 dataset (Sec. V-A), and 2) on a set of 30
benchmarking scenes in simulation and in real-world with
YCB objects (Sec. V-B).
Benchmarking metrics are the rate of successful task
execution (e.g. stacking) and correct question answer (e.g.
weight query). Additionally, we provide accuracy split into
task types presented in Tab. II. Finally, for the inference tool
of CLIER we provide a classification of incorrect attempts,
including errors of execution, incorrect scene recognition,
loop detection, timeout, inconsistency in object tracking.

The latency of various modules is the following. CosyPose
inference is 0.8s, attributes recognition: 0.15s, transformer
action planner: 0.02s (as run on 2080Ti). The prediction of
the next action takes around 1s as measured on the hardware.
These are reasonable delays given that these modules are
deployed at keyframes.

A. SHOP-VRB2 experiments

Results for CLIER are presented in Table III(Left) which
shows success rates for tasks. We observe high success rates
for the tasks that include manipulation of single objects
(weighing or moving one object), and strong decrease in ac-
curacy for multi-object manipulation (stacking more objects,
preceding manipulation with weighting). Further, we identify
the most common reasons for failure in Table III(Right)
which reports the distribution of error codes from the en-
vironment. Execution error (14.4%) accounts for failures in
execution of primitive actions which may arise from inac-
curate scene description (e.g. typically object pose). Scene
inconsistency (12.6%) refers to mistakes in tracking objects
IDs between frames. Loop detection (10.8%) arises when



Fig. 5. The real setup with YCB objects (left), corresponding MuJoCo sim-
ulation using estimated poses (middle), and RViz visualisation of coloured
pointcloud with overlaid grey models detected by CosyPose (right).

primitive action chains are repeated (e.g. when approaching
object to grasp with misaligned position). Note that this
experiment uses simple, ResNet based pose estimation in
contrast to more accurate CosyPose [45] that was trained
for YCB objects but not for SHOP-VRB2 objects. Finally,
we believe that overall accuracy of 43.9% on SHOP-VRB2
indicates that this data forms a challenging benchmark for
evaluating visual and interactive reasoning.

B. Real-world experiments

In this section, we report comparative results for real YCB
scenes that mirror 30 YCB scenes introduced in Sec. IV-B.
Experimental Setup includes Franka Emika Panda [50] arm
with 7 degrees of freedom and a 2-finger parallel gripper. An
(extrinsically calibrated) Intel Realsense D455 camera is set
to face the robot and capture the front view of the scene
(see Fig. 5). To allow CLIER to control the real robot, we
developed a thin ZMQ [51] based communication layer that
emulates the same interface as for the simulated robot (i.e.,
motion generation using position-based servoing). Special
purpose skills include measuring stiffness via squeezing the
object with different forces and measuring deformation or
weight via lifting and joint torque differences. Note that
the weighing has a relative error of less than ±10% in the
range 0 − 200 g compared to the ground truth weight. The
stiffness measurement has a coefficient of variation ranging
from 1.6− 3.4 %, which is highly repeatable. However, we
were not able to obtain ground truth data for stiffness.
Sim2Real Our method uses raw RGB rendered images to
train the attribute recognition module (c.f . Fig. 2). This is
not further tuned between YCB sim and real experiments.
The same reasoning model (c.f . Sec. III-E) is evaluated in
30 synthetic and real scenes using the same CosyPose [45]
on RGB images. The reasoning modules operate on the scene
graph thus are agnostic to visual input.
Results We mirror experiments with the real scenes in
our simulation environment. To evaluate the contribution of
different modules we perform testing along with ablations by
replacing them with ground truth (GT) data i.e. 1) reasoning
success with GT pose and GT attributes 2) pose inference
with GT attributes and GT reasoning, 3) pose inference and
attribute recognition with GT reasoning, 4) full inference
without using GT. The results for all these combinations are
in Table IV where the success is the average across 3 runs
of each experiment. Note that Seq2seq network in symbolic
program generator is not included in the table as it performed

TABLE IV
SUCCESS RATE FOR DIFFERENT SETUPS (INFERENCE VS. GROUND TRUTH) IN

SIMULATION AND REAL WORLD. C - COSYPOSE, A - ATTRIBUTES RECOGNITION,

R - REASONING, ✓- MODULE USED, ✗- MODULE SUBSTITUTED WITH GROUND

TRUTH INFORMATION.

C A R Simulation Real

✗ ✗ ✓ 86.7% 86.7%
✓ ✗ ✗ 90.0% 80.0%
✓ ✓ ✗ 90.0% 76.7%
✓ ✓ ✓ 76.7% 64.4%

with 100% accuracy, therefor the error for case 1) comes
from transformer action planner. We observe a very similar
performance between simulation and real which validates
the usefulness of high quality vision and physics in MuBlE.
The performance for individual tasks with YCB scenes in
simulation and real world is reported in Tab. III(Left). Sim
and Real differences for YCB can be attributed mostly to
CosyPose object detection and its robustness to occlusion.
Typical execution errors Our closed loop reasoning ap-
proach is able to recover from various execution errors such
as dropping or moving an object (see video). Typical errors
during the real world execution are caused by uncertainty
in pose estimation. This leads to various cases: 1) grasp
succeeds because object’s real pose is withing the margin
for error. 2) a different grasp is achieved e.g. over a rim
instead over diameter of an open cylindrical object. 3) the
object slips out when closing the gripper. 4) the gripper
collides with the object during the approach and causes a
robot error (safety stop reflex). The robot can recover from
all except case (4) or when the object is pushed out of the
workspace in (3). A varied pose of the object in the gripper
(i.e., (1) and (2)) occasionally influences subsequent tasks
such as stacking or weighing. Detection of occluded objects
is also prone to failures. In particular, occlusion from the
gripper when grasping is an issue when updating the scene
graph. We use the last estimated object pose and leverage the
information of the gripper holding ’something’ to overcome
these pose estimation errors.
Joint limits and singularities. Robot kinematic agnostic
servoing of the end-effector can lead to degenerate robot
configurations. These situations include 1) joint limits, 2) the
borders of the workspace, 3) self-collisions, and 4) alignment
of several joint axes. To avoid running into joint limits,
we start each experiment in a good standard pose and the
robot always rotates to a neutral down-facing end-effector
orientation before moving via the smallest rotation to the goal
rotation. Self collisions are avoided by the Panda controller
and are counted as robot errors.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented our closed-loop approach for
visual and interactive reasoning for robotic manipulation
tasks: closed loop interactive embodied reasoning (CLIER).
This approach is using our novel MuBlE environment that
incorporates MuJoCo physics simulation with high-quality
renderer and enables generation of multi-modal demonstra-
tion data for robotic manipulation tasks. This fully modular



environment enables both data generation and benchmarking
of simultaneous reasoning in visual and physical space.
CLIER is able to incorporate observations of both visual
and physical attributes of the manipulated objects into long-
term reasoning. Capturing data from visual and physical
measurements in the shared scene graph enables the symbolic
reasoning approach and simplifies the implementation of the
closed loop approach via keyframe based reasoning. The
results from simulated and real-world experiments showed its
ability to successfully transfer between the simulated and real
environment and to recover from various errors or changes
in the scene.

We believe this work provides a new challenge and a
benchmark for future systems that aim at bridging the gap
between physics simulation for robotic manipulators, realistic
visual simulations and execution in real environments.
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